
1

1

Equivalence Partitioning

From S. Somé, A. Williams

Equivalence Class Partitioning

•  Suppose that we were going to test a method that
implements the absolute value function for integers.

•  Definition
public int abs(int x)

•  Exhaustive testing would require testing every
possible value of the type int.
•  Leaving aside the issue of practicality, this would

still be overkill in terms of the potential to find
bugs.

•  Instead, see if we can partition the input domain into
equivalence classes, based on the similarity of input
values.

2

Definition and Example

•  A set or range of input domain values can be considered to be an
equivalence class if they can reasonably be expected to cause
“similar” responses from the implementation under test.

•  Example: for the absolute value function
•  What would be different between -36 and -37 as input data?

•  Probably ... not much. The result is the negative of the
input data. These two values are candidates to be in the
same equivalence class.

•  On the other hand, -36 and +37 would react differently.
 | -36 | = 36, while | 37 | = 37.

•  In one case, the absolute value is the negative of the
input, while in the other case, the output is the same as
the input. These two values should definitely be in
different equivalence classes.

Example set of classes

•  A potential set of equivalence classes for the
absolute value function, expressed in domain notation,
could be:

 [Integer.MIN_VALUE, -1] [0] [1,Integer.MAX_VALUE]

•  Rationale:
•  negative numbers: output should be negative of

input.
•  positive numbers: output should be the same as

the input
•  zero: it could be in either of the above (what is -0

anyway...?), but since no other value fits has that
property, it should be in its own equivalence class.

3

Choose test values

[Integer.MIN_VALUE, -1] [0] [1,Integer.MAX_VALUE]

•  Strategy: choose a “representative” value from each
equivalence class. Any value ought to be as good as
any other

[Integer.MIN_VALUE, -1]: Choose -34
[0]: Choose 0
[1,Integer.MAX_VALUE]: Choose +42

Back to the equivalence classes

•  An improved strategy for choosing test values from
equivalence classes is:
•  Choose representative values as before.
•  Choose all values on a boundary.
•  Choose all values that are “one off” from a

boundary.
•  For type double, this can be interpreted as

choosing a value where the distance to the
boundary is “just slightly” greater than the
assumed tolerance of equality.

 (Doubles are approximations of numbers…)

4

Add boundary values

[Integer.MIN_VALUE, -1] [0] [1,Integer.MAX_VALUE]

•  With our additional criteria...
•  [Integer.MIN_VALUE, -1]: Choose -34, -2, -1
•  [0]: Choose 0
•  [1,Integer.MAX_VALUE]: Choose 1, 2, +42

•  What about those other boundaries...?
•  Integer.MIN_VALUE, Integer.MIN_VALUE + 1,
•  Integer.MAX_VALUE -1, Integer.MAX_VALUE
•  Is there a risk of errors near those boundaries?

Valid and Invalid Classes:
Ranges (1)

•  If a specification includes input conditions, these can
be used to derive equivalence classes:

1.  If an input condition specifies a range of values, this
defines three classes:
•  within range: a valid input equivalence class
•  too large: an invalid input equivalence class
•  too small: a invalid input equivalence class

5

Valid and Invalid Classes :
Ranges (2)

2.  If an input condition specifies a range of values, and
there is reason to believe the values would be
handled differently, this leads to the following
classes:
•  One valid equivalence class for each set of values

that would be handled similarly
•  This may result in one equivalence class per

value, if each value is distinctive.
•  e.g., Insurable age but also age groups

within that range
•  Two invalid equivalence classes: too large, too

small

Valid and Invalid Classes:
Enumerations

3.  If an input condition specifies an enumerated set of
values (e.g. “car”, “truck”, etc.):
•  One valid equivalence class for each value in the

enumeration.
•  One invalid equivalence class: all values not in the

enumerated set (i.e. everything else).

•  Watch out for potential bugs related to
implementation of enumerated types as integer code
values, which has a larger domain (ie using an int that
does NOT correspond to a value of the enum).
•  Example:

public static final int CAR = 1;
public static final int TRUCK = 2;

6

Valid and Invalid Classes:
Presence / absence

4.  If an input condition specifies a “must be”, situation
(e.g. “first character of the identifier must be a
letter”), this leads to:
•  One valid equivalence class (e.g. the first

character is a letter).
•  One invalid equivalence class (e.g. the first

character is not a letter).

Valid and Invalid Classes:
When in doubt...

5.  Finally, if there is any reason to believe that
elements in an equivalence class are not handled in an
identical manner by the implementation software,
split the equivalence class into smaller classes.

•  e.g., 1-800 numbers are treated differently
than other other 1-<3 digit area code>
telephone numbers.

7

Equivalence Class Partitioning

•  Consider creating an equivalence partition that handles the
default, empty, blank, null, zero, or none conditions.
•  Default: no value supplied, and some value is assumed to be

used instead.
•  Empty: value exists, but has no contents.

•  e.g. Empty string ″″
•  Blank: value exists, and has content.

•  e.g. String containing a space character ″ ″
•  Null: value does not exist or is not allocated.

•  E.g. object that has not been created.
•  Zero: numeric value
•  None: when selecting from a list, make no selection.

Equivalence Class Table

External condition Valid equivalence
classes

Invalid equivalence
classes

•  integer value
between 1 and 10

•  one of X, Y, or Z

V1: [1,10]

V2: [X]
V3: [Y]
V4: [Z]

I1: [-∞,0]
I2: [11,+∞]
I3: [non-integer]

I4: [not X, Y, or Z]

8

Test Case Strategy

•  Once the set of equivalence classes has been
identified, here is how to derive test cases:
1.  Assign a unique identifier to each equivalence

class.
2.  Until all valid equivalence classes have been

covered by at least one test case, write a new
test case covering as many of the valid
equivalence classes as possible.

3.  Until all invalid equivalence classes have been
covered, write a test case that covers one, and
only one, of the uncovered invalid equivalence
classes.

•  For each test case, annotate it with the
equivalence class identifiers that it covers.

Equivalence Classes Partitioning –
Triangle Example (1)

•  Specification
•  Input is three integers (sides of a triangle: a, b, c)
•  Each side must be a positive number less or equal

to 20.
•  Output type of the triangle:

•  Equilateral: if a = b = c
•  Isosceles: if 2 pairs of sides are equals
•  Scalene if no pair of sides is equal
•  Invalid: if a ≥ b + c, b ≥ a + c, or c ≥ a + b

9

Equivalence Classes Partitioning –
Triangle Example (2)

•  According to heuristic #1

Input condition Valid EC Invalid EC

Sides (a,b,c) V1: all are (0,20] I1: a > 20
I2: b > 20
I3: c > 20
I4: a ≤ 0
I5: b ≤ 0
I6: c ≤ 0

Equivalence Classes Partitioning –
Triangle Example (3)

•  Class V1 too broad, and can be subdivided (heuristic #5)
•  Based on the treatment to data - handling of data

•  V1: a, b, c such that the triangle is equilateral
•  V2. a, b, c such that the triangle is isosceles
•  V3. a, b, c such that the triangle is scalene
•  V4. a, b, c such that it's not a triangle (yet valid inputs…)

•  Based on input (driven by intuition?)
•  V5. a = b = c
•  V6. a = b, a ≠ c
•  V7. a = c, a ≠ b
•  V8. b = c, a ≠ b
•  V9. a ≠ b, a ≠ c, b ≠ c

•  Based on triangle property (in fact breaks down v4)
•  V10. a, b, c such that a >= b + c
•  V11. a, b, c such that b >= a + c
•  V12. a, b, c such that c >= a + b

10

Equivalence Classes Partitioning –
Triangle Example (4)

Equivalence classes A B C Response ID

V1 V5 3 3 3 Equilateral T1

V2 V6 2 2 3 Isosceles T2

V2 V7 2 3 2 Isosceles T3

V2 V8 3 2 2 Isosceles T4

V3 V9 2 3 4 Scalene T5

V4, V8, V10 20 2 2 Not a triangle T6

V4, V7, V11 2 5 2 Not a triangle T7

V4, V6, V12 2 2 5 Not a triangle T8

Equivalence Classes Partitioning –
Triangle Example (5)

I1 V2 V8 25 19 19 Error T9

I2 V2 V7 19 25 19 Error T10

I3 V2 V6 19 19 25 Error T11

I4 V2 V8 -1 5 5 Error T12

I5 V2 V7 5 -1 5 Error T13

I6 V2 V6 5 5 -1 Error T14

11

Equivalence Classes Partitioning -
Problems

•  Specification doesn't always define expected output
for invalid test-cases.

•  Strongly typed languages eliminate the need for the
consideration of some invalid inputs.

•  Brute-force approach of defining a test case for
every combination of the inputs ECs
•  Provides good coverage, but...
•  …is impractical when number of inputs and

associated classes is large

22

Decision Tables

From S. Somé, A. Williams
(insurance example for Binder)

12

Decision Models

•  Ideal for situations where:
•  combinations of actions are taken under varying

set of conditions
•  conditions depends on input variables
•  response produced doesn't depend on the order in

which input variables are set or evaluated, and
•  response produced doesn't depend on prior input

or output

Decision Table – General Format

Conditions Combination of
conditions (variants)

Outcomes Selected outcomes

13

Example

•  Suppose the following rules are used to renew auto
insurance policies:
1.  0 claims, age ≤ 25: raise by $50
2.  0 claims, age > 25: raise by $25
3.  1 claim, age ≤ 25: raise by $100, send letter
4.  1 claim, age > 25: raise by $50
5.  2, 3 or 4 claims, age ≤ 25: raise by $400, send

letter
6.  2, 3 or 4 claims, age > 25: raise by $200, send

letter
7.  more than 5 claims: cancel policy

Decision Model - Development

1.  Identify decision variables and conditions
2.  Identify resultant outcomes to be selected or

controlled
3.  Identify which outcome should be produced in

response to particular combinations of conditions

See equivalent models from Binder’s book: pp.125-128,
132, 145

Resulting test cases; pp.165-168

If you DO model using a decision table, then be aware
of table 6.14 p.169…

14

Details: Generating a Truth Table

1.  Select an outcome to be present (1).
2.  Find all combinations of causes – subject to

constraints – that will set the effect to 1
•  see next slide

3.  Create a column in the decision table for each
combination of causes.

4.  Having determined the causes for a selected
outcome, determine the states of all other outcomes.

5.  Repeat for each outcome set to absent (0).
6.  Consolidate decision table columns when don’t care

values can overlap.

Details: Sensitization of outcomes
in a Truth Table

•  The goal is to set up the conditions such that
changing a condition from 0 to 1 (or vice versa) will
also change the desired outcome.
•  That is, a condition is not only sufficient to cause

the outcome, but also necessary.
•  Strategies:

1.  If an outcome of 1 can be produced by several
conditions (an OR constraint), only set one
condition to be 1 at a time.

2.  If an outcome of 0 can be produced if one of any
condition is absent (an AND constraint), set all
conditions to 1 except the primary condition.

3.  Use the logical negation of these when trying to
achieve an outcome of 0.

15

Don't Care condition

•  Don't Care condition
•  May be true or false without changing the action
•  Simplifies the decision table
•  Corresponds to different implementation cases:

•  Inputs are necessary but have no effect for the
variant

•  Inputs may be omitted but have no effect if
supplied

Can't Happen & Don't know conditions

•  Can't Happen Condition - reflects assumption that
•  some inputs are mutually exclusive,
•  some inputs can't be produced by the

environment, or
•  implementation is structured so as to prevent

evaluation
•  Don't Know Condition – reflects an incomplete model

•  Usually indication of mis-specification
•  Tests needed to exercise these undefined cases

•  Be careful not to confuse a Don't Care condition with
either of the above.

