
1

Control Flow Coverage

From S. Somé, A. Williams

2

Test Coverage

•  Coverage can be based on:
–  source code
–  object code
–  model

–  control flow graph
–  (extended) finite state machines
– data flow graph

–  requirements checklist
–  ...

3

Coverage: what to measure?

•  For any coverage measure, we need:
–  A coverage unit: an element with the

properties:
– We can count the total number of units in

the software.
– We can identify which units were “hit” during

a single execution run.
–  This means that we can determine the

percentage of units hit during one or more
execution runs.

4

Coverage measurement

•  Types of coverage :
–  Control-flow based: based on structural

elements of a code or model
–  Data-flow based: trace data in code or a model

from where values are defined to where they
are used

–  Checklist: ensure that all items on a list have
been covered

Control flow coverage

•  Method coverage

•  Statement coverage

•  Branch coverage (also called decision coverage)
–  Minimum coverage specified by the IEEE unit test

standard

•  Multiple Condition coverage
–  Covers combinations of condition in decisions

•  Path coverage
–  100% path coverage impossible in practice (loops)

Flow graph

•  The flow graph on the right is determined from
the code on the left:

int proc(int a, int b, int x)
{
 if ((a>1) && (b==0)) // 1
 {
 x = x/a; // 3
 }
 if ((a==2)||(x>1)) // 4
 {
 x = x+1; // 5
 }
 return x; // 7
}

a > 1 AND
b = 0

a == 2
OR x>1

x←x/a

x ←x+1

false

true

true

false

1

2

5

3

7

4

6

Statement Coverage

•  Criterion: All statements must be covered during
test execution.

•  This is the weakest form of coverage.
–  Some branches may be missed.

•  Find paths that cover all statements

•  Choose input data that will result in the selected
paths.

Statement Coverage

•  The following path is
sufficient for statement
coverage:

1 – 3 – 4 – 5 – 7

Possible input:
a = 2, b = 0, x = 4

a > 1 AND
b = 0

a == 2
OR x>1

x←x/a

x ←x+1

false

true

true

false

1

2

5

3

7

4

6

Branch Coverage

•  Criterion: At any branch point, each branch must be covered
during test execution.
–  The true and false branch of a 2-way if statement.
–  Each case in a switch statement.

•  Find paths that cover all branches

•  Choose input data that will result in the selected paths.

•  Branch coverage necessarily includes statement coverage.

Branch Coverage

•  The following paths are
sufficient for branch
coverage:

1 – 2 – 4 – 5 – 7
1 – 3 – 4 – 6 – 7

•  Possible input:

1.  a = 2, b = 2, x = -1

2.  a = 3, b = 0, x = 1

a > 1 AND
b = 0

a == 2
OR x>1

x←x/a

x ←x+1

false

true

true

false

1

2

5

3

7

4

6

Multiple Condition Coverage

•  Criterion:
–  Every atomic (i.e. does not include AND or OR)

condition must be true and false at some point
during test execution.

–  In a compound logical statement (i.e. includes
AND and OR), every combination of atomic
conditions must be covered during test
execution.

•  Achieving multiple condition coverage also
satisfies statement and branch coverage

Multiple Condition Coverage

Need cases where

1.   a > 1 is true and b = 0 is true

2.   a > 1 is true and b = 0 is false

3.   a > 1 is false and b = 0 is true

4.   a > 1 is false and b = 0 is false

5.   a = 2 is true and x > 1 is true

6.   a = 2 is true and x > 1 is false

7.   a = 2 is false and x > 1 is true

8.   a = 2 is false and x > 1 is false

int proc(int a, int b, int x)
{
 if ((a>1) && (b==0))
 {
 x = x/a;
 }
 if ((a==2) || (x>1))
 {
 x = x+1;
 }
 return x;
}

Multiple Condition Coverage

Possible input:

a = 2, b = 0, x = 2 [1][5]

a = 2, b = 1, x = 0 [2][6]

a = 0, b = 0, x = 2 [3][7]

a = 0, b = 1, x = 0 [4][8]

1.   a > 1 is true and b = 0 is true

2.   a > 1 is true and b = 0 is false

3.   a > 1 is false and b = 0 is true

4.   a > 1 is false and b = 0 is false

5.   a = 2 is true and x > 1 is true

6.   a = 2 is true and x > 1 is false

7.   a = 2 is false and x > 1 is true

8.   a = 2 is false and x > 1 is false

Multiple Condition Coverage

•  Multiple condition coverage
covers all branches and
statements.

•  Input values:
a = 2, b = 0, x = 2
a = 2, b = 1, x = 0
a = 0, b = 0, x = 2
a = 0, b = 1, x = 0

•  Paths covered
1 – 3 – 4 – 5 – 7
1 – 2 – 4 – 5 – 7
1 – 2 – 4 – 5 – 7
1 – 2 – 4 – 6 – 7

a > 1 AND
b = 0

a == 2
OR x>1

x←x/a

x ←x+1

false

true

true

false

1

2

5

3

7

4

6

All Paths Coverage

•  Criterion:
–  All paths through the code must be covered.

•  This is typically infeasible when loops are present.
–  A version of this coverage with loops is to

treat loops as having two paths:
1.  The loop is executed (normally, once).
2.  The loop is skipped.

•  Some paths may also be infeasible because there
is no combination of data conditions that permit a
path to be taken.

All Paths Coverage

•  Set of all paths:
1 – 2 – 4 – 6 – 7
1 – 3 – 4 – 6 – 7
1 – 2 – 4 – 5 – 7
1 – 3 – 4 – 5 – 7

•  Input values:
a = 0, b = 1, x = 0
a = 3, b = 0, x = 0
a = 2, b = 1, x = 0
a = 2, b = 0, x = 0

a > 1 AND
b = 0

a == 2
OR x>1

x←x/a

x ←x+1

false

true

true

false

1

2

5

3

7

4

6

17

Comparison

•  From the previous two examples, we can see that:
–  Multiple condition coverage does not imply all

paths coverage.
–  All paths coverage does not imply multiple

condition coverage.

Infeasible paths

•  Set of paths:
1 – 2 – 4 – 6 – 7
1 – 3 – 4 – 6 – 7
1 – 2 – 4 – 5 – 7
1 – 3 – 4 – 5 – 7

•  To be able to take this
path, we would have to
have a <= 1 AND a > 4
 – which is logically
impossible!

a > 1

a > 4

x←x/a

x ←x+1

false

true

true

false

1

2

5

3

7

4

6

19

Appendix A:
Another Example of Code Coverage

20

Detailed Test Creation Example

•  The next few slides will go over the detailed
steps to create test cases using a coverage-based
approach.

•  Situation for the example:
–  We want to create some regression tests for

some code we already have.
–  The branch coverage criterion will be used for

test selection.

21

Steps for Test Creation (1)

1.  Parse the code, and generate a flow graph.

2.  Analyze the flow graph to determine units of test
coverage criteria.

3.  Determine a set of sub-paths through each
structural test unit of interest.

4.  Combine sub-paths into a complete path (from
entry point to exit point).

5.  Trace path in reverse from exit to entry, and
collect conditions at each branch point.

22

Steps for Test Creation (2)

6.  Solve set of data conditions required to take
complete path.
•  This has the effect of deriving equivalence

classes of input data.
•  Any member of the equivalence class should

result in executing the same path through the
code.

•  Feasibility of data conditions must be checked
•  If no data satisfies input conditions, return

to step 4 to search for a different
complete path to cover test unit.

23

Steps to Generate Structural Tests (3)

7.  Choose representative members from equivalence
classes.

8.  Trace path in forward direction, in order to
predict expected output.
•  In many cases, this is extremely difficult.

9.  Combine input with test environment information.

10. Generate test script.

24

Example: Delete rows from array (1)

public int[][] deleteRows(int[][] anArray,
 int firstRow, int lastRow)
{
 int[][] result = null;
 int numRows = anArray.length;
 if ((firstRow >= numRows) || (firstRow < 0))
 {
 System.out.println(“Bad first row.”);
 }
 else if ((lastRow >= numRows) || (lastRow < 0))
 {
 System.out.println(“Bad last row.”);
 }
 else if (lastRow < firstRow)
 {
 System.out.println(“Not a valid range.”);
 }

D1

D2

D3

S1

S2

S3

S4

25

Example: Delete rows from array (2)

 else
 {
 int numNewRows = numRows - (lastRow - firstRow + 1);
 result = new int[numNewRows][anArray[0].length];
 int offset = 0;
 for (int row = 0; row < numRows; row++)
 {
 if ((row >= firstRow) && (row <= lastRow))
 {
 offset++;
 }
 else
 {
 result[row-offset] = anArray[row];
 }
 }
 }
 return result;
}

D4
D5

S5

S6

S7

S8

S9

26

Flow graph

D1 S1

S2

D2

S3

D3

S4

D5

D4

S5

S6

S7

S8
S9

F

F

F

F

F

T

T

T

T

T

27

Potential Coverage Measures

•  Statement coverage: Cover nodes S1 through S9,
and D1 through D5

•  Decision coverage: cover true and false cases for
each individual condition with D1 through D5
–  Will cover all edges in flow graph.

•  Example: use decision coverage

28

Choose a sub-path for
unit of test coverage

D1 S1

S2

D2

S3

D3

S4

D5

D4

S5

S6

S7

S8
S9

F

F

F

F

F

T

T

T

T

T

unit of
coverage

29

Extend sub-path to complete path

D1 S1

S2

D2

S3

D3

S4

D5

D4

S5

S6

S7

S8
S9

F

F

F

F

F

T

T

T

T

T

30

Solve conditions

D1 S1

S2

D2

S3

D3

S4

D5

D4

S5

S6

S7

S8
S9

F

F

F

F

F

T

T

T

T

T

Need:
D2 true
D1 false

31

Solve conditions

•  Decision D1 (false)
(firstRow >= numRows) || (firstRow < 0)

•  Decision D2 (true)
 (lastRow >= numRows) || (lastRow < 0)

•  Determine input that affects numRows:
int numRows = anArray.length;

•  Therefore, for this path, we need:
 ! ((firstRow >= anArray.length) || (firstRow < 0))
&& ((lastRow >= anArray.length) || (lastRow < 0))

32

Equivalence classes (not complete)

•  firstRow: (-∞,-1] [0,anArray.length-1] [anArray.length,+∞)

•  lastRow:

(-∞,-1][0,firstRow-1][firstRow,anArray.length-1][anArray.length,+∞)

•  Need firstRow in equivalence class
[0,anArray.length-1] and lastRow from equivalence
class (-∞,-1] or [anArray.length,+∞)

S2 S2

S3 S3 S4

33

Input Data Selection

•  Need to find specific values for each input:

•  anArray: anArray.length >= 1, number of
columns unspecified, contents unspecified
–  Choose anArray.length = 3, number of

columns 2, fill array with ones.

•  firstRow: must be between 0 and 2 inclusive
–  Choose 1

•  lastRow: must be -1 or less, or 3 or greater
–  Choose 5

34

Predict output (1)

public int[][] deleteRows(int[][] anArray,
 int firstRow, int lastRow)
{
 int[][] result = null;
 int numRows = anArray.length;
 if ((firstRow >= numRows) || (firstRow < 0))
 {
 // not executed
 }
 else if ((lastRow >= numRows) || (lastRow < 0))
 {
 System.out.println(“Bad last row.”);
 }
 else if (lastRow < firstRow)
 {
 // not executed
 }

S1

S2

S3

S4

35

Predict output (2)

 else
 {
 [...] // not executed
 }
 return result;
}

S9

36

We have:

1.  Output:
Bad last row.

2.  Return value:
result = null

