
10/21/14

1

Integration
Testing

slides created by Marty Stepp
http://www.cs.washington.edu/403/

Edited by J-P Corriveau

2

Phased integration
• phased ("big-bang") integration:

–  design, code, test, debug each class/unit/subsystem separately
–  combine them all
–  pray

10/21/14

2

3

Incremental integration
•  incremental integration:

–  develop a functional "skeleton" system
–  design, code, test, debug a small new piece
–  integrate this piece with the skeleton

• test/debug it before adding any other pieces

4

Benefits of incremental
• Benefits:

–  Errors easier to isolate, find, fix
• reduces developer bug-fixing load

–  System is always in a (relatively) working state
• good for customer relations, developer morale

• Drawbacks:
–  May need to create "stub" versions of some features that have

not yet been integrated

10/21/14

3

5

Top-down integration
•  top-down integration:

Start with outer UI layers and work inward
–  must write (lots of) stub for lower layers
–  allows postponing tough design/debugging decisions (is this bad?)

6

Bottom-up integration
• bottom-up integration:

Start with low-level data/logic layers and work outward
–  must write test drivers to run these layers
–  won't discover high-level / UI design flaws until it’s (too?) late

10/21/14

4

7

"Sandwich" integration
•  "sandwich" integration:

Connect top-level UI with crucial bottom-level classes
–  add middle layers later as needed
–  more practical than top-down or bottom-up?

8

Daily builds
• daily build: Compile working executable on a daily basis

–  allows you to test the quality of your integration so far
–  helps morale; product "works every day"; visible progress
–  best if automated or through an easy script
–  quickly catches/exposes any bug that breaks the build

•  smoke test: A quick set of tests run on the daily build.
–  NOT exhaustive; just sees whether code "smokes" (breaks)
–  used (along with compilation) to make sure daily build runs

•  continuous integration:
Adding new units immediately as they are written.

10/21/14

5

9

Integration testing
•  integration testing: Verifying software quality by testing two

or more dependent software modules as a group.

•  challenges:
–  Combined units can fail

in more places and in more
complicated ways.

–  How to test a partial system
where not all parts exist?

–  How to "rig" the behavior of
unit A so as to produce a
given behavior from unit B?

10

Stubs
•  stub: A controllable replacement for an existing software unit

to which your code under test has a dependency.

–  useful for simulating difficult-to-control elements:
• network / internet
• database
• time/date-sensitive code
• files
• threads
• memory

–  also useful when dealing with brittle legacy code/systems

10/21/14

6

11

Create a stub, step 1
•  Identify the external dependency.

–  This is either a resource or a class/object.
–  If it isn't an object, wrap it up into one.

• (Suppose that Class A depends on troublesome Class B.)

12

Create a stub, step 2
• Extract the core functionality of the object into an interface.

–  Create an InterfaceB based on B
–  Change all of A's code to work with type InterfaceB, not B

10/21/14

7

13

Create a stub, step 3
• Write a second "stub" class that also implements the interface,

but returns pre-determined fake data.
–  Now A's dependency on B is dodged and can be tested easily.
–  Can focus on how well A integrates with B's external behavior.

14

Injecting a stub
•  seams: Places to inject the stub so Class A will talk to it.

–  at construction (not ideal)

 A aardvark = new A(new StubB());

–  through a getter/setter method (better)

 A apple = new A(...);
 aardvark.setResource(new StubB());

–  just before usage, as a parameter (also better)

 aardvark.methodThatUsesB(new StubB());

• You should not have to change A's code everywhere (beyond using
your interface) in order to use your Stub B.

10/21/14

8

15

"Mock" objects
• mock object: A fake object that decides whether a unit test

has passed or failed by watching interactions between objects.

–  useful for interaction testing (as opposed to state testing)

16

Stubs vs. mocks
–  A stub gives out data that goes to

the object/class under test.
–  The unit test directly asserts against

class under test, to make sure it gives
the right result when fed this data.

–  A mock waits to be called by
the class under test (A).
• Maybe it has several methods

it expects that A should call.

–  It makes sure that it was contacted
in exactly the right way.
• If A interacts with mockB the way it should, the test passes.

10/21/14

9

17

Mock object frameworks
• Stubs are often best created by hand.

Mocks are tedious to create manually.

• Mock object frameworks help:
–  android-mock, EasyMock, jMock (Java)
–  FlexMock / Mocha (Ruby)
–  SimpleTest / PHPUnit (PHP)
–  ...

•  Frameworks provide the following:
–  auto-generation of mock objects that implement a given interface
–  logging of what calls are performed on the mock objects
–  methods/primitives for declaring and asserting your expectations

18

A jMock mock object
import org.jmock.integration.junit4.*; // Assumes that we are testing
import org.jmock.*; // class A's calls on B.

@RunWith(JMock.class)
public class ClassATest {
 private Mockery mockery = new JUnit4Mockery(); // initialize jMock

 @Test public void testACallsBProperly1() {
 // create mock object to mock InterfaceB
 final InterfaceB mockB = mockery.mock(InterfaceB.class);

 // construct object from class under test; attach to mock
 A aardvark = new A(...);
 aardvark.setResource(mockB);

 // declare expectations for how mock should be used
 mockery.checking(new Expectations() {{
 oneOf(mockB).method1("an expected parameter");
 will(returnValue(0.0));
 oneOf(mockB).method2();
 }});

 // execute code A under test; should lead to calls on mockB
 aardvark.methodThatUsesB();

 // assert that A behaved as expected
 mockery.assertIsSatisfied();
 }
}

10/21/14

10

19

jMock API
•  jMock has a strange API based on "Hamcrest" testing syntax.

• Specifying objects and calls:
–  oneOf(mock), exactly(count).of(mock),
–  atLeast(count).of(mock), atMost(count).of(mock),
–  between(min, max).of(mock)
–  allowing(mock), never(mock)

• The above accept a mock object and return a descriptor that you can
call methods on, as a way of saying that you demand that those
methods be called by the class under test.

–  atLeast(3).of(mockB).method1();
• "I expect that method1 will be called on mockB 3 times here."

20

Expected actions
• .will(action)

–  actions: returnValue(v), throwException(e)

•  values:
–  equal(value), same(value), any(type), aNull(type),
aNonNull(type), not(value), anyOf(value1, ..,valueN)

–  oneOf(mockB).method1();
 will(returnValue(anyOf(1, 4, -3)));

• "I expect that method1 will be called on mockB once here, and that
it will return either 1, 4, or -3."

10/21/14

11

21

Using stubs/mocks together
• Suppose a log analyzer reads from a web service.

If the web fails to log an error, the analyzer must send email.
–  How to test to ensure that this behavior is occurring?

• Set up a stub for the web service that intentionally fails.
• Set up a mock for the email service that checks to see

whether the analyzer contacts it to send an email message.

