
11/20/14

1

UCM-Based
Generation of
Test Goals

Daniel Amyot, University of Ottawa
(with Michael Weiss and Luigi Logrippo)
damyot@site.uottawa.ca

RDA Project (funded by NSERC)

Adapted by J-Pierre Corriveau from:

2

Test Generation Approaches

  Based on UCM Testing Patterns (TPs)
  Grey-box test selection strategies, applied to

requirements scenarios
  Manual

  Based on UCM Scenario Definitions
  UCM + simple data model, initial values and start

points, and path traversal algorithms
  Semi-automatic

  Based on UCM Transformations
  Exhaustive traversal
  Mapping to formal language (e.g., LOTOS)
  Automated

11/20/14

2

3

TP1: Alternatives
a!

SP! EP!b!

c!

d!

  1A: All results (end points)
{<SP, a, c, EP>}

  1B: All segments
{<SP, a, c, EP>, <SP, b, d, EP>}

  1C: All paths
{<SP, a, c, EP>, <SP, a, d, EP>,
 <SP, b, c, EP>, <SP, b, d, EP>}

  1D: All combinations of sub-conditions
(for composite conditions, e.g., (X OR Y) AND Z)

4

TP2: Concurrency

  2A: One combination (wrt ordering)
{<SP, a, b, c, EP>}

  2B: Some combinations
{<SP, a, b, c, EP>, <SP, b, a, c, EP>}

  2C: All combinations
{<SP, a, b, c, EP>, <SP, b, a, c, EP>,
 <SP, b, c, a, EP>}

a!

SP! EP!b! c!

11/20/14

3

5

TP3: Loops
a!

SP! EP!

b!

  3A: All segments
  3B: At most k iterations
  3C: Valid boundaries [low, high]

Tests low, low+1, high-1, and high
  3D: All boundaries [low, high]

Tests valid ones (3C) and invalid ones (low-1
and high+1, for rejection tests)

Flattening the Loops

  3A: All segments:
  {<SP, a, b, a, EP>}

  3B: At most k iterations:
  {<SP, a, EP>, <SP, a, b, a, EP>, <SP, a, b, a, b, a, EP>} (if k = 2)

  3C: Valid boundaries [low, high]: Tests low, low+1,
high-1, and high. If low = 1 and high = 5:
  {<SP,a,b,a,EP>, <SP,a,b,a,b,a,EP>, <SP,a,b,a,b,a,b,a,b,a,EP>,

<SP,a,b,a,b,a,b,a,b,a,b,a,EP>}

  3D: All boundaries [low, high]: Tests valid ones (3C) and
invalid ones (low-1 and high+1). If low = 1 and high = 5:
  Accept: {<SP,a,b,a,EP>, <SP,a,b,a,b,a,EP>, <SP,a,b,a,b,a,b,a,b,a,EP>,

<SP,a,b,a,b,a,b,a,b,a,b,a,EP>}
  Reject: {<SP,a,EP>, <SP,a,b,a,b,a,b,a,b,a,b,a,b,a,EP>} 6

11/20/14

4

7

TP4: Multiple Start Points

Strategies based on necessary, redundant, insufficient, and racing subsets
(8 strategies based on path sensitization)

SP3!

EP!
SP2!

SP1!

Case # SP1 SP2 SP3 SP1 ∨ (SP2 ∧ SP3) Subset
0 F F F F Insufficient stimuli. Not interesting.
1 F F T F Insufficient stimuli
2 F T F F Insufficient stimuli
3 F T T T Necessary stimuli
4 T F F T Necessary stimuli
5 T F T T Redundant stimuli
6 T T F T Redundant stimuli
7 T T T T Racing stimuli

Eight strategies for start points
Based on necessary, redundant, insufficient, and racing subsets of inputs:
  4A: One necessary subset, one goal:

  {<SP2, SP3, EP>} (if case 3 is selected)

  4B: All necessary subsets, one goal:
  {<SP2, SP3, EP>, <SP1, EP>} (assume interleaving)

  4C: All necessary subsets, all goals:
  {<SP2, SP3, EP>, <SP3, SP2, EP>, <SP1, EP>}

  4D: One redundant subset, one goal:
  {<SP1, SP2, EP>}

  4E: All redundant subsets, one goal:
  {<SP1, SP2, EP>, <SP3, SP1, EP>}

  4F: One insufficient subset, one goal:
  {<SP2, EP>} (rejection)

  4G: All insufficient subsets, one goal:
  {<SP3, EP>, <SP2, EP>} (rejection)

  4H: Some racing subsets, some goals:
  {<SP1, SP3, SP2, EP, EP>, <SP2, SP3, SP1, EP, EP>} 8

11/20/14

5

9

TP5: Single Stub

SP!

S!
IN1!

OUT1!

OUT2!

EP1!

EP2! IN2! OUT1!
c!

OUT2!
d!

Plug-in 2

IN1! OUT1!
a!

OUT2!
b!

Plug-in 1

Flattens one stub from a hierarchical UCM.
Strategies:
•  5A: Static flattening (when only one plug-in in the static stub)
•  5B: Dynamic flattening, some plug-ins (when several plug-ins in the dynamic stub)
•  5C: Dynamic flattening, all plug-ins (when several plug-ins in the dynamic stub)

Assuming all branch coverage for each plug-in:
•  5A: 2 paths {<SP, a, EP1>, <SP, b, EP2>} IF S were static
•  5B: 2 paths { <SP, c, EP1>, <SP, d, EP2>} or same as 5A (ie test 1 of the 2 plugins)
•  5C: 4 paths {<SP, a, EP1>, <SP, b, EP2>, <SP, c, EP1>, <SP, d, EP2>}

10

TP6: Causally-Linked Stubs

Handles combinations of plug-ins bound to causally linked stubs.
  causal: selection of plug-in for 2nd stub depends on (is caused by) 1st stub’s
 selection of plug-in

Strategies:
•  6A: Default behavior (when no feature is active)
•  6B: 1 combination
•  6C: several or all combinations…

SP

S1
IN1 OUT1

EP1

EP3
IN1 OUT1

a

OUT2
b

Plug-in
for S1

OUT2

S2
IN2 OUT3

EP2

OUT4

IN2 OUT3
c

OUT4
d

Plug-in
for S2

Plug-in 1
Default for both

