University Example Use Cases

In the University example we can identify the following use cases which are mapped to the scenarios in the ACL University example contracts.

Use Case Actor/s Input Output
Create Courses University Number of courses A list of courses.
Create Students University Number of students, Student A list of students.
type (part-time/full-time).
Create a term University Number of courses, number List of courses, list of
of students, student type. students.
Register for courses | Student, Student type, selected List of courses which student
University, course/s, number of courses registered in.
Course allowed to register in.
Take courses Student, Term started, number of List of courses taken, list of
Course assignments if required, courses dropped.

number of midterms if
required, is project required,
is final required, selected
courses to drop.

Report marks Student, List of students, marks. Student marks.
Course,
University

Therefore we will create a UCM for each scenario in the University example

Scenarios UCMs
1. CreateCourses

"

Occurs up to UniversityCourses
R1: CreateCourse

a. Operational Variables required for this scenario:

Variable Name Motivation

UniversityCourses This variable defines the number of courses that can be created at the university; ranges from 1 to
100, that is a university must have at least 1 course and no more than 100 courses. We will use the
min/mx values of this variable to flatten the loop.

b. Path sensitization variables testing table:

Variant Operational Variables Expected Results

UniversityCourses

Path.1.1 1 1 course will be created.

Path.1.2 100 100 courses will be created.

2. CreateStudents

]

Occurs 1+ times

R2: CreateStudent

a. Operational Variables required for this scenario:

Variable Name Motivation

NumberOfStudents We will need to create this SPV to control the number of students
created in university.

b. Path sensitization variables testing table:

Variant Operational Variables Expected Results
NumberOfStudents
Path.1.1 Min (i.e. 1). At least 1 student is created.
Path.1.2 Max. This should be provided by user.

3. Term

Occurs 1+ times

R3.2 R3.3 R34 R3.5

V

Occurs up to UniversityCourses R3.6

Occurs up to UniversityCourses

R3.1:CreateCourse R3.2: Termstarted R3.3: LastDayToDrop

R3.4: TermEnded R3.5: CakulatePassFail R3.6: DestroyCourse

This is the most important scenario as it will trigger all other scenarios on all contracts in the University example, however looking at the scenario
grammar solely without considering the responsibilities called from within the scenario we can identify one PSV.

a. Operational Variables required for this scenario:

Variable Name Motivation

UniversityCourses This variable defines the number of courses that can be created and destroyed at the university;
ranges from 1 to 100, that is a university must have at least 1 course and no more than 100
courses. We will use the min/mx values of this variable to flatten the loop.

b. Path sensitization variables testing table:

Variant Operational Variables Expected Results

UniversityCourses
Path.1.1 1 1 course will be created and later on destroyed.
Path.1.1 100 100 courses will be created and later on destroyed.

4. ReportMarks

R4

—

Loop up to number

R4: ReportMark

a.

Operational Variables req

of students

uired for this scenario:

Variable Name

Motivation

NumberOfStudents

to flatten the loop.

This variable holds the number of students registered in a course (i.e. Students().Length()). The
range of this variable value is 1 up to course capsize. We will use the min/mx values of this variable

Path sensitization variables testing table:

Variant Operational Variables Expected Results
NumberOfStudents
Path.1.1 1 ReportMark will be reported for 1 student in this course.
Path.1.2 Capsize ReportMark will be reported for all students (capsize) in this course.

5.

RegisterForCourses

No

Occurs0 to 2 times

R5.1: SelectCourse

Check IsFullTime

Occurs0to 4 times

Not full

R5.2: RegisterStudentForCourse

R5.3: RegisterCourse

a. Operational Variables required for this scenario:

Variable Name

Motivation

IsFullTime This variable is a Boolean indicates whether a student is full time or part time and therefore it sets
two different paths.
NumberOfCourses This variable holds the number of courses successfully registered in for a student, the variable value has a

constraint on the type of student (i.e. full time or part time) which will set the maximum number of courses
allowed for this student to register in. We will use the min/mx values of this variable to flatten the
loop.

NumberOfRedolterations

This variable holds the number of iterations of the redo statement to find a non-full course.

b. Path sensitization variables testing table:

Variant Operational Variables Expected Results
IsFullTime | NumberOfCourses | NumberOfRedolterations

Path.1.1 Yes 0 0 Full time student is not registered in any

(SP = EP) course.

Path.1.2 Yes 4 Courses immediately Full time student registered in the

(SP>R5.1>R5.2>R5.3) available. maximum number of courses allowed for
her/him in a term and all selected courses
were immediately available (i.e. not full).

Path.1.3 Yes 4 Coursers selected only Full time student registered in the

(SP>R5.1>R5.2>R5.3) after the maximum maximum number of courses allowed for

number of retries has her/him in a term and all selected courses
been attempted. were selected after the maximum number

of retries has been attempted (i.e. full
courses).

Path.2.1 No 0 0 Part time student is not registered in any

(SP = EP) course.

Path.2.2 No 2 Courses immediately Part time student registered in the

(SP>R5.1>R5.2>R5.3) available. maximum number of courses allowed for
her/him in a term and all selected courses
were immediately available (i.e. not full).

Path.2.3 No 2 Coursers selected only Part time student registered in the

(SP>R5.1>R5.2>R5.3)

after the maximum
number of retries has
been attempted.

maximum number of courses allowed for
her/him in a term and all selected courses
were selected after the maximum number
of retries has been attempted (i.e. full
courses).

6. TakeCourses

[

Occurs up to number of CurrentCourses

Occurs up to NumOfMidterms

Check if course in
CurrentCourses Check if has project Check HasFinal
Sp. v A Ves R6.4
\/Yes
No A
No >
| | —>)lEP
R6.2 .
Y Occurs up to NumAssignments
Check
LastDayToDrop /\ No R)G(.S >
YYes >
R6.1: DoMid Term R6.2: DoAssignment R6.3: DoProject
R6.4: DoFinal R6.5: DropCourse
a. Operational Variables required for this scenario:
Variable Name Motivation

NumMidterms This variable holds the number of midterms in a course, the value ranges from 0 to 2 and the
default is 1, we will use the min/mx values of this variable to flatten the loop.

NumAssignments This variable holds the number of assignments in a course, the value ranges from 0 to 5 and the
default is 1, we will use the min/mx values of this variable to flatten the loop.

HasProject This variable is a Boolean that indicates whether this course has a project or not. This variable sets
two different paths on the UCM.

HasFinal This variable is a Boolean that indicates whether this course has a final exam or not. This variable
sets two different paths on the UCM.

NumberOfCurrentCourses This variable holds the number of course instances (i.e. CurrentCourses().Length()). This is
equivalent to the maximum number of courses a student can take in a term (i.e. 4 for full time

students and 2 for part time students).

NumberOfConcurrentinstances

This variable holds the number courses can have their requirements be concurrent.

LastDayToDrop

This variable creates 2 different paths UCM.

CourseFound

This variable creates 2 different paths UCM.

Path sensitization variables testing matrix: for this scenario | will split the test scenarios in multiple tables:

i. One instance test results.

Variant Operational Variables Expected
CourseFound LastDayToDrop | NumMidterms | NumAssignments | HasProject | HasFinal Results
Path.1 Yes No Min (i.e. 0) N/A N/A No No midterms
SP>EP and no project.
Path.1.1 Yes No Min (i.e. 0) N/A N/A Yes No midterms
SP>R6.4>EP but have a
project.
Path.1.2 Yes No Max (i.e. 2) N/A N/A No Have 2
SP>R6.3>EP midterms and
no project.
Path.1.3 Yes No Max (i.e. 2) N/A N/A Yes Have 2
SP>R6.126.4 midterms and a
>EP project.
Path.2 Yes No N/A N/A No No Have no project
SP>EP and no final.
Path.2.1 Yes No N/A N/A Yes No Have project
SP>R6.4>EP but no final.
Path.2.2 Yes No N/A N/A Yes Yes Have project
SP>R6.3>R6.4 and a final.
>EP
Path.3 Yes No N/A 0 N/A No Have 0
SP>EP assignments
and no final.
Path.3.1 Yes No N/A 0 N/A Yes Have 0
SP>R6.4>EP assignments
and a final.
Path.3.2 Yes No N/A Max (i.e. 5) N/A No Have 5
SP>R6.2>EP. assignments
and no final.

Path.3.2 Yes
SP>R6.2>R6.4
->EP.

No

N/A

Max (i.e. 5) N/A

Yes

Have 5
assignments
and a final.

Path.4 No
SP>EP

No

N/A

N/A N/A

N/A

Course not
found in
students list of
courses and do
not drop the
course

Path4.1 No

Yes

N/A

N/A N/A

N/A

Course not
found in
students list of
courses and
drop the course

The Parallel block: here the whole combination in the table above will be used in each combination of this table.

Operational Variables

Expected Results

NumberOfCurrentCourses

NumberOfConcurrentlnstances

Min (i.e. 1) Min (i.e. 1) Student has only one course and
therefore there is no concurrency.

Min (i.e. 1) Max (i.e. 1) Student has only one course and
therefore there is no concurrency.

Max for part time student Min (i.e. 1). Part time student has max number of

(i.e.2) courses (i.e. 2) and the minimum number
(i.e. 1) of concurrent courses.

Max for part time student Max (i.e. 2) Part time student has max number of

(i.e.2) courses (i.e. 2) and the max number (i.e.
2) of concurrent courses.

Max for full time student Min (i.e. 1). Full time student has max number of

(i.e.5) courses (i.e. 5) and the minimum number
(i.e. 1) of concurrent courses.

Max for full time student Max (i.e. 5) Full time student has max number of

(i.e.5)

courses (i.e. 5) and the max number (i.e.
5) of concurrent courses.

Relations UCMs

1.

Relation: Creation

a.

Occurs up to UniversityCourses

R2

Occurs 1+ times R1

R1: CreateCourse
R2: CreateStudent

Operational Variables required for this relation:

Variable Name Motivation
UniversityCourses This variable defines the number of courses that can be created at the university; ranges from 1 to
100. We will use the min/mx values of this variable to flatten the loop.
NumberOfStudents We will need to create this SPV to control the number of students can be created in university.

Path sensitization variables testing table:

Variant Operational Variables

UniversityCourses

NumberOfStudents

Expected Results

Path.1 1

N/A

1 course will be created.

SP>R2->EP

Path.1.2 100 N/A 100 courses will be created.
SP>R2>EP

Path.2 N/A 1 1 student is created.
SP>R1->EP

Path.2.1 N/A Max This should be provided by user.
SP>R1>EP

2. Relation: Cancellation

e
lgggﬂ(—+—

R7
Occurs0 or 1 time.

R1: CreateCourse

R7: CancelCourse

a. Operational Variables required for this relation:

Variable Name Motivation

N/A

b. Path sensitization variables testing table:

Variant Operational Variables Expected Results
Path.1 N/A Course created but not canceled.
SP>R1->EP
Path.2 N/A Course created and canceled.
SP>R1->R7>EP

3. Relation: Students

S1: RegisterForCourses

S2: TakeCourses

a. Operational Variables required for this relation:

Occurs1 to 12 times

Variable Name

Motivation

NumTermsToComplete

This variable defines the number of iterations to run the relation. The variable value ranges from 1
to 12. We will use the min/mx values of this variable to flatten the loop.

b. Path sensitization vari

ables testing table:

Variant Operational Variables Expected Results
NumTermsToComplete
Path.1 Min (i.e. 1) The relation to run 1 time, the Student’s scenario “RegisterForCourses” will run one
SP>S1->S2>EP time, Student’s scenario “TakeCourses” will run 1 time.
Path.1.1 Max (i.e. 12) The relation to run 12 times, the Student’s scenario “RegisterForCourses” will run one
SP>S1->S2>EP time, Student’s scenario “TakeCourses” will run 12 times.

Completeness and inaccuracies
Scenarios give only a partial view of the system as they depict the system in black-box view and in user’s perspective. Scenarios testing model is incomplete since
specifications are not complete and iteratively augmented throughout the lifetime of the system. Scenario based testing provides only partial results.

The test cases derived from scenarios UCMs in the ACL University example provides partial results since they are only positive scenario test cases which address
the model base requirements of the system and only valid PSV values relevant for testing these scenarios can be used.

When compared to a university registration system, the ACL University example courses do not span more than one term, however in a university registration
system some classes span more than one term. Relation “Canceling” creates a course however it may not cancel the course. University contract defines a
variable to control the number of courses created but it does not provide a variable to control the number of the students to be created at university (i.e. there

is no cap on this).

