
1

Models for SwQA

From S. Somé, A. Williams

2

Models for assessing software quality
•  Models are a standard engineering practice for performing

analysis of a system.

•  Properties of a good model:
–  Simpler than the actual system, but preserves relevant

attributes of the system.
–  Compact: small enough to be comprehensible – either for

human or machine processing, and to be created with less
effort than an actual system.

–  Predictive: The model must represent a relevant
characteristic well enough to distinguish between good
and bad outcomes of an analysis.

–  Semantically meaningful: a failure diagnosis with respect
to a model should be equally applicable to the actual
system.

–  Sufficiently general: Models intended for use over a
range of systems should be applicable across the domain.

3

Graph representations of software (1)

•  Graph: set of nodes, and a set of edges between
nodes.
–  Nodes: {A, B, C}
–  Edges: { (A,B), (B,C), (C,A) }

•  Directed graph: “arcs” replace “edges”, and the
order in the pair becomes significant.

A

C B

A

C B

4

Graph representations of software (2)

•  Software execution can be considered as a
sequence of states alternated with actions (i.e.
machine operations) that modify the system state.

•  A graph can be used as the execution model in two
ways:
–  Option 1: Actions occur within graph nodes, and

an edge represents a system state while control
flow transfer occurs.

–  Option 2: A system state is represented by a
graph node, and actions occur on the graph
edges.

5

Examples of graph models
•  Option 1: A control flow

graph.
•  Option 2: A finite state

machine.

read(a)
if (a>7)

b = 12 b = 7

print(b)

false true

1

2

3 4

a / b
c / d

c / g
a / g

Notation: input / output

6

Scenario Graph

Scenario Graph
•  Generated from a use case

•  Nodes correspond to point where system waits for an event
–  environment event, system reaction

•  There is a single starting node

•  End of use case is finish node

•  Edges correspond to event occurrences
–  May include conditions and looping edges

•  Scenario:
–  Path from starting node to a finish node

Use Case Scenario Graph (1)
Title: User login

Actors: User

Precondition: System is ON

1.  User inserts a card

2.  System asks for personal
identification number (PIN)

3.  User types PIN

4.  System validates user
identification

5.  System displays a welcome
message to user

6.  System ejects card

Postcondition: User is logged in

1

3

4

5

6

1a.1

4b.1

2

1a.2

4a.2

1a: card is
not valid

4b:PIN invalid
and attempts ≥ 4 4a:PIN invalid and

attempts < 4

4a.1

Use Case Scenario Graph (2)
Alternatives:

1a: Card is not valid

1a.1: System emits alarm

1a.2: System ejects card

4a: User identification is invalid

 AND number of attempts < 4

4a.1 Ask for PIN again and go
back

4b: User identification is invalid

 AND number of attempts ≥ 4

4b.1: System emits alarm

4b.2: System ejects card

1

3

4

5

6

1a.1

4b.1

2

1a.2

4a.2

1a: card is
not valid

4b:PIN invalid
and attempts ≥ 4 4a:PIN invalid and

attempts < 4

4a.1

10

Control Flow

11

Control flow graphs
•  Intraprocedural flow graph:

–  Models the internal paths of control flow within a single
procedure or method.

–  Graph nodes represent a code block.
–  Graph arcs represent alternative paths to what code

statements might be executed next.

•  Interprocedural flow graph, or call graph:
–  Models the potential sequences of calls to various

methods.
–  Graph nodes represent methods.
–  Graph arcs indicate that the method at the head of the

arc can call the method at the tail of the arc.
–  Polymorphism makes such graphs more complex…

12

Intraprocedural flow graphs
•  What is included within a single node:

–  A single-entry, single-exit series of statements.
–  If there are several entry points to a code statement,

the statement must be the first line in a node.
–  Assumption: if you enter the node, all statements in the

node will be executed.
–  What about exceptions?

•  Arcs (or edges) should be used whenever there is an
alternative as to what could be executed next, or to
transfer to a statement for which there are multiple entry
points.
–  It should be clear from the diagram as to the conditions

required to select one alternative over the others.

13

Intraprocedural flow graphs

•  Based on programming language constructs.

if ()

“then”
block

“else”
block

while ()

loop
body

true false
true false

switch ()

case:

break

case:

default:

14

Java Example
•  Function: replace n ≥ 2 consecutive new line characters with

a single character.

 public static String collapseNewLines(String arg)
 {
 char last = arg.charAt(0);
 StringBuffer buffer = new StringBuffer();
 for (int index = 0; index < arg.length(); index++)
 {
 char ch = arg.charAt(index);
 if (ch != ′\n′ || last != ′\n′)
 {
 buffer.append(ch);
 last = ch;
 }
 }
 return buffer.toString();
 }

15

Draw control flow graph

char last = arg.charAt(0);
StringBuffer buffer = new StringBuffer();
for (int index = 0;

index < arg.length();

char ch = arg.charAt(index);
if (ch != ′\n′

buffer.append(ch);
last = ch; || last != ′\n′)

index++)

return buffer.toString();

false

false

false

true

true

true

1

2 3

4

5

6 7

collapseNewLines(String arg) 0

16

Control flow graphs
•  Be careful with:

–  Multi-way branches: if C or Java switch statements are
used, the presence or absence of break statements
alters the control flow

–  For loops: There are three separate parts: initialization,
the loop test, and the “increment” statement(s).

–  Compound conditions: Is there short-circuit evaluation?
If so, there is an implicit branch after each step of the
evaluation.

17

Control flow graphs
•  You may want to vary the level of precision depending on the

situation.

•  Does short circuit evaluation matter?
if (a != null && a.someMethod())

 yes – it prevents a null pointer exception
if (a > 36 && a < 72)

 order of evaluation is not likely to be relevant

•  Should exceptions be considered?
–  In Java, exceptions other than those inheriting from

RuntimeException must be declared – so you know where
they can be thrown.

–  Exceptions inheriting from RuntimeException need not be
declared:

–  Null pointer exceptions: possible for any . operator
–  Arithmetic exceptions: possible for arithmetic operators.

18

Purpose of the graph
•  From a control flow graph, we can obtain potential execution paths

–  Some of the paths from the previous graph:
1 – 2 – 7

1 – 2 – 3 – 4 – 6 – 2 - 7

1 – 2 – 3 – 5 – 6 – 2 – 7

1 – 2 – 3 – 4 – 5 – 6 – 2 – 7

1 – 2 – 3 – 4 – 6 – 2 – 3 – 4 – 6 – 2 – 7

•  We may decide to derive test cases to execute different paths
through the program.
–  If there are an infinite number of paths, we will have to have

some selection criteria to choose a subset of paths.

•  For any selected path, we need to determine what data is needed
to cause that path to be executed.
–  What value of arg will force the control flow to a selected

path?

19

Interprocedural Call graphs

•  Shows the relationships between calling and called
methods.

•  When you have polymorphism in an object-oriented
language, determining the exact method called is
no longer straightforward.
–  Is there a subclass that overrides a method?
–  Does the overridden method call the superclass

method?
–  Are you using an object factory that returns

objects of different types?

20

Example
public class C
{
 public static C cFactory(String kind)
 {
 if (kind == ″C″) return new C();
 if (kind == ″S″) return new S();
 return null;
 }

 public static void main(String[] args) {(new A()).check() }

 void foo() { System.out.println(″Parent foo() called″); }

 class S extends C
 {
 void foo() { System.out.println(″Child foo() called″); }
 }

 class A
 {
 void check()
 {
 C myC = C.Factory(″S″);
 myC.foo();
 }
 }
}

21

Potential call graph

main()

A.check()

C.cFactory(String) C.foo() S.foo()

?

22

Call graphs
•  With dynamic binding, we can only determine which of C.foo

() and S.foo() will be called at run-time.

•  We can read the code and, based on the parameters,
determine that S.foo() is what would be called. However, a
static code checker may not be able to make this
determination.

•  With static analysis, we have to consider the possibility that
if a method foo() is called on a variable of type C, that the
version of foo() executed may be in any
–  subclass of C, if C is a class
–  implementation of C, if C is an interface

23

Context and Call Graphs
public class C
{
 public static void main(String[] args)
 {
 C myC = new C();
 myC.foo(3);
 myC.bar(17);
 }
 void foo(int n)
 {
 int[] myArray = new int[n];
 depends(myArray, 2);
 }
 void bar(int n)
 {
 int[] myArray = new int[n];
 depends(myArray, 2);
 }
 void depends(int[] a, int n)
 {
 a[n] = 42; // Can we tell if a[n] exists?
 }
}

main()

C.depends

C.foo() C.bar()

24

Context and Call Graphs

•  A context-sensitive graph shows the parameter
context in which a method is called.
–  In this case, the context-sensitive graph may

help answer the question, “does a[n] exist?” in
depends().

main

C.depends

C.foo C.bar

Context insensitive
main()

C.depends(int[3],2)

C.foo(3) C.bar(17)

Context sensitive

C.depends(int[17],2)

25

Paths in call graphs

•  There are 4 distinct contexts in which method F may be called.

•  The number of contexts can grow rapidly – even without
recursion...

A

B C

D E

F

A

B:A C:A

D:B:A D:C:A E:B:A E:C:A

F:D:B:A F:D:C:A F:E:B:A F:E:C:A

Context
insensitive Context sensitive

26

State Machines

27

Finite state machines
•  In a finite state machine (FSM), there are:

–  a finite set of states S (nodes in a graph)
–  a finite input alphabet I, usually representing events
–  a finite output alphabet O, usually representing actions
–  an initial state s0 ∈ S
–  a transition function: (graph arcs)

–  maps (a start state ∈ S and an input ∈ I)
to (a set of outputs ∈ O and an end state ∈ S).

–  the start and end states may be the same
–  the set of outputs may be null, often indicated by

a dash -.

28

Finite state machines
•  Strictly speaking, a FSM limited to inputs and outputs is a

“Mealy machine”.
–  There are no variables in such a model.
–  This model corresponds to a class of formal languages in

theoretical computer science, and are related to regular
expressions.

•  Completeness property
–  For every state, there is a transition specified for every

member of the input alphabet.

•  Deterministic property
–  For every state, and for every member of the input

alphabet, there is no more than one transition specified.
–  That is, for all known events in any state, it is

predictable what the output and next states will be

29

FSM example: Door alarm sensors

•  Two motion sensors for a room, one at door 1 and
the other at door 2. When someone enters the
detection range, a sensor reports (+). When
someone leaves the detection range, a sensor
reports (-).

•  Integrate the two sensor inputs to produce:
–  P (present) event when someone enters the

area
–  A (absent) event when the area becomes clear.

30

Neither

Only1 Only2

Both

+1 / P
+2 / P

-1 / A
-2 / A

+1 / –
- 2 / –

+2 / –

+1 / –
+2 / –

-1 / –

-2 / – -1 / –

+1 / – +2 / –

Sensor example

+1 = sensor 1 on
- 1 = sensor 1 off
P = present
A = absent
– = no output

- 1 / –

-2 / –

31

Sensor FSM in tabular format
 Event

State

+1 -1 +2 -2

None Output: P

NS: Only 1 NS: None

Output: P

NS: Only 2 NS: None

Only 1

NS: Only 1

Output: A

NS: None NS: Both

Output: A

NS: Only 1

Only 2

NS: Both NS: Only 2 NS: Only 2 NS: None

Both

NS: Both NS: Only 2

Output: P

NS: Both NS: Only 1

•  NS = next state

•  Advantage of this format: empty table cell means FSM is
incomplete.

32

Uses for finite state machines
•  Modelling event-driven systems

•  Modelling systems where the sequence of actions is a major
element of the system

•  Lexical analysis

•  Correctness checks applicable to FSMs:
–  Internal consistency: complete and deterministic
–  Paths through FSM satisfy some desired property, as

specified from requirements or design.
–  A software implementation should conform to the FSM

model.

33

Extended Finite State Machines

•  A more generally applicable model is extended
finite state machines (EFSMs).

•  In an EFSM, variables are added to the FSM
model.
–  Variables are associated with the entire EFSM.
–  Input events may have parameter values
–  Output events may have parameter values
–  Transitions can now do computations using the

variables
–  Taking a transition may require that specified

conditions hold on variables.

34

EFSM models
•  An EFSM model consists of:

–  States: points where the system is waiting for an event
to occur.

–  Variables: values associated with the state machine.
–  Transitions: the change from one state to another. A

transition is composed of:
–  Event: stimulus to the system, that causes the

implementation to exit from a state.
–  [optional] Guard condition(s): additional Boolean

conditions that must be true to take the transition.
–  [optional] Actions: action(s) to perform as a result of

the event
–  Next state: the new state that should be entered at

the end of the transition.

35

State-based Models (2)
•  An initial state must be identified.

–  A initial transition from the initial state to another state
can be specified. This transition should not have an
event or a guard condition; only action(s).

–  The implementation is in the initial state at start up, and
immediately executes the initial transition without
stimulus.

–  Analogy: calling a constructor method.
–  The implementation will never return to the initial state

unless it is restarted; no transition can have the initial
state as its next state.

•  Actions can consist of:
–  Output events (this can trigger events in the same or

other models)
–  Modification of state variables (if variables are used)

36

Example: A stack

Empty

Full

Partly
Filled

push / add, size++

pop [size = 1]
/ remove, size--

push [size < max – 1]
/ add, size++

push [size = max – 1]
/ add, size++

-- / size = 0

pop / remove, size--

Guard
condition

Event

State

Initial
State

Actions

pop [size > 1]
/ add, size++

pop / error

push / error

Assumption:
max > 1

37

Data Flow

38

Data flow models
•  In a control flow model, we have been trying to capture the

sequence of program actions.

•  In a data flow model, we will try to model data dependencies.

•  The basic data dependency is “definition-use” associations.

•  Questions to answer:
–  Is there a use of a value before it has been defined?
–  Is a value defined, but never used?
–  At any use, do we have the value from the correct /

expected definition?
–  Is optimizing the code possible, given the data

dependencies?

39

Definition

•  A definition is the point at which a variable
receives a value for the first time, or has its
previous value replaced with a new one.

•  Where do definitions occur?
–  Left side of assignment statements

– This includes shorthand statements such as
a++ which represents a = a + 1

–  Parameter assignment in method headers
–  “Input” statements
–  In some languages, at the point of declaration

– Default values

40

Uses
•  A variable is used whenever its value is obtained for some

purpose.
–  Value is not changed

•  Where can uses occur?
–  Expression evaluation

–  on the right side of an assignment statement
–  in a conditional statement
–  determination of an array index
–  return statements

–  Parameter passing at the calling side
–  “Output” statements

•  Uses within conditional statements have a direct impact on
the flow of control.

41

Definition-use associations

•  A definition-use pair associates with each use, the
definition that resulted in the current variable
value.
–  There must be a potential execution path from

the point of the definition to the point of the
use

–  It is expected that the variable’s value will not
change during the execution of the path.
– No other definitions of the variable along

the path.

42

Example, again
public int gcd(int x, int y)

{

 int tmp;

 while (y != 0)

 {

 tmp = x % y

 x = y;

 y = tmp;

 }

 return x;

}

use

def

43

Example, again
public int gcd(int x, int y)

{

 int tmp;

 while (y != 0)

 {

 tmp = x % y

 x = y;

 y = tmp;

 }

 return x;

} use

def

44

Control flow graph

gcd(int x, int y)

y = tmp

x = y

tmp = x % y

while (y != 0)

return x

45

Data dependency graph

gcd(int x, int y)

y = tmp

x = y

tmp = x % y

while (y != 0)

return x

x,y

y x y

y
y

x
tmp

y

46

Appendix
Principles of Testing and Analysis

From S. Somé, A. Williams

47

Principles of Testing and Analysis

•  Sensitivity

•  Redundancy

•  Restriction

•  Partition

•  Visibility

•  Feedback

48

Sensitivity

•  Sensitivity:
–  If a system could fail, how likely is it to actually

do so?
–  Does the failure attract attention?

•  A system that fails on a consistent and observable
basis is more likely to have defects detected and
removed.

•  That is, “it is better to fail every time, than
sometimes”

49

Example
•  Three string copy routines:

•  Copy string A to B, where memory for B has to be pre-
allocated. The string A is too long to fit in B.
–  Version 1: write the string into memory without checking

its length (like strcpy(a,b) in C). Memory beyond the
boundary of B may be over-written.
while (((*b++)=(*a++))!=′\0′);

–  Version 2: if B has N characters, copy up to N
characters into B (like strncpy(a,b,n) in C)

 for (i=0;i<n,((*b++)=(*a++))!=′\0′;i++);
–  Version 3: check the length of A, and throw an exception

if it is longer than B.

50

Sensitivity of the examples
•  Version 1:

–  If the next variable in memory (let’s say it is X) writes
before B is read, then B may be read with an incorrect
value.

–  If X is read, then it may have an incorrect value.
–  If subsequent memory is not used, there is no observable

failure.

•  Version 2:
–  If a string that is too long is written, it will be truncated.

This may or may not be noticed by the application.

•  Version 3:
–  If a string that is too long is written, an exception is

thrown, which calls attention to the fault.

51

Redundancy

•  We want to identify faults leading to differences
between intended behaviour and actual behaviour.

•  If one part of a system constrains the content of
another, then the parts can be checked for
consistency.

•  Explicit declarations of intent: can be checked
later.

52

Examples

•  Type checking: a declaration of a variable to be of
a certain type restricts the set of values that can
be associated with the variable.
–  Later on, when an actual value is assigned, it can

be checked against the declaration for
consistency.

•  Declaration of exceptions that might be thrown.
–  Ensures that calling methods are aware of the

possibility.

•  Checking consistency of implementation with
specifications.

53

Restriction

•  When the range of a property is too broad for
effective checking, reduce the range of the
property or check a reduced range subset.

•  Architectural example:
–  Use of a stateless protocol means that a

potential class of errors – being in the wrong
state – is eliminated.

54

Example
•  Use of integer code numbers for a set of choices.

static final int RED = 1;
static final int YELLOW = 2;
static final int GREEN = 3;
int trafficLightColour;
–  What happens if trafficLightColour has the value 4

(a legal int value)?

•  Use of restriction:
enum Colour { RED, YELLOW, GREEN; }
Colour trafficLightColour;
–  This is a clearer declaration of intent of the purpose of

the variable.
–  With this approach, the type is now restricted to the

three legal values, and the compiler can check for
validity.

55

Example
static void questionable()
{
 int k;
 for (int i = -; i < 10; i++)
 {
 if (someCondition(i))
 {
 k = 0;
 }
 else
 {
 k = k + i;
 }
 }
 System.out.println(k);
}

•  Static analysis:
determine properties
from code without
running the code

•  Could a static analysis
tool answer the question
“is k initialized?”

•  What about the
restricted property: “is
there a possibility that k
might not be initialized?”

56

Partition
•  “Divide and conquer”

•  Partitioning can be a useful principles from several
viewpoints:
–  Partition a complex system into several sub-systems, and

test the parts. Then, integrate the parts.
–  Partition a range of inputs into groups of values which

should exhibit similar behaviour:
–  Example: for the absolute value function for an

integer input, partition the domain into negative
integers, zero, and positive integers.

–  Now there are 3 cases instead of the 4+ billion
possible integers.

57

Visibility

•  The ability to gain access to information.
–  Also, the ease of access to the information.

•  While it is a good design principle to employ
information hiding, the same principle can make a
system more difficult to test.
–  Anything that is exposed to view can be

checked during test execution.
–  Anything that is not accessible cannot be

checked directly.
–  It may be possible to collect such

information indirectly.

58

Examples of visibility
•  Choice of a text-based protocol versus a bit-based protocol.

–  If the performance tradeoff is acceptable, use of a
human-readable protocol can pay off in terms of being
able to easily construct test messages and check their
correctness.

•  Exposing an interface
–  This allows a potential test access and observation point.

•  Consider testing a public method versus a private method.
–  A public method can be called directly.
–  There is no direct access to a private method. If you

want to test such a method, how do you arrange for it to
be called?

59

Feedback
•  Using data that is collected from a process to modify the

process.

•  Examples for testing:
–  Choosing tests to run based on results of previous tests.

–  “If test 47 passes, go to test 48. If test 47 fails,
run tests 47A and 47B.”

–  Using historical data to target test effort:
–  “Class A tends to have more defects than other

classes. Add additional test cases for this class.”
–  Post-mortem analysis: After a software version is

released, use customer problem reports to identify areas
of process improvement.

60

Summary of principles

•  Sensitivity: better to fail every time than some
times.

•  Redundancy: make intentions explicit.

•  Restriction: make the problem easier.

•  Partition: divide and conquer

•  Visibility: make information accessible

•  Feedback: apply lessons from experience.

