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Control Flow Coverage 
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Test Coverage 

•  Coverage can be based on: 
–  source code 
–  object code 
–  model 

–  control flow graph 
–  (extended) finite state machines 
– data flow graph 

–  requirements checklist 
–  ... 
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Coverage:  what to measure? 

•  For any coverage measure, we need: 
–  A coverage unit:  an element with the 

properties: 
– We can count the total number of units in 

the software. 
– We can identify which units were “hit” during 

a single execution run. 
–  This means that we can determine the 

percentage of units hit during one or more 
execution runs. 
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Coverage measurement 

•  Types of coverage : 
–  Control-flow based:  based on structural 

elements of a code or model 
–  Data-flow based:  trace data in code or a model 

from where values are defined to where they 
are used 

–  Checklist:  ensure that all items on a list have 
been covered 



Control flow coverage 

•  Method coverage 

•  Statement coverage  

•  Branch coverage (also called decision coverage) 
–  Minimum coverage specified by the IEEE unit test 

standard 

•  Multiple Condition coverage 
–  Covers combinations of condition in decisions 

•  Path coverage 
–  100% path coverage impossible in practice (loops) 

Flow graph 

•  The flow graph on the right is determined from 
the code on the left: 

int proc(int a, int b, int x) 
{ 
  if ((a>1) && (b==0)) // 1 
  { 
    x = x/a; // 3 
  } 
  if ((a==2)||(x>1)) // 4 
  { 
    x = x+1; // 5 
  } 
  return x; // 7 
} 

a > 1 AND 
b = 0 

a == 2 
OR x>1 

x←x/a 

x ←x+1 
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Statement Coverage 

•  Criterion:  All statements must be covered during 
test execution. 

•  This is the weakest form of coverage. 
–  Some branches may be missed. 

•  Find paths that cover all statements 

•  Choose input data that will result in the selected 
paths. 

Statement Coverage 

•  The following path is 
sufficient for statement 
coverage: 

1 – 3 – 4 – 5 – 7 

Possible input: 
a = 2, b = 0, x = 4 

a > 1 AND 
b = 0 

a == 2 
OR x>1 

x←x/a 

x ←x+1 
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Branch Coverage 

•  Criterion:  At any branch point, each branch must be covered 
during test execution. 
–  The true and false branch of a 2-way if statement. 
–  Each case in a switch statement. 

•  Find paths that cover all branches 

•  Choose input data that will result in the selected paths. 

•  Branch coverage necessarily includes statement coverage. 

Branch Coverage 

•  The following paths are 
sufficient for branch 
coverage: 

1 – 2 – 4 – 5 – 7 
1 – 3 – 4 – 6 – 7  

•  Possible input: 

1.  a = 2, b = 2, x = -1 

2.  a = 3, b = 0, x = 1 

a > 1 AND 
b = 0 

a == 2 
OR x>1 

x←x/a 

x ←x+1 
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Multiple Condition Coverage 

•  Criterion: 
–  Every atomic (i.e. does not include AND or OR) 

condition must be true and false at some point 
during test execution. 

–  In a compound logical statement (i.e. includes 
AND and OR), every combination of atomic 
conditions must be covered during test 
execution. 

•  Achieving multiple condition coverage also 
satisfies statement and branch coverage 

Multiple Condition Coverage 

Need cases where 

1.   a > 1 is true and b = 0 is true 

2.   a > 1 is true and b = 0 is false 

3.   a > 1 is false and b = 0 is true 

4.   a > 1 is false and b = 0 is false 

5.   a = 2 is true and x > 1 is true 

6.   a = 2 is true and x > 1 is false 

7.   a = 2 is false and x > 1 is true 

8.   a = 2 is false and x > 1 is false 

int proc(int a, int b, int x) 
{ 
  if ( (a>1) && (b==0) ) 
  { 
    x = x/a;  
  } 
  if ( (a==2) || (x>1) ) 
  { 
    x = x+1;  
  } 
  return x;  
} 



Multiple Condition Coverage 

Possible input: 

a = 2, b = 0, x = 2 [1][5] 

a = 2, b = 1, x = 0 [2][6] 

a = 0, b = 0, x = 2 [3][7] 

a = 0, b = 1, x = 0 [4][8] 

1.   a > 1 is true and b = 0 is true 

2.   a > 1 is true and b = 0 is false 

3.   a > 1 is false and b = 0 is true 

4.   a > 1 is false and b = 0 is false 

5.   a = 2 is true and x > 1 is true 

6.   a = 2 is true and x > 1 is false 

7.   a = 2 is false and x > 1 is true 

8.   a = 2 is false and x > 1 is false 

Multiple Condition Coverage 

•  Multiple condition coverage 
covers all branches and 
statements. 

•  Input values: 
a = 2, b = 0, x = 2 
a = 2, b = 1, x = 0 
a = 0, b = 0, x = 2 
a = 0, b = 1, x = 0 

•  Paths covered 
1 – 3 – 4 – 5 – 7 
1 – 2 – 4 – 5 – 7 
1 – 2 – 4 – 5 – 7 
1 – 2 – 4 – 6 – 7  

a > 1 AND 
b = 0 

a == 2 
OR x>1 

x←x/a 

x ←x+1 
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All Paths Coverage 

•  Criterion: 
–  All paths through the code must be covered. 

•  This is typically infeasible when loops are present. 
–  A version of this coverage with loops is to 

treat loops as having two paths: 
1.  The loop is executed (normally, once). 
2.  The loop is skipped. 

•  Some paths may also be infeasible because there 
is no combination of data conditions that permit a 
path to be taken. 

All Paths Coverage 

•  Set of all paths: 
1 – 2 – 4 – 6 – 7 
1 – 3 – 4 – 6 – 7 
1 – 2 – 4 – 5 – 7 
1 – 3 – 4 – 5 – 7  

•  Input values: 
a = 0, b = 1, x = 0 
a = 3, b = 0, x = 0 
a = 2, b = 1, x = 0 
a = 2, b = 0, x = 0 

a > 1 AND 
b = 0 

a == 2 
OR x>1 

x←x/a 

x ←x+1 
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Comparison 

•  From the previous two examples, we can see that: 
–  Multiple condition coverage does not imply all 

paths coverage. 
–  All paths coverage does not imply multiple 

condition coverage. 

Infeasible paths 

•  Set of paths: 
1 – 2 – 4 – 6 – 7 
1 – 3 – 4 – 6 – 7 
1 – 2 – 4 – 5 – 7 
1 – 3 – 4 – 5 – 7  

•  To be able to take this 
path, we would have to 
have a <= 1 AND a > 4 
 – which is logically 
impossible! 

a > 1 

a > 4 
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x ←x+1 
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Appendix A: 
Another Example of Code Coverage 
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Detailed Test Creation Example 

•  The next few slides will go over the detailed 
steps to create test cases using a coverage-based 
approach. 

•  Situation for the example: 
–  We want to create some regression tests for 

some code we already have. 
–  The branch coverage criterion will be used for 

test selection. 
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Steps for Test Creation (1) 

1.  Parse the code, and generate a flow graph. 

2.  Analyze the flow graph to determine units of test 
coverage criteria. 

3.  Determine a set of sub-paths through each 
structural test unit of interest. 

4.  Combine sub-paths into a complete path (from 
entry point to exit point). 

5.  Trace path in reverse from exit to entry, and 
collect conditions at each branch point. 
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Steps for Test Creation (2) 

6.  Solve set of data conditions required to take 
complete path. 
•  This has the effect of deriving equivalence 

classes of input data. 
•  Any member of the equivalence class should 

result in executing the same path through the 
code. 

•  Feasibility of data conditions must be checked 
•  If no data satisfies input conditions, return 

to step 4 to search for a different 
complete path to cover test unit. 
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Steps to Generate Structural Tests (3) 

7.  Choose representative members from equivalence 
classes.  

8.  Trace path in forward direction, in order to 
predict expected output. 
•  In many cases, this is extremely difficult. 

9.  Combine input with test environment information. 

10. Generate test script. 
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Example:  Delete rows from array (1) 

public int[][] deleteRows( int[][] anArray, 
                           int firstRow, int lastRow ) 
{ 
   int[][] result = null; 
   int numRows = anArray.length; 
   if ( ( firstRow >= numRows ) || ( firstRow < 0 ) ) 
   { 
      System.out.println( “Bad first row.” ); 
   } 
   else if ( ( lastRow >= numRows ) || ( lastRow < 0 ) ) 
   { 
      System.out.println( “Bad last row.” ); 
   } 
   else if ( lastRow < firstRow ) 
   { 
      System.out.println( “Not a valid range.” ); 
   }          

D1 

D2 

D3 

S1 

S2 

S3 

S4 
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Example:  Delete rows from array (2) 

   else 
   { 
      int numNewRows = numRows - ( lastRow - firstRow + 1 ); 
      result = new int[numNewRows][anArray[0].length]; 
      int offset = 0; 
      for ( int row = 0; row < numRows; row++ ) 
      { 
         if ( ( row >= firstRow ) && ( row <= lastRow ) ) 
         { 
            offset++; 
         } 
         else 
         { 
            result[row-offset] = anArray[row]; 
         } 
      } 
   }         
   return result; 
} 

D4 
D5 

S5 

S6 

S7 

S8 

S9 
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Flow graph 
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Potential Coverage Measures 

•  Statement coverage:  Cover nodes S1 through S9, 
and D1 through D5 

•  Decision coverage:  cover true and false cases for 
each individual condition with D1 through D5 
–  Will cover all edges in flow graph. 

•  Example:  use decision coverage  
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Choose a sub-path for 
unit of test coverage 
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Extend sub-path to complete path 
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Solve conditions 
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Solve conditions 

•  Decision D1 (false) 
( firstRow >= numRows ) || ( firstRow < 0 ) 

•  Decision D2 (true) 
 ( lastRow >= numRows ) || ( lastRow < 0 ) 

•  Determine input that affects numRows: 
int numRows = anArray.length;  

•  Therefore, for this path, we need: 
 ! ((firstRow >= anArray.length) || (firstRow < 0)) 
&& ((lastRow >= anArray.length) || (lastRow < 0 )) 
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Equivalence classes (not complete) 

•  firstRow: (-∞,-1] [0,anArray.length-1] [anArray.length,+∞) 

•  lastRow: 

(-∞,-1][0,firstRow-1][firstRow,anArray.length-1][anArray.length,+∞) 

•  Need firstRow in equivalence class 
[0,anArray.length-1] and lastRow from equivalence 
class (-∞,-1] or [anArray.length,+∞) 

S2 S2 

S3 S3 S4 
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Input Data Selection 

•  Need to find specific values for each input: 

•  anArray:  anArray.length >= 1, number of 
columns unspecified, contents unspecified 
–  Choose anArray.length = 3, number of 

columns 2, fill array with ones. 

•  firstRow:  must be between 0 and 2 inclusive 
–  Choose 1 

•  lastRow:  must be -1 or less, or 3 or greater 
–  Choose 5  
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Predict output (1) 

public int[][] deleteRows( int[][] anArray, 
                           int firstRow, int lastRow ) 
{ 
   int[][] result = null; 
   int numRows = anArray.length; 
   if ( ( firstRow >= numRows ) || ( firstRow < 0 ) ) 
   { 
      // not executed 
   } 
   else if ( ( lastRow >= numRows ) || ( lastRow < 0 ) ) 
   { 
      System.out.println( “Bad last row.” ); 
   } 
   else if ( lastRow < firstRow ) 
   { 
      // not executed 
   }          

S1 

S2 

S3 

S4 
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Predict output (2) 

   else 
   { 
      [...] // not executed 
   }         
   return result; 
} 

S9 
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We have: 

1.  Output: 
Bad last row. 

2.  Return value: 
result = null 


