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Models for SwQA 

From S. Somé, A. Williams 
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Models for assessing software quality 
•  Models are a standard engineering practice for performing 

analysis of a system. 

•  Properties of a good model: 
–  Simpler than the actual system, but preserves relevant 

attributes of the system. 
–  Compact:  small enough to be comprehensible – either for 

human or machine processing, and to be created with less 
effort than an actual system. 

–  Predictive:  The model must represent a relevant 
characteristic well enough to distinguish between good 
and bad outcomes of an analysis. 

–  Semantically meaningful:  a failure diagnosis with respect 
to a model should be equally applicable to the actual 
system. 

–  Sufficiently general:  Models intended for use over a 
range of systems should be applicable across the domain. 



3 

Graph representations of software (1) 

•  Graph:  set of nodes, and a set of edges between 
nodes. 
–  Nodes:  {A, B, C} 
–  Edges: { (A,B), (B,C), (C,A) } 

•  Directed graph:  “arcs” replace “edges”, and the 
order in the pair becomes significant. 

A 

C B 

A 

C B 

4 

Graph representations of software (2) 

•  Software execution can be considered as a 
sequence of states alternated with actions (i.e. 
machine operations) that modify the system state. 

•  A graph can be used as the execution model in two 
ways: 
–  Option 1:  Actions occur within graph nodes, and 

an edge represents a system state while control 
flow transfer occurs.  

–  Option 2:  A system state is represented by a 
graph node, and actions occur on the graph 
edges. 
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Examples of graph models 
•  Option 1:  A control flow 

graph. 
•  Option 2:  A finite state 

machine. 

read(a) 
if (a>7) 

b = 12 b = 7 

print(b) 

false true 

1 

2 

3 4 

a / b 
c / d 

c / g 
a / g 

Notation:  input / output 
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Scenario Graph 



Scenario Graph 
•  Generated from a use case 

•  Nodes correspond to point where system waits for an event 
–  environment event, system reaction 

•  There is a single starting node 

•  End of use case is finish node 

•  Edges correspond to event occurrences 
–  May include conditions and looping edges 

•  Scenario:  
–  Path from starting node to a finish node 

Use Case Scenario Graph (1) 
Title: User login 

Actors: User  

Precondition: System is ON 

1.  User inserts a card 

2.  System asks for personal 
identification number (PIN) 

3.  User types PIN 

4.  System validates user 
identification 

5.  System displays a welcome 
message to user 

6.  System ejects card 

Postcondition: User is logged in 

1 

3 

4 

5 

6 

1a.1 

4b.1 

2 

1a.2 

4a.2 

1a: card is 
not valid 

4b:PIN invalid 
and attempts ≥ 4 4a:PIN invalid and 

attempts < 4 

4a.1 



Use Case Scenario Graph (2) 
Alternatives:  

1a:  Card is not valid  

1a.1: System emits alarm 

1a.2: System ejects card 

4a: User identification is invalid  

     AND number of attempts < 4  

4a.1 Ask for PIN again and go 
back 

4b: User identification is invalid  

    AND number of attempts ≥ 4 

4b.1: System emits alarm 

4b.2: System ejects card 

1 

3 

4 

5 

6 

1a.1 

4b.1 

2 

1a.2 

4a.2 

1a: card is 
not valid 

4b:PIN invalid 
and attempts ≥ 4 4a:PIN invalid and 

attempts < 4 

4a.1 
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Control Flow 
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Control flow graphs 
•  Intraprocedural flow graph: 

–  Models the internal paths of control flow within a single 
procedure or method. 

–  Graph nodes represent a code block. 
–  Graph arcs represent alternative paths to what code 

statements might be executed next. 

•  Interprocedural flow graph, or call graph: 
–  Models the potential sequences of calls to various 

methods. 
–  Graph nodes represent methods. 
–  Graph arcs indicate that the method at the head of the 

arc can call the method at the tail of the arc. 
–  Polymorphism makes such graphs more complex… 
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Intraprocedural flow graphs 
•  What is included within a single node: 

–  A single-entry, single-exit series of statements. 
–  If there are several entry points to a code statement, 

the statement must be the first line in a node. 
–  Assumption:  if you enter the node, all statements in the 

node will be executed. 
–  What about exceptions? 

•  Arcs (or edges) should be used whenever there is an 
alternative as to what could be executed next, or to 
transfer to a statement for which there are multiple entry 
points. 
–  It should be clear from the diagram as to the conditions 

required to select one alternative over the others. 
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Intraprocedural flow graphs 

•  Based on programming language constructs. 

if ( ) 

“then” 
block 

“else” 
block 

while ( ) 

loop 
body 

true false 
true false 

switch ( ) 

case: 

break 

case: 

default: 
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Java Example 
•  Function:  replace n ≥ 2 consecutive new line characters with 

a single character. 

   public static String collapseNewLines( String arg ) 
   { 
      char last = arg.charAt( 0 ); 
      StringBuffer buffer = new StringBuffer( ); 
      for ( int index = 0; index < arg.length(); index++ ) 
      { 
         char ch = arg.charAt( index ); 
         if ( ch != ′\n′ || last != ′\n′ ) 
         { 
            buffer.append( ch ); 
            last = ch; 
         } 
      } 
      return buffer.toString( ); 
   } 
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Draw control flow graph 

char last = arg.charAt( 0 ); 
StringBuffer buffer = new StringBuffer( ); 
for ( int index = 0; 

index < arg.length(); 

char ch = arg.charAt( index ); 
if ( ch != ′\n′ 

buffer.append( ch ); 
last = ch; || last != ′\n′ ) 

index++ ) 

return buffer.toString( ); 

false 

false 

false 

true 

true 

true 

1 

2 3 

4 

5 

6 7 

collapseNewLines( String arg ) 0 
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Control flow graphs 
•  Be careful with: 

–  Multi-way branches:  if C or Java switch statements are 
used, the presence or absence of break statements 
alters the control flow 

–  For loops:  There are three separate parts:  initialization, 
the loop test, and the “increment” statement(s). 

–  Compound conditions:  Is there short-circuit evaluation?  
If so, there is an implicit branch after each step of the 
evaluation. 
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Control flow graphs 
•  You may want to vary the level of precision depending on the 

situation. 

•  Does short circuit evaluation matter? 
if ( a != null && a.someMethod() ) 

 yes – it prevents a null pointer exception 
if ( a > 36 && a < 72 ) 

 order of evaluation is not likely to be relevant 

•  Should exceptions be considered? 
–  In Java, exceptions other than those inheriting from 

RuntimeException must be declared – so you know where 
they can be thrown. 

–  Exceptions inheriting from RuntimeException need not be 
declared: 

–  Null pointer exceptions:  possible for any . operator 
–  Arithmetic exceptions:  possible for arithmetic operators. 
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Purpose of the graph 
•  From a control flow graph, we can obtain potential execution paths 

–  Some of the paths from the previous graph: 
1 – 2 – 7 

1 – 2 – 3 – 4 – 6 – 2 - 7 

1 – 2 – 3 – 5 – 6 – 2 – 7 

1 – 2 – 3 – 4 – 5 – 6 – 2 – 7 

1 – 2 – 3 – 4 – 6 – 2 – 3 – 4 – 6 – 2 – 7 

•  We may decide to derive test cases to execute different paths 
through the program. 
–  If there are an infinite number of paths, we will have to have 

some selection criteria to choose a subset of paths. 

•  For any selected path, we need to determine what data is needed 
to cause that path to be executed. 
–  What value of arg will force the control flow to a selected 

path? 
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Interprocedural Call graphs 

•  Shows the relationships between calling and called 
methods. 

•  When you have polymorphism in an object-oriented 
language, determining the exact method called is 
no longer straightforward. 
–  Is there a subclass that overrides a method? 
–  Does the overridden method call the superclass 

method? 
–  Are you using an object factory that returns 

objects of different types? 
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Example 
public class C 
{ 
   public static C cFactory( String kind ) 
   { 
      if ( kind == ″C″) return new C(); 
      if ( kind == ″S″) return new S(); 
      return null; 
   } 

   public static void main( String[] args ) {( new A()).check() } 

   void foo() { System.out.println(″Parent foo() called″); } 

   class S extends C 
   { 
      void foo() { System.out.println(″Child foo() called″); } 
   } 

   class A 
   { 
      void check() 
      { 
         C myC = C.Factory(″S″ ); 
         myC.foo(); 
      } 
   } 
} 
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Potential call graph 

main() 

A.check() 

C.cFactory(String) C.foo() S.foo() 

? 
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Call graphs 
•  With dynamic binding, we can only determine which of C.foo

() and S.foo() will be called at run-time. 

•  We can read the code and, based on the parameters, 
determine that S.foo() is what would be called.  However, a 
static code checker may not be able to make this 
determination. 

•  With static analysis, we have to consider the possibility that 
if a method foo() is called on a variable of type C, that the 
version of foo() executed may be in any 
–  subclass of C, if C is a class 
–  implementation of C, if C is an interface 
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Context and Call Graphs 
public class C 
{ 
   public static void main( String[] args ) 
   { 
      C myC = new C(); 
      myC.foo(3); 
      myC.bar(17); 
   } 
   void foo( int n ) 
   { 
      int[] myArray = new int[n]; 
      depends( myArray, 2 ); 
   } 
   void bar( int n ) 
   { 
      int[] myArray = new int[n]; 
      depends( myArray, 2 ); 
   } 
   void depends( int[] a, int n ) 
   { 
      a[n] = 42; // Can we tell if a[n] exists? 
   } 
} 

main() 

C.depends 

C.foo() C.bar() 

24 

Context and Call Graphs 

•  A context-sensitive graph shows the parameter 
context in which a method is called. 
–  In this case, the context-sensitive graph may 

help answer the question, “does a[n] exist?” in 
depends(). 

main 

C.depends 

C.foo C.bar 

Context insensitive 
main() 

C.depends(int[3],2) 

C.foo(3) C.bar(17) 

Context sensitive 

C.depends(int[17],2) 
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Paths in call graphs 

•  There are 4 distinct contexts in which method F may be called. 

•  The number of contexts can grow rapidly – even without 
recursion... 

A 

B C 

D E 

F 

A 

B:A C:A 

D:B:A D:C:A E:B:A E:C:A 

F:D:B:A F:D:C:A F:E:B:A F:E:C:A 

Context 
insensitive Context sensitive 
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State Machines 
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Finite state machines 
•  In a finite state machine (FSM), there are: 

–  a finite set of states S (nodes in a graph) 
–  a finite input alphabet I, usually representing events 
–  a finite output alphabet O, usually representing actions 
–  an initial state s0 ∈ S 
–  a transition function: (graph arcs) 

–  maps (a start state ∈ S and an input ∈ I) 
to (a set of outputs ∈ O and an end state ∈ S ). 

–  the start and end states may be the same 
–  the set of outputs may be null, often indicated by 

a dash -. 
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Finite state machines 
•  Strictly speaking, a FSM limited to inputs and outputs is a 

“Mealy machine”. 
–  There are no variables in such a model. 
–  This model corresponds to a class of formal languages in 

theoretical computer science, and are related to regular 
expressions. 

•  Completeness property 
–  For every state, there is a transition specified for every 

member of the input alphabet. 

•  Deterministic property 
–  For every state, and for every member of the input 

alphabet, there is no more than one transition specified. 
–  That is, for all known events in any state, it is 

predictable what the output and next states will be 
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FSM example:  Door alarm sensors 

•  Two motion sensors for a room, one at door 1 and 
the other at door 2.  When someone enters the 
detection range, a sensor reports (+). When 
someone leaves the detection range, a sensor 
reports (-).    

•  Integrate the two sensor inputs to produce: 
–  P (present) event when someone enters the 

area 
–  A (absent) event when the area becomes clear. 
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Neither 

Only1 Only2 

Both 

+1 / P 
+2 / P 

-1 / A 
-2 / A 

+1 / – 
- 2 / – 

+2 / – 

+1 / – 
+2 / – 

-1 / – 

-2 / – -1 / – 

+1 / – +2 / – 

Sensor example 

+1 = sensor 1 on 
- 1 = sensor 1 off 
P = present 
A = absent 
– = no output 

- 1 / – 

-2 / – 
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Sensor FSM in tabular format 
         Event 

State 

+1 -1 +2 -2 

None Output: P 

NS:  Only 1 NS: None 

Output: P 

NS: Only 2 NS:  None 

Only 1 

NS:  Only 1 

Output:  A 

NS: None NS: Both 

Output:  A 

NS:  Only 1 

Only 2 

NS:  Both NS: Only 2 NS: Only 2 NS:  None 

Both 

NS:  Both NS: Only 2 

Output: P 

NS: Both NS:  Only 1 

•  NS = next state 

•  Advantage of this format:  empty table cell means FSM is 
incomplete. 
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Uses for finite state machines 
•  Modelling event-driven systems 

•  Modelling systems where the sequence of actions is a major 
element of the system 

•  Lexical analysis 

•  Correctness checks applicable to FSMs: 
–  Internal consistency:  complete and deterministic 
–  Paths through FSM satisfy some desired property, as 

specified from requirements or design. 
–  A software implementation should conform to the FSM 

model. 
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Extended Finite State Machines 

•  A more generally applicable model is extended 
finite state machines (EFSMs). 

•  In an EFSM, variables are added to the FSM 
model. 
–  Variables are associated with the entire EFSM. 
–  Input events may have parameter values 
–  Output events may have parameter values 
–  Transitions can now do computations using the 

variables 
–  Taking a transition may require that specified 

conditions hold on variables. 
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EFSM models 
•  An EFSM model consists of: 

–  States:  points where the system is waiting for an event 
to occur. 

–  Variables:  values associated with the state machine. 
–  Transitions:  the change from one state to another.  A 

transition is composed of: 
–  Event:  stimulus to the system, that causes the 

implementation to exit from a state. 
–  [optional] Guard condition(s):  additional Boolean 

conditions that must be true to take the transition. 
–  [optional] Actions:  action(s) to perform as a result of 

the event 
–  Next state:  the new state that should be entered at 

the end of the transition. 
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State-based Models (2) 
•  An initial state must be identified. 

–  A initial transition from the initial state to another state 
can be specified.  This transition should not have an 
event or a guard condition; only action(s). 

–  The implementation is in the initial state at start up, and 
immediately executes the initial transition without 
stimulus. 

–  Analogy:  calling a constructor method. 
–  The implementation will never return to the initial state 

unless it is restarted; no transition can have the initial 
state as its next state. 

•  Actions can consist of: 
–  Output events (this can trigger events in the same or 

other models) 
–  Modification of state variables (if variables are used) 
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Example:  A stack 

Empty 

Full 

Partly 
Filled 

push / add, size++ 

pop [size = 1] 
/ remove, size-- 

push [size < max – 1] 
/ add, size++ 

push [size = max – 1] 
/ add, size++ 

-- / size = 0 

pop / remove, size-- 

Guard 
condition 

Event 

State 

Initial 
State 

Actions 

pop [size > 1] 
/ add, size++ 

pop / error 

push / error 

Assumption: 
max > 1 
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Data Flow 
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Data flow models 
•  In a control flow model, we have been trying to capture the 

sequence of program actions. 

•  In a data flow model, we will try to model data dependencies. 

•  The basic data dependency is “definition-use” associations. 

•  Questions to answer: 
–  Is there a use of a value before it has been defined? 
–  Is a value defined, but never used? 
–  At any use, do we have the value from the correct / 

expected definition? 
–  Is optimizing the code possible, given the data 

dependencies? 
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Definition 

•  A definition is the point at which a variable 
receives a value for the first time, or has its 
previous value replaced with a new one. 

•  Where do definitions occur? 
–  Left side of assignment statements 

– This includes shorthand statements such as 
a++ which represents a = a + 1 

–  Parameter assignment in method headers 
–  “Input” statements 
–  In some languages, at the point of declaration 

– Default values 
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Uses 
•  A variable is used whenever its value is obtained for some 

purpose. 
–  Value is not changed 

•  Where can uses occur? 
–  Expression evaluation 

–  on the right side of an assignment statement 
–  in a conditional statement 
–  determination of an array index 
–  return statements 

–  Parameter passing at the calling side 
–  “Output” statements 

•  Uses within conditional statements have a direct impact on 
the flow of control. 
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Definition-use associations 

•  A definition-use pair associates with each use, the 
definition that resulted in the current variable 
value. 
–  There must be a potential execution path from 

the point of the definition to the point of the 
use 

–  It is expected that the variable’s value will not 
change during the execution of the path. 
– No other definitions of the variable along 

the path. 
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Example, again 
public int gcd( int x, int y ) 

{ 

   int tmp; 

   while ( y != 0 ) 

   { 

      tmp = x % y 

      x = y; 

      y = tmp; 

   } 

   return x; 

} 

use 

def 
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Example, again 
public int gcd( int x, int y ) 

{ 

   int tmp; 

   while ( y != 0 ) 

   { 

      tmp = x % y 

      x = y; 

      y = tmp; 

   } 

   return x; 

} use 

def 
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Control flow graph 

gcd( int x, int y ) 

y = tmp 

x = y 

tmp = x % y 

while ( y != 0 ) 

return x 
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Data dependency graph 

gcd( int x, int y ) 

y = tmp 

x = y 

tmp = x % y 

while ( y != 0 ) 

return x 

x,y 

y x y 

y 
y 

x 
tmp 

y 
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Appendix 
Principles of Testing and Analysis 

From S. Somé, A. Williams 
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Principles of Testing and Analysis 

•  Sensitivity 

•  Redundancy 

•  Restriction 

•  Partition 

•  Visibility 

•  Feedback 
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Sensitivity 

•  Sensitivity: 
–  If a system could fail, how likely is it to actually 

do so? 
–  Does the failure attract attention? 

•  A system that fails on a consistent and observable 
basis is more likely to have defects detected and 
removed. 

•  That is, “it is better to fail every time, than 
sometimes” 
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Example 
•  Three string copy routines:  

•  Copy string A to B, where memory for B has to be pre-
allocated.  The string A is too long to fit in B. 
–  Version 1:  write the string into memory without checking 

its length (like strcpy(a,b) in C).  Memory beyond the 
boundary of B may be over-written. 
while (((*b++)=(*a++))!=′\0′); 

–  Version 2:  if B has N characters, copy up to N 
characters into B (like strncpy(a,b,n) in C) 

  for (i=0;i<n,((*b++)=(*a++))!=′\0′;i++); 
–  Version 3:  check the length of A, and throw an exception 

if it is longer than B. 
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Sensitivity of the examples 
•  Version 1:   

–  If the next variable in memory (let’s say it is X) writes 
before B is read, then B may be read with an incorrect 
value. 

–  If X is read, then it may have an incorrect value. 
–  If subsequent memory is not used, there is no observable 

failure. 

•  Version 2: 
–  If a string that is too long is written, it will be truncated.  

This may or may not be noticed by the application. 

•  Version 3: 
–  If a string that is too long is written, an exception is 

thrown, which calls attention to the fault. 
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Redundancy 

•  We want to identify faults leading to differences 
between intended behaviour and actual behaviour. 

•  If one part of a system constrains the content of 
another, then the parts can be checked for 
consistency. 

•  Explicit declarations of intent:  can be checked 
later. 
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Examples 

•  Type checking:  a declaration of a variable to be of 
a certain type restricts the set of values that can 
be associated with the variable. 
–  Later on, when an actual value is assigned, it can 

be checked against the declaration for 
consistency. 

•  Declaration of exceptions that might be thrown. 
–  Ensures that calling methods are aware of the 

possibility. 

•  Checking consistency of implementation with 
specifications. 
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Restriction 

•  When the range of a property is too broad for 
effective checking, reduce the range of the 
property or check a reduced range subset. 

•  Architectural example: 
–  Use of a stateless protocol means that a 

potential class of errors – being in the wrong 
state – is eliminated. 
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Example 
•  Use of integer code numbers for a set of choices. 

static final int RED = 1; 
static final int YELLOW = 2; 
static final int GREEN = 3; 
int trafficLightColour; 
–  What happens if trafficLightColour has the value 4 

(a legal int value)? 

•  Use of restriction: 
enum Colour { RED, YELLOW, GREEN; } 
Colour trafficLightColour; 
–  This is a clearer declaration of intent of the purpose of 

the variable. 
–  With this approach, the type is now restricted to the 

three legal values, and the compiler can check for 
validity. 
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Example 
static void questionable() 
{ 
   int k; 
   for ( int i = -; i < 10; i++ ) 
   { 
      if ( someCondition(i) ) 
      { 
         k = 0; 
      } 
      else 
      { 
         k = k + i; 
      } 
   } 
   System.out.println( k ); 
} 

•  Static analysis: 
determine properties 
from code without 
running the code 

•  Could a static analysis 
tool answer the question 
“is k initialized?” 

•  What about the 
restricted property:  “is 
there a possibility that k 
might not be initialized?” 
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Partition 
•  “Divide and conquer” 

•  Partitioning can be a useful principles from several 
viewpoints: 
–  Partition a complex system into several sub-systems, and 

test the parts.  Then, integrate the parts. 
–  Partition a range of inputs into groups of values which 

should exhibit similar behaviour: 
–  Example:  for the absolute value function for an 

integer input, partition the domain into negative 
integers, zero, and positive integers. 

–  Now there are 3 cases instead of the 4+ billion 
possible integers. 
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Visibility 

•  The ability to gain access to information. 
–  Also, the ease of access to the information. 

•  While it is a good design principle to employ 
information hiding, the same principle can make a 
system more difficult to test. 
–  Anything that is exposed to view can be 

checked during test execution. 
–  Anything that is not accessible cannot be 

checked directly. 
–  It may be possible to collect such 

information indirectly. 
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Examples of visibility 
•  Choice of a text-based protocol versus a bit-based protocol. 

–  If the performance tradeoff is acceptable, use of a 
human-readable protocol can pay off in terms of being 
able to easily construct test messages and check their 
correctness.  

•  Exposing an interface 
–  This allows a potential test access and observation point. 

•  Consider testing a public method versus a private method. 
–  A public method can be called directly. 
–  There is no direct access to a private method.  If you 

want to test such a method, how do you arrange for it to 
be called? 
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Feedback 
•  Using data that is collected from a process to modify the 

process. 

•  Examples for testing: 
–  Choosing tests to run based on results of previous tests. 

–  “If test 47 passes, go to test 48.  If test 47 fails, 
run tests 47A and 47B.” 

–  Using historical data to target test effort: 
–  “Class A tends to have more defects than other 

classes.  Add additional test cases for this class.” 
–  Post-mortem analysis:  After a software version is 

released, use customer problem reports to identify areas 
of process improvement. 
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Summary of principles 

•  Sensitivity:  better to fail every time than some 
times. 

•  Redundancy:  make intentions explicit. 

•  Restriction: make the problem easier. 

•  Partition:  divide and conquer 

•  Visibility:  make information accessible 

•  Feedback:  apply lessons from experience. 


