
1

Basic Principles of
Software Quality Assurance

Adapted from S. Somé, A. Williams

2

Dilbert on Validation

Where does the customer fit in V&V?

Three General Principles of QA

•  Know what you are doing
–  Understand what is being built, how it is being

built and what it currently does.
–  Follow a software development process with

– Management structure (milestones,
scheduling)

– Reporting policies
– Tracking

Three General Principles of QA

•  Know what you should be doing:
–  Having explicit requirements and specifications.
–  Follow a software development process with

– Requirements analysis,
– Acceptance tests,
– Frequent user feedback.

Three General Principles of QA
•  Know how to measure the difference.

–  Have explicit measures comparing what is being done
from what should be done.

–  Four complementary methods:
–  Formal methods – verify mathematically specified

properties.
–  Testing – explicit input to exercise software and

check for expected output.
–  Inspections – human examination of requirements,

design, code, ... based on checklists.
–  Metrics – measures a known set of properties related

to quality

Verification and Validation
•  Verification:

–  Are we building the product
right?

–  Performed at the end of a
phase to ensure that
requirements established
during previous phase have
been met.

•  Validation:
–  Are we building the right

product?
–  Performed at the end of the

development process to ensure
compliance with product
requirements.

Requirements

Architecting

Detailed Design

Coding

verification

verification

verification

verification

validation

Do these 2 definitions make sense in the context of
an Agile process with short iterations??

V&V Approaches

•  Walkthroughs and inspections
–  Not formal, yet systematic and cost-effective

•  Correctness proofs
–  Theorem proving
–  Complex, undecidable, not for all programs…

•  Symbolic execution
–  Somewhere in between testing and theorem proving

•  Model checking
–  State-based model + logical formula (property)
–  Decidable if state space is finite (and small enough)

•  Testing
–  Incomplete, but practical. Can this be model-driven?

Model Transformations
for V&V 8

Formal Verification?

•  Risks
–  Assumes hypothetical

environment that does
not match real
environment

–  Proof might be buggy
(omits important
constraints; simply
wrong)

Fault Handling Techniques

Testing

Fault Handling

Fault Avoidance Fault Tolerance Fault Detection

Debugging

Unit
Testing

Integration
Testing

System
Testing

Verification Configuration
Management

Atomic
Transactions

Modular
Redundancy

Correctness
Debugging

Performance
Debugging

Reviews Design
Methodology

What is Software testing ?

•  Examination of a software unit, several integrated
software units or an entire software package by
running it.
–  execution based on test cases
–  expectation – reveal faults as failures

•  Failure: incorrect execution of the system
–  usually consequence of a fault / defect

•  Fault/defect/bug result of a human error

Objectives of testing

•  To find defects before they cause a production
system to fail.

•  To bring the tested software, after correction of
the identified defects and retesting, to an
acceptable level of quality.

•  To perform the required tests efficiently and
effectively, within the limits of budgetary and
scheduling constraints.

•  To compile a record of software errors for use in
error prevention (by corrective and preventive
actions), and for process tracking.

When does a fault occur ?

•  Software doesn't do something that the
specification says it should do.

•  Software does something that the specification
says it shouldn't do.

•  Software does something that the specification
doesn't mention.

•  Software doesn't do something that the
specification doesn't mention but should.

•  Software is difficult to understand, hard to use,
slow, or – in the software tester's eyes – will be
viewed by the end user as just plain not right.

Testing Axioms

•  It is impossible to test a program completely.
–  large input space
–  large output space
–  large state space
–  large number of possible execution paths
–  subjectivity of specifications

Testing Axioms
•  Large Input/State space

int exFunction(int x, int y)

{

 ...

}

•  Exhaustive testing ⇒ trying all possible combinations of x
and y
–  Range for just one int in Java: Integer.MIN_VALUE

to Integer.MAX_VALUE; that is: 4,294,967,295
different possibilities

–  The range is not infinite – but it is very, very large.
–  Combinations of 2 int variables: square of the above.

Testing Axioms
•  Large number of possible execution paths:

for (int i = 0; i < n; i++)
{
 if (a.get(i) == b.get(i))
 {
 // do something
 }
 else
 {
 // do something else
 }
}

•  Number of potential execution paths is 2n

–  If n = 40, the number of paths could be 1,099,511,627,776

•  Binder has a formula to compute the upper limit on the # of tests…

Testing Axioms

•  Software testing is a risk-based exercise
–  Need to balance cost and risk of missing bugs

•  Testing cannot prove the absence of bugs

•  The more bugs you find, the more bugs there are

•  The “pesticide paradox”
–  A system tends to build resistance to a

particular testing technique.

Testing Axioms

•  Not all bugs found are fixed.

•  Difficult to say when a bug is a bug.
–  only when observed (latent otherwise)

•  Product specifications are never final.

•  Software testers sometimes aren't the most
popular members of a project team.

•  Software testing is a disciplined technical
profession that requires training.

What Testing can accomplish

•  Reveal faults that would be too costly or
impossible to find using other techniques

•  Show the system complies with its stated
requirements for a given test suite

•  Testing is made easier and more effective by good
software engineering practices

19

Risk

•  Risk is the probability of an observed failure,
multiplied by the potential cost (usually,
estimated) of the failure.
–  Example:

– Dropping one regular phone call: low
probability, low potential cost (customer hits
redial)

– Dropping a 911 emergency call: low
probability, high potential cost (lives)

20

Risk-based testing

•  Choosing what to test is often influenced by risk.

•  What are the probabilities that the following were
implemented incorrectly...?
–  A “typical” scenario
–  Exceptional scenarios

•  Empirically, the probability of a defect is much
higher in the code for exceptional scenarios, and
testing resources are often directed towards
them.
–  Keep the cost factor of risk in mind as well.

Testing is a Process

Planning

Design

Implementation

Execution

Reporting

Information
Management

•  Planning
–  Scope, resources, schedules
–  Architecture, tools needed

•  Design
–  Test selection
–  Coverage goals

•  Implementation
–  Creation of (automated?) test scripts

•  Execution
–  Running the tests

•  Reporting
–  Problem reports
–  Progress tracking
–  Coverage measurement

•  Information management (ongoing through process)
–  Change control of artifacts
–  Archive of test results

22

Terminology
•  Warning: many organizations, tools, or standards use

inconsistent terminology .

•  Stimulus: an action / request / command sent to a system
under test.

•  Response: something that can be observed from a system
under test.

•  Test case: a sequence of stimuli and expected responses
with a specified purpose and decisive result.
–  Test script: a test case as a set of instructions, for

either manual or automated execution.

•  Test suite: a collection of related test cases.

•  Verdict: the decision as to the result of a test case.

23

Testing basics

•  What do we need to do testing?
–  Test script

– Stimuli to send to system under test (SUT).
– Responses expected from SUT.
– When / how to determine the test verdict?

–  i.e. What are the decision points, and
how is the decision made?

–  For an automated test execution system,
additional requirements are:
– Test controller, to manage execution.
– Mechanism to read test script, and connect

test case to SUT.

24

Verdicts
•  Running a test results in a verdict at one or more decision

points in a test case.
–  Pass:

–  The expected responses were observed in the proper
sequence with the proper timing, and no other
anomalies were observed.

–  Fail:
–  One or more of the expected responses were not

observed.
–  Inconclusive / Error:

–  Anomalies were observed, or the purpose of the test
could not be achieved.

–  Example: the test could not be set up properly.
–  Conf (used infrequently; from “conforms”):

–  An response was received that is correct in terms of
content, but outside of the correct time window.

25

Test Architecture

•  Includes defining the set of Points of Control and
Observation (PCOs)

Tester or
automated

tool

System under
test

PCOs

Test script

A PCO could be…
•  a device or user interface
•  a particular method to call
•  a network port
•  etc.

...

Do you observe directly the result of a function or via a change in the GUI?
Distribution (including Web apps) makes this a lot more complicated!

26

Test Scripts

•  What should the format of a test script be?
–  natural language? (for manual testing)
–  tool dependent?
–  a standard test language?
–  a programming language?

•  Meszaros’s work shows writing test scripts is a lot
of work and must be done carefully (in order to
avoid smells)

27

Test Script Development
•  Creating test scripts follows a parallel development process,

including:
–  Requirements
–  Design
–  Debugging
–  Configuration management
–  Maintenance
–  Documentation

•  Result: they are expensive to create and maintain, especially
for automated test execution.

28

Test Results

•  Documenting of test results is a crucial element of
testing.
–  When was a test suite run (day, time, etc.)?
–  What is the summary count of each type of

verdict?
–  What are the specific verdicts for each test

case?

Testing Activities and their Related Work
Products (B&D, Chap 11).

Functional test

Structure test

User Client Developer

Integration test Integration
strategy

From TP
System

decomposition

From SDD
Functional
requirements

From RAD

Continued
on next slide

Object design Unit test

From ODD

Management
plan

Test planning
User interface

design
Usability test

From RAD

Continued
on next slide

This is anything but Agile…

(continued from
 previous slide)

Acceptance test

User manual

Performance test

Daily operation

Functional test

Installation test

Field test

User Client Developer

From RAD

Functional
requirements

From RAD

Nonfunctional
requirements

Project
agreement RAD: Req. analysis doc.

SDD: System design doc.
TP: Test plan

ODD: Object design document

