The Big Picture

(c) 2007 Mauro Pezzé & Michal Young

Verification and validation

 Validation:
does the software system meets the user's real
needs?

are we building the right software?

« Verification:
does the software system meets the
requirements specifications?

are we building the software right?

(c) 2007 Mauro Pezzé & Michal Young

10/14/13

10/14/13

Validation and Verification

SW
Actual Specs
Requirements | System

Validation

Includes usability
testing, user
feedback

Verification
Includes testing,
inspections, static
analysis

(c) 2007 Mauro Pezzé & Michal Young

Verification or validation depends on
the specification

123 5678
] [n Example: elevator response

Unverifiable (but validatable) spec: ... if a user
presses a request button at floor i, an avallable
elevator must arrive at floor i soon...

Verifiable spec: ... if a user presses a request

button at floor i, an available elevator must arrive
at floor i within 30 seconds...

(c) 2007 Mauro Pezzé & Michal Young

Validation and Verification Activities

Actual Needs and
Constraints

< User Acceptance (alpha, beta test)

System
Specifications|

System Test

s

N\

’ T Analysis /

\’—‘ Review
Subsystem

Design/Specs|

Integration Test

C‘; Analysis /

Review
. Unit/
[
Component Module Test
Specs
\

User review of external behavior as it is erification
SOFTWARE TESTING determined or becomes visible
i

validation

£

(c) 2007 Mauro Pezzé & Michal Young

You can't alv%irs get what you want

Property \
Decision — | Pass/Falil
/ Procedure

Correctness properties are undecidable

the halting problem can be embedded in almost
every property of interest!

In computability theory, the halting problem can be stated as follows: "Given a description of an
arbitrary computer program, decide whether the program finishes running or continues to run
forever". This is equivalent to the problem of deciding, given a program and an input, whether the
program will eventually halt when run with that input, or will run forever.

SOFTWARE TESTING
A S

(c) 2007 Mauro Pezzé & Michal Young

10/14/13

Getting what you need ...

Theorem proving:
Unbounded effort to

verify general
properties.

Perfect verification of
arbitrary properties by
logical proof or exhaustive
testing (Infinite effort)

Model checking:
Decidable but possibly

simple temporal
properti

Precise analysis of
simple syntactic
properties.

Simplified
properties ’
Pessimistic
SOFTWARE TESTING inaccuracy
I}MD_ENALVEIS

Optimistic
inaccuracy

optimistic inaccuracy: we may
accept some programs that do
not possess the property (i.e.,
it may not detect all
violations).

- s/w testing
pessimistic inaccuracy: it is
not guaranteed to accept a
program even if the program
does possess the property
being analyzed

- automated program analysis

techniques

simplified properties: reduce
the degree of freedom (eg do
not test all possible integer
values...)

(c) 2007 Mauro Pezzé & Michal Young

Some Tricky Terminology

» Safe: A safe analysis has no optimistic inaccuracy, i.e.,
it accepts only correct programs (but may reject some).
« Sound: An analysis of a program P with respect to a
formula F is sound if the analysis returns true only when
the program does satisfy the formula.
- but it could erroneously return false even if the program does

satisfy the formula!

- If Fis an indication of correctness, then same as safe
- It’s tricky to understand what ‘sound’ means when F is used to

indicate a fault.

« Complete: An analysis of a program P with respect to a
formula F is complete if the analysis always returns
true when and only when the program actually does

wute satisfy the formula.

(c) 2007 Mauro Pezzé & Michal Young

10/14/13

