Models for SWQA

From S. Somé, A. Williams

Models for assessing software quality

Models are a standard engineering practice for performing
analysis of a system.

Properties of a good model:

Simpler than the actual system, but preserves relevant
attributes of the system.

Compact: small enough to be comprehensible - either for
human or machine processing, and to be created with less
effort than an actual system.

Predictive: The model must represent a relevant
characteristic well enough to distinguish between good
and bad outcomes of an analysis.

Semantically meaningful: a failure diagnosis with respect
to a model should be equally applicable to the actual
system.

Sufficiently general: Models intended for use over a
range of systems should be applicable across the domain.,

Graph representations of software (1)

* Graph: set of nodes, and a set of edges between
nodes.

- Nodes: {A, B, C} o

- Edges: { (A,B), (B,C),(C,A)}
&

* Directed graph: “arcs” replace "edges”, and the
order in the pair becomes significant.

G’G

Graph representations of software (2)

+ Software execution can be considered as a
sequence of states alternated with actions (i.e.
machine operations) that modify the system state.

* A graph can be used as the execution model in two
ways:

- Option 1: Actions occur within graph nodes, and
an edge represents a system state while control
flow ftransfer occurs.

- Option 2: A system state is represented by a
graph node, and actions occur on the graph
edges.

Examples of graph models

Option 1: A control flow - Option 2: A finite state
graph. machine.

read (a)
if (a>7)

print (b)

Notation: input / output
5

Scenario Graph

Scenario Graph

Generated from a use case

Nodes correspond to point where system waits for an event
- environment event, system reaction

There is a single starting node

End of use case is finish node

Edges correspond to event occurrences
- May include conditions and looping edges

Scenario:

- Path from starting node to a finish node

Use Case Scenario Graph (1)

Title: User login

Actors: User

Precondition: System is ON
1. User inserts a card

2. System asks for personal
identification number (PIN)

3. User types PIN

4. System validates user
identification

5. System displays a welcome
message to user

6. System ejects card
Postcondition: User is logged in

1a: card is
not valid

4a.1

4b:PIN invalid

and attempts 4 4a:PIN invalid and

5 attempts <4

Use Case Scenario Graph (2)

Alternatives:

la: Card is not valid

la.1: System emits alarm

la.2: System ejects card

4a: User identification is invalid
AND number of attempts < 4

4a.1 Ask for PIN again and go
back

4b: User identification is invalid
AND number of attempts > 4

4b.1: System emits alarm

4b.2: System ejects card

1a: card is
not valid

4a.1

4b:PIN invalid

and attempts 4 4a:PIN invalid and

5 attempts <4

Control Flow

Control flow graphs

Infraprocedural flow graph:

- Models the internal paths of control flow within a single
procedure or method.

- Graph nodes represent a code block.
- Graph arcs represent alternative paths to what code
statements might be executed next.
Interprocedural flow graph, or call graph:

- Models the potential sequences of calls to various
methods.

- Graph nodes represent methods.

- Graph arcs indicate that the method at the head of the
arc can call the method at the tail of the arc.

- Polymorphism makes such graphs more complex...

Intraprocedural flow graphs

What is included within a single node:
- Asingle-entry, single-exit series of statements.

- If there are several entry points to a code statement,
the statement must be the first line in a node.

- Assumption: if you enter the node, all statements in the
node will be executed.

- What about exceptions?

Arcs (or edges) should be used whenever there is an
alternative as to what could be executed next, or to
transfer to a statement for which there are multiple entry
points.

- It should be clear from the diagram as to the conditions
required to select one alternative over the others.

Intraprocedural flow graphs

* Based on programming language constructs.

switch ()

13

Java Example

Function: replace n 2 2 consecutive new line characters with
a single character.

public static String collapseNewlLines(String arg)
{
char last = arg.charAt(0);
StringBuffer buffer = new StringBuffer();
for (int index = 0; index < arg.length(); index++)
{
char ch = arg.charAt(index);
if (ch !'= '\n' || last !'= '\n’')
{
buffer.append(ch);
last = ch;
}
}

return buffer.toString();

Draw control flow graph

[collapseNewLines(String arg) (9)

char last = arg.charAt(0);
StringBuffer buffer = new StringBuffer();
for (int index = 0;

v
le

false index < arg.length();J~

@ I—+ true @

[char ch = arg.charAt(index);

if (ch !'= '"\n’

l <:>
true
false L v

buffer.append(ch);

1= '\n’ F——————b

[ll last ! \n') true last = ch;]
false <é>

» index++)

y
[return buffer.toString(); K::) 15

Control flow graphs

+ Be careful with:

- Multi-way branches: if C or Java switch statements are
used, the presence or absence of break statements
alters the control flow

- For loops: There are three separate parts: initialization,
the loop test, and the “increment” statement(s).

- Compound conditions: Is there short-circuit evaluation?
If so, there is an implicit branch after each step of the
evaluation.

Control flow graphs

You may want to vary the level of precision depending on the
situation.
Does short circuit evaluation matter?
if (a '= null && a.someMethod())
yes - it prevents a null pointer exception
if (a > 36 && a < 72)
order of evaluation is not likely to be relevant

Should exceptions be considered?

- In Java, exceptions other than those inheriting from
RuntimeException must be declared - so you know where
they can be thrown.

- Exceptions inheriting from RuntimeException need not be
declared:

- Null pointer exceptions: possible for any . operator
- Arithmetic exceptions: possible for arithmetic operators.

17

Purpose of the graph

From a control flow graph, we can obtain potential execution paths
- Some of the paths from the previous graph:

1-2-7

1-2-3-4-6-2-1
1-2-3-5-6-2-1
1-2-3-4-5-6-2-1
1-2-3-4-6-2-3-4-6-2-1

We may decide to derive test cases to execute different paths
through the program.

- If there are an infinite number of paths, we will have to have
some selection criteria to choose a subset of paths.

For any selected path, we need to determine what data is needed
to cause that path to be executed.

- What value of arg will force the control flow to a selected
path?

Interprocedural Call graphs

* Shows the relationships between calling and called
methods.

* When you have polymorphism in an object-oriented
language, determining the exact method called is
no longer straightforward.

- Is there a subclass that overrides a method?

- Does the overridden method call the superclass
method?

- Are you using an object factory that returns
objects of different types?

19

Example

public class C
{
public static C cFactory(String kind)
{
if (kind == "C") return new C();
if (kind == "S") return new S();
return null;
}
public static void main(String[] args) {(new A()).check() }
void foo() { System.out.println("”Parent foo() called”); }
class S extends C
void foo() { System.out.println(”"Child foo() called”); }
class A
{

void check()

C myC = C.Factory("s");
myC. foo () ;

20

Potential call graph

main ()
A.check ()
/\
C.cFactory (String) C.foo() S.foo ()

21

Call graphs

With dynamic binding, we can only determine which of c. foo
() and s.foo () will be called at run-time.

We can read the code and, based on the parameters,
determine that s. foo () is what would be called. However, a
static code checker may not be able to make this
determination.

With static analysis, we have to consider the possibility that
if a method £oo () is called on a variable of type C, that the
version of foo () executed may be in any

- subclass of ¢, if Cis a class
- implementation of C, if C is an interface

22

Context and Call Graphs

public class C
{
public static void main(String[] args)
{
C myC = new C();
myC. foo (3) ;

myC.bar (17) ;

void foo(int n)

{
int[] myArray = new int[n];
depends (myArray, 2); | C.foo() | | C.bar() |

void bar(int n)

{
int[] myArray = new int[n]; C.depends

depends (myArray, 2);
}

void depends(int[] a, int n)
{
a[n] = 42; // Can we tell if a[n] exists?
}
}

23

Context and Call Graphs

* A context-sensitive graph shows the parameter
context in which a method is called.

- In this case, the context-sensitive graph may
help answer the question, "does a[n] exist?" in
depends () .

. . Context sensitive
Context insensitive

C.foo (3)

v

|C.depends (int[3],2) |

C.bar (17)

A 4

| C.depends (int[17],2)

C.depends

24

Paths in call graphs

Context

. . Context sensitive
msensitive k

B:A c:A

F:D:B:A||F:D:C:A||F:E:B:A||F:E:C:A

There are 4 distinct contexts in which method F may be called.

The number of contexts can grow rapidly - even without

. 25
recursion...

State Machines

26

Finite state machines

In a finite state machine (FSM), there are:
- afinite set of states S (nodes in a graph)
- a finite input alphabet 1, usually representing events
- a finite output alphabet O, usually representing actions
- aninitial state s, €S
- atransition function: (graph arcs)

- maps (a start state €5 and an input €1)
to (a set of outputs € 0 and an end state €5).

- the start and end states may be the same

- the set of outputs may be null, often indicated by
a dash -.

27

Finite state machines

Strictly speaking, a FSM limited to inputs and outputs is a
"Mealy machine".

- There are no variables in such a model.

- This model corresponds to a class of formal languages in
theoretical computer science, and are related fo regular
expressions.

Completeness property
- For every state, there is a transition specified for every
member of the input alphabet.
Deterministic property

- For every state, and for every member of the input
alphabet, there is no more than one transition specified.

- That is, for all known events in any state, it is
predictable what the output and next states will be

28

FSM example: Door alarm sensors

+ Two motion sensors for a room, one at door 1 and
the other at door 2. When someone enters the
detection range, a sensor reports (+). When
someone leaves the detection range, a sensor
reports (-).

* Integrate the two sensor inputs to produce:

- P (present) event when someone enters the
area

- A (absent) event when the area becomes clear.

29

Sensor example

+1 =sensor 1 on
-1 = sensor 1 off
P = present

A = absent

— = no output

30

Sensor FSM in tabular format

Event +1 -1 +2 -2

State
None Output: P Output: P

NS: Only 1 NS: None NS: Only 2 NS: None
Only 1 Output: A Output: A

NS: Only 1 NS: None NS: Both NS: Only 1
Only 2

NS: Both NS: Only 2 NS: Only 2 NS: None
Both Output: P

NS: Both NS: Only 2 NS: Both NS: Only 1

NS = next state

Advantage of this format: empty table cell means FSM is
incomplete.

31

Uses for finite state machines

Modelling event-driven systems

Modelling systems where the sequence of actions is a major

element of the system

Lexical analysis

Correctness checks applicable to FSMs:

- Internal consistency: complete and deterministic

- Paths through FSM satisfy some desired property, as
specified from requirements or design.

- A software implementation should conform to the FSM

model.

32

Extended Finite State Machines

A more generally applicable model is extended
finite state machines (EFSMs).

« Inan EFSM, variables are added to the FSM
model.

Variables are associated with the entire EFSM.

Input events may have parameter values

Output events may have parameter values

Transitions can now do computations using the
variables

Taking a transition may require that specified
conditions hold on variables.

33

EFSM models

An EFSM model consists of:

- States: points where the system is waiting for an event
to occur.

- Variables: values associated with the state machine.
- Transitions: the change from one state to another. A
transition is composed of:

- Event: stimulus to the system, that causes the
implementation to exit from a state.

- [optional] Guard condition(s): additional Boolean
conditions that must be true to take the transition.

- [optional] Actions: action(s) to perform as a result of
the event

- Next state: the new state that should be entered at
the end of the transition.

34

State-based Models (2)

An initial state must be identified.

- A initial transition from the initial state to another state
can be specified. This transition should not have an
event or a guard condition; only action(s).

- The implementation is in the initial state at start up, and
immediately executes the initial transition without
stimulus.

- Analogy: calling a constructor method.
- The implementation will never return to the initial state

unless it is restarted; no transition can have the initial
state as its next state.

Actions can consist of:

- Output events (this can trigger events in the same or
other models)

- Modification of state variables (if variables are used) *’

Example: A stack

Event |

: A Guard

| i push / add, size++ condition
--/size=0 “

1
\
v

_| Initial

State

push [size 3 max - 1]
[add, size++

pop / error pop [size = 1]

push [size = max — 1]
| add, size++

push

| remove, size--

pop [size > 1]
[add, size++

Assumption:

_.-| Actions max > 1
e

pop / remove, size--

A
| error

36

Data Flow

37

Data flow models

Ina control flow model, we have been trying to capture the
sequence of program actions.

In a data flow model, we will try to model data dependencies.

The basic data dependency is "definition-use” associations.

Questions to answer:

Is there a use of a value before it has been defined?
Is a value defined, but never used?

At any use, do we have the value from the correct /
expected definition?

Is optimizing the code possible, given the data
dependencies?

38

Definition

* A definition is the point at which a variable
receives a value for the first time, or has its
previous value replaced with a new one.

* Where do definitions occur?

Left side of assignment statements

- This includes shorthand statements such as
a++ which representsa = a + 1

Parameter assignment in method headers
“Input” statements

In some languages, at the point of declaration
- Default values

39

Uses

A variable is used whenever its value is obtained for some
purpose.

- Value is not changed

Where can uses occur?
- Expression evaluation
- on the right side of an assignment statement
- ina conditional statement
- determination of an array index
- return statements

- Parameter passing at the calling side
- "Output” statements

Uses within conditional statements have a direct impact on
the flow of control.

40

Definition-use associations

* A definition-use pair associates with each use, the
definition that resulted in the current variable
value.

- There must be a potential execution path from
the point of the definition to the point of the
use

- It is expected that the variable's value will not
change during the execution of the path.

- No other definitions of the variable along
the path.

41

Example, again

public int gecd(in@in@

{

while [y '= 0)
{
DG

CF v

Gy

}

return x;

use
)

Example, again

43

Control flow graph

[gcd(int x, int y)]

v

while (y !'= 0)

v

(tmp = x % y|

return x

44

Data dependency graph

ged(int x, int y)

x vy

[while (y !'=0)

return x

45

Appendix
Principles of Testing and Analysis

From S. Somé, A. Williams

46

Principles of Testing and Analysis

* Sensitivity

* Redundancy

« Restriction

« Partition

+ Visibility

+ Feedback

47

Sensitivity

- Sensitivity:

- If a system could fail, how likely is it to actually
do so?

- Does the failure attract attention?

A system that fails on a consistent and observable
basis is more likely to have defects detected and
removed.

+ That is, "it is better to fail every time, than
sometimes”

48

Example

Three string copy routines:
Copy string A to B, where memory for B has to be pre-
allocated. The string A is too long to fit in B.

- Version 1. write the string info memory without checking
its length (like strcpy (a,b) in C). Memory beyond the
boundary of B may be over-written.

while (((*b++)=(*a++)) !=r\or) ;

- Version 2: if B has N characters, copy up fo N
characters into B (like strncpy (a,b,n) in C)

for (i=0;i<n, ((*b++)=(*a++))!="\0";i++);

- Version 3: check the length of A, and throw an exception
if it is longer than B.

49

Sensitivity of the examples

Version 1:

- If the next variable in memory (let's say it is X) writes
belfor'e B is read, then B may be read with an incorrect
value.

- If X is read, then it may have an incorrect value.

- If subsequent memory is not used, there is no observable
failure.

Version 2:

- If astring that is too long is written, it will be truncated.
This may or may not be noticed by the application.

Version 3:

- If astring that is too long is written, an exception is
thrown, which calls attention to the fault.

50

Redundancy

We want to identify faults leading to differences
between intended behaviour and actual behaviour.

+ If one part of a system constrains the content of
another, then the parts can be checked for
consistency.

Explicit declarations of intent: can be checked
later.

51

Examples

+ Type checking: a declaration of a variable to be of
a certain type restricts the set of values that can
be associated with the variable.

- Later on, when an actual value is assigned, it can
be checked against the declaration for
consistency.

Declaration of exceptions that might be thrown.

- Ensures that calling methods are aware of the
possibility.

+ Checking consistency of implementation with

specifications.

52

Restriction

* When the range of a property is too broad for
effective checking, reduce the range of the
property or check a reduced range subset.

* Architectural example:

- Use of a stateless protocol means that a
potential class of errors - being in the wrong
state - is eliminated.

53

Example

Use of integer code numbers for a set of choices.

static final int RED = 1;

static final int YELLOW = 2;

static final int GREEN = 3;

int trafficlightColour;

- What happens if trafficLightColour has the value 4
(a legal int value)?

Use of restriction:

enum Colour { RED, YELLOW, GREEN; }

Colour trafficLightColour;

- This is a clearer declaration of intent of the purpose of
the variable.

- With this approach, the type is now restricted to the
‘rhr(eje legal values, and the compiler can check for
validity.

54

Example

static void questionable() « Static analysis:
b determine properties
int k; .
for (int i = —-; i < 10; i++) fr‘om COde WIThOUT
{ running the code
if (someCondition (i))
{ + Could a static analysis
k =0;

tool answer the question
“is k initialized?"

else

{ K=k + i; + What about the

} restricted property: ‘“is
} there a possibility that k

System.out.println(k);

) might not be initialized?”

55

Partition

"Divide and conquer”
Partitioning can be a useful principles from several
viewpoints:
- Partition a complex system into several sub-systems, and
test the parts. Then, integrate the parts.

- Partition a range of inputs into groups of values which
should exhibit similar behaviour:

- Example: for the absolute value function for an
integer input, partition the domain into negative
integers, zero, and positive integers.

- Now there are 3 cases instead of the 4+ billion
possible integers.

56

Visibility

+ The ability to gain access to information.
- Also, the ease of access to the information.
+ While it is a good design principle to employ

information hiding, the same principle can make a
system more difficult to test.

- Anything that is exposed to view can be
checked during test execution.

- Anything that is not accessible cannot be
checked directly.

- It may be possible to collect such
information indirectly.

57

Examples of visibility

Choice of a text-based protocol versus a bit-based protocol.

- If the performance tradeoff is acceptable, use of a
human-readable protocol can pay off in terms of being
able to easily construct test messages and check their
correctness.

Exposing an interface
- This allows a potential test access and observation point.

Consider testing a public method versus a private method.
- A public method can be called directly.

- There is no direct access to a private method. If you
want to test such a method, how do you arrange for it to
be called?

58

Feedback

Using data that is collected from a process to modify the
process.
Examples for testing:

- Choosing tests to run based on results of previous tests.

- "If test 47 passes, go to test 48. If test 47 fails,
run tests 47A and 478B."

- Using historical data fo target test effort:

- "Class A tends to have more defects than other
classes. Add additional test cases for this class.”

- Post-mortem analysis: After a software version is
released, use customer problem reports to identify areas
of process improvement.

59

Summary of principles

Sensitivity: better to fail every time than some
times.

Redundancy: make intentions explicit.
Restriction: make the problem easier.
Partition: divide and conquer
Visibility: make information accessible

Feedback: apply lessons from experience.

60

