
Published in: Schäfer, W. and Botella, P. (eds.) (1995). Software Engineering - ESEC ’95. Proceedings of the 5th European Software
Engineering Conference, Sitges, Spain. Berlin, etc.: Springer (Lecture Notes in Computer Science 989). 254-271.

An Integrated Formal Model of Scenarios Based on
Statecharts

Martin Glinz

Institut für Informatik
University of Zurich

CH-8057 Zurich, Switzerland
glinz@ifi.unizh.ch

ABSTRACT
State automata are an attractive means for formally representing scenarios. Scenarios describe
how users interact with a system. However, the current approaches treat every scenario as a sepa-
rate entity.
This paper introduces a statechart-based model that allows the formal composition of all scenarios
of a system into an integrated, consistent model of external system behavior. The scenarios
remain visible as building blocks in the model. The meaning of the integrated model is derived
from the meanings of the constituent scenarios and from the semantics of the composition rules.
The paper defines the composition rules and shows their application. The capabilities for
analyzing and verifying the model are demonstrated. An extension of the scenario model to a gen-
eral system model is sketched.

1 INTRODUCTION

Using scenarios or use cases for requirements elicitation and representation has received
significant attention in the last few years (Jacobson 1992, Rubin and Goldberg 1992,
Anderson and Durney 1993, Hsia et al. 1994). A scenario or use case (I consider these
two terms as synonyms) is a sequence of interactions between a user and a system. Thus,
it describes an aspect of the external behavior of a system from a certain user's viewpoint.

There are several ways to represent a single scenario. Jacobson uses a mostly informal
text notation. Rubin and Goldberg introduce a tabular notation of scenario scripts. Hsia et
al. (1994) show that a scenario can be adequately represented by a regular language, or
equivalently, by a finite state automaton.

The formal or semiformal notations may be rather more difficult to produce and to read
than informal ones. Additionally, working with formal notations requires some training.
Nevertheless, the increased effort pays off. Formality allows the verification of properties

Owner
a bit vague: one sequence of events or a set of such sequences. Ie one segment or a set of paths?

2

of the scenarios and eases the detection of inconsistencies and incompleteness both within
and between scenarios. Furthermore, formal notations allow simulation or automatic
prototyping of a scenario. Both are of vital importance for requirements validation.

However, the current formal or semiformal approaches model every scenario separately.
There is no notation that integrates all scenarios into one consistent model of system be-
havior in such a way that the constituent scenarios are still visible, and can be retrieved as
views.

There are three challenges in generating such a model.

• Challenge 1: How can a model be constructed that shows the relationships between the
constituent scenarios and leaves their internal structure unchanged?

• Challenge 2: How can the model be used to verify properties of the scenarios and to
detect inconsistencies between different scenarios? Can checking be automated, at
least partially?

• Challenge 3: Can such an integrated scenario model be extended in a straightforward
way to a complete model of system requirements?

In this paper I shall show that challenges 1 and 2 can be met using a statechart based
model. In section two, I give a short introduction to statecharts and define their semantics.
In sections three and four I present my approach of using statecharts to compose scenarios
into an integrated model of external system behavior. In section five I sketch some ideas
and preliminary results of how to extend this scenario model to a general systems model
that meets challenge 3. In section six I briefly discuss the rationale for choosing state-
charts as a means of modeling and composing scenarios.

This paper does not simply propose the use of statecharts as a new technique for scenario
representation. The main contribution is to use statecharts as a mechanism for the formal
composition of a set of scenarios into an integrated model of system behavior and to show
the powerful analysis and verification capabilities of such a model.

2 STATECHARTS

Statecharts (Harel 1987, 1988) are an extension of state-event diagrams to include
decomposition and concurrency. State-event diagrams in turn are based on finite state
automata. Any state in a statechart can recursively be decomposed into
a) another statechart (hierarchical decomposition)
b) two or more parallel statecharts (concurrency; Harel calls that orthogonality).
At the bottom of the decomposition, all statecharts are ordinary state-event diagrams.

Harel himself defines the principle of statecharts as “statecharts = state diagrams + depth
+ orthogonality + broadcast-communication” (Harel 1987, p. 233).

The rules for the interpretation of statecharts are mostly those of state-event diagrams:
state transitions are triggered by external or internal events. When a transition is triggered,
the system leaves its current state, initiates the action(s) specified for that transition, and
enters a new state. Any initiation of an action can be interpreted as an occurrence of an
internal event. Events are neither saved nor queued. Events that do not trigger a state
transition immediately upon their occurrence are lost.

3

The following additional rules hold for statecharts only: any (external or internal) event is
broadcast simultaneously to all state transitions in all statecharts. Within a statechart
having concurrent sub-statecharts, the system state is composed of the states of the con-
current sub-statecharts. State transitions between concurrent statecharts are not allowed.
(Thus, the expressive power of statecharts is still equivalent to that of finite state au-
tomata; see the canonical mapping below.) Concurrent statecharts may synchronize and
exchange information using events.

We do not use all features that Harel defines for statecharts. Histories and overlapping
states are omitted. The simpler model is sufficient for our purposes and its semantics are
easier to define.

Figure 1 shows a hierarchy of statecharts together with an explanation.

g/f

C

B2

R

S

T

U

V

a/k
b/l

c/m

d/n

e/o

f/p

g/q

h/r r/s

B1

B2
a/k

b/lC

B

D

c/m

d/n

e/o

(a) (b)

g/f

R

S

T

U

V

f/p

g/q

h/r r/s

B1

A

D

B B
A

D

Explanation of symbols. States and statecharts are denoted by rectangles, transitions by ar-
rows. x/y denotes a triggering event x and a triggered action y for a state transition. Arrows origi-
nating in a black dot denote initial states on the corresponding nesting levels. A dotted line sepa-
rates concurrent statecharts. Notations (a) and (b) are equivalent.

Sample Interpretation. The sequence of external events <Start, a, c, h, g, h, d, e> produces the
following sequence of actions: <–, k, m, –, q and f, r and s, n, o>, stepping through the following
sequence of states: <B1, B2, R||U, S||V, R||V, R||U, C, B1>. '–' means no action, X||Y means both
in state X and Y. R||V is a transient state that is left immediately when it is entered. This is due to
internal event r which, when generated by the transition from S to R, immediately triggers the
transition from V to U.

Figure 1. A set of statecharts

Statecharts can be given well defined formal semantics. In the context of this paper, a de-
tailed understanding of the subtleties of timing and state transition semantics is not neces-
sary. Readers who are not interested in formal foundations may therefore skip the rest of
this section with the exception of figures 2 and 3 and their explanations.

We start with the definition of timing rules. Let t: X –

e/a1,...,an→ Y be a transition from
state X to state Y which is triggered by event e and produces outputs a1,...,an. Let e hap-

4

pen at time te on the time scale of non-negative real numbers. Then state X is left at time
te. State Y is entered at te + ε0, ε0 > 0. Output ai is produced at time te + εi, εi > ε0 and εi >
εj for all i > j, 1 ≤ i ≤ n. If ai is an event that triggers another state transition (for example,
in a concurrent statechart) then this transition completes in the interval te + εi ≤ t < te +
εi+1. The εi are chosen such that for any event e' happening at time te' > te and for any δ
with 0 < δ < | te' - te| holds ε0 < ε1 < ε2 < ... < εn+1 < δ (at time te + εn+1, transition t and
all transitions triggered by outputs ai ,1 ≤ i ≤ n have completed). This last condition means
that entering the new state(s) and producing the outputs happen in an arbitrarily small
time interval after te, where nothing else can happen. With this condition and with the
additional assumption that at no point in time can more than one event happen, we have a
quasi-synchronous timing paradigm: a state transition takes time, but the time interval is
infinitesimally short. Leveson et al. (1994) use a similar paradigm for their specification
language RSML (which is derived from statecharts).

For statecharts, this quasi-synchronous paradigm has advantages over the synchronous
one which is commonly used for state automata. (Synchronous means that the complete
state transition happens at one point in time.) The quasi-synchronous paradigm avoids
nondeterminism and counterintuitive behavior in concurrent statecharts and simplifies the
canonical mapping (see below). For example, consider statechart D of Figure 1b. Under
the synchronous paradigm, event g would nondeterministically trigger either transitions U
–

g/f→ V and R –

g/q→ S or U –

g/f→ V and R –

f/p→ T. The latter one is counterintuitive.

On the other hand, there is a disadvantage, too: endless transitions can occur. For exam-
ple, the transitions t1: X –

r/s→ Y and t2: Y –

s/r→ X form a never-ending loop if one of
them is triggered. Therefore, any such cyclic chains of self-triggering state transitions
must be avoided. However, this is no severe restriction. In reality, where every state tran-
sition takes some real time, we would have an endless loop in this situation, too. More-
over, the property that every state transition terminates in a finite number of steps can be
proved for a given statechart if necessary.

On the basis of the timing rules introduced above, we can now define the semantics of
state transitions in statecharts. We do this by a canonical mapping from a given statechart
hierarchy to a plain state-event diagram. This diagram is interpreted as a finite state
automaton with quasi-synchronous timing. Properties and semantics of this automaton de-
fine the properties and semantics of the given statechart hierarchy in a proper and unam-
biguous way. The algorithm of this canonical mapping is described in a condensed form
below. Figure 2 illustrates the canonical mapping for the statechart of Figure 1.

The canonical mapping flattens the hierarchy by recursive bottom-up insertion of state
diagrams. Every superstate S is replaced by its constituent state diagram SD. State tran-
sitions to S are replaced by equivalent transitions to the initial state of SD. Any state
transition from S to a state T is replaced by transitions from every state in SD to T.
Mapping concurrent statecharts is more complicated. Let statechart S consist of n concur-
rent statecharts SC1,...,SCn. SC1 to SCn are first transformed into flat state diagrams
SD1,...,SDn, applying the canonical mapping recursively. Then these state diagrams are
replaced by the Cartesian product of all concurrent states. The set of initial states Ei forms
the initial state (E1,...,En) of the new state diagram. The state transitions in SD1,...,SDn are
mapped to state transitions on the elements of the Cartesian product state diagram as fol-
lows: let X1,...,Xn be any set of states with Xi state in SDi , 1≤ i ≤ n. Let ti be any state

5

transition Xi –

e/a→ Yi which is triggered by event e and initiates action a. Then ti is
mapped as follows:
(i) If there do not exist any states Xj, Yj in SDj , i≠j with tj: Xj –

e/aj→ Yj (*) i.e. event
e triggers no transition in any other diagram SDj from state Xj to a state Yj), then ti
is mapped to transitions (X1,...,Xi-1,X i ,X i+1,...,Xn) –

e/a→ (X1,...,Xi-1,Y i ,X i+1,...,Xn)
for all state tuples where Xi and Yi occur and condition (*) holds

(ii) If X j1,...,Xjk is the largest subset of the states X1,...,Xn for which there exist transi-
tions tjl : Xjl –

e/ajl→ Yjl for all 1≤ l ≤ k (i.e. event e triggers transitions tjl ,..., tjk with
actions ajl ,...,ajk concurrently), then tjl is mapped to transitions
(X1,...,Xj1,..,Xjl ,..,Xjk,...,Xn) –

e/aj1,...,ajk→ (X1,...,Yj1,..,Yjl ,..,Yjk,...,Xn)
for all state tuples where the subsets Xj1,...,Xjk and Yj1,...,Yjk occur.

CB1

B2

(R,U)

a/k
b/l

c/m

e/o

f/p
(S,U)

(T,U)

(R,V)

(S,V)

(T,V)

c/m

d/n

d/n

d/n
d/n

d/n

d/n

h/r

h/r

f/p

r/s

g/f

r/s

r/s

g/q,f

g/f
g/q

Sequence of mapping steps
for this example.
(1) The concurrent statecharts
in D are replaced by the Cartes-
ian product of their states. Tran-
sitions R–

g/q→S and U–

g/f→V
are mapped by rule (ii) for state
combination (R,U) and by rule
(i) for the other state combina-
tions. All other transitions are
mapped by rule (i).
(2) Replace B and D by their
constituent state diagrams. B1
becomes the new initial state,
transition B–

c/m→D is replaced
by B1–

c/m→(R,U) and B2–

c/m
→(R,U). Transition D–

d/n→C
is mapped in the same way.
(3) Replace A by its constituent
state diagram.

Figure 2. Result of canonically mapping the statechart hierarchy of Fig. 1 to a plain
state diagram, giving the exact semantics of these statecharts

When working with statecharts, especially for statechart composition, some particular
kinds of state transition conditions are useful. Their notation is given in Figure 3.

A

B

(a) (b)

e IN(Z) ∧

C

D

true

(c)

E

F

cond

Figure 3. Special kinds of state transitions (the semantics is given below in the text)

In Fig. 3 (a), a state transition from A to B occurs when condition cond becomes true. If
cond is already true when the system enters state A, this state is immediately left to enter
state B. Fig. 3 (b) shows a combination of an event with a special kind of condition. A

6

state transition from C to D occurs when event e occurs and the system is in state Z. Z
must be a substate of C. This can be used to specify that a complex statechart can be left
only from a specific terminating substate. Fig. 3 (c) shows an unconditional state transi-
tion. Whenever the system enters state E, it immediately leaves E to enter F. State E is
redundant, i.e. it could be removed from the model without changing its semantics. How-
ever, such redundant states occur (and make sense) when composing statecharts out of
components without modifying these components.

3 COMPOSITION OF SCENARIOS

3.1 Describing Single Scenarios

Every single scenario is modeled with a statechart. Normally, this statechart will be a
plain state diagram. Only large scenarios might already require some hierarchical depth.

In order to present concrete examples, we introduce a sample application.

Sample Application: The Department Library System
The system shall support a department library, where students themselves can take books
from the shelves, read them, borrow / return books, and query the library catalogue.
Every book has a barcode label. Additionally, there is an electronic safety device located
under that barcode label which can be turned on and off by the system.
When a library user wants to borrow a book, she takes it to the check-out station. There
she first scans her personal library card. Then she scans the barcode label of the book. If
she has no borrowed books that are overdue, the systems registers the book as being bor-
rowed by her and turns off the electronic safety device of that book. Several books can be
checked out together. The check-out procedure is terminated by pressing a 'Finished' key.
The check-in procedure for returning a book works in a similar way.
In order to be admitted to the library, a potential user must first be registered by the li-
brary personnel. The user has to identify herself and must provide her personal data. The
system registers this data and produces a personal library card for her.
Similar procedures are to be provided for deleting and updating a user's registration.
At the exit of the library, there is a security gate. When a user tries to leave the library
carrying with her a book that has not been checked out properly, the system sounds an
alarm and locks the exit door. By pressing an emergency button, the exit door can be
unlocked in case of emergency.
For the sake of simplicity, the requirements for determining and fining users having over-
due books are not specified. Obviously, the system works the same for male users.
The library personnel interacts with the system when maintaining the library catalogue,
when registering / updating / deleting users, and when querying the status of users or
books.

As a first example, we consider the scenarios concerning library users. There are seven
scenarios: Get registered, Borrow books, Return books, Query catalogue, Exit library,
Update personal data, and Get deleted.

7

In Figure 4, the scenarios Borrow books (Fig. 4 a) and Get registered (Fig. 4 b) are mod-
eled as simple statecharts (in fact, plain state diagrams).

As we want to compose scenarios into an integrated model of external behavior, we
model every scenario as a statechart having exactly one initial and one terminal state. The
cyclic model of Hsia et al. (1994) with identical initial and terminal state is not suited for
composition.

(a) (b)

registering
book

exit_
Borrow_booksvalidating

check-out
in progress

scan card/
validate

scan book/
register checkout

error/
call
librarian

finish key
 timeout

Borrow books

invalid/
invalid-
message

ok/ok-
message

ok/ready-
message

enabled_Get
_registered

supply data/
validate

ok/produce
card

reject/
tell why

card ready/
take card

exit_Get_
Registered

validating

producing
card

Get registered

enabled_
Borrow_books

∨

finish key
 timeout∨

overdue books
borrowed/
overdue-message

Figure 4. Statecharts modeling the scenarios “Borrow books” (a) and
 “Get registered” (b). x ∨ y means event x or event y

3.2 Principles of Scenario Composition

We assume that we have defined a set of disjoint single scenarios using statecharts or
state diagrams as described above. (The treatment of overlapping scenarios is described in
section 3.4.) Now we want to integrate these scenarios into a single model.

With respect to the order of execution, scenarios can be related in four ways (let A, B be
scenarios): B after A (sequence), either A or B (alternative), A followed n times by itself
(iteration), and A concurrent with B (concurrency). For our Library user scenarios, we
assume that these scenarios are related as depicted in Figure 5. As a notation, I use a Jack-
son style diagram with a straightforward extension to include concurrency. Such diagrams
can also be used to validate the assumptions about scenario relationships.

From the theory of structured programming we know that single-entry-single-exit con-
structs can be composed easily and systematically: higher level structures are built by
concatenating and nesting blocks according to the relationships sequence, alternative,
iteration, and – for non sequential programs – concurrency. Thus, scenarios must be com-

Owner
simple example. the question that comes to mind is semantic: statecharts have their semantics and so do UML2.0 sequence diagrams. What's different? I am thinking of coregion for example: how is it to be modeled here. And how to the composition mechanissm of seq diagrams (a la HMSC) differ from pure hierarchical statecharts? Neither has join/fork if i remember correctly. Also, clearly here, there are no components... So how do such scenarios map onto states of components?

Owner
closed world assumption: anything else but these rels means unrelated scenarios. Which leads to the question of process: what if in the next iteration we do find a relationship between 2 previously unrelated scenarios? Example of what we are up against?

Owner
how much of a problem is the single-entry-single exit assumption?

8

posable in the same way if we model them as single-entry-single-exit constructs, i.e. if
they all have exactly one initial and one terminal state.

In the sequel, I will define statechart templates for composing statecharts according to the
four kinds of relationships. In order to simplify the notation, I first introduce the notion of
closed statecharts. These are statecharts with exactly one initial and one terminal state.

Library user

Get registered
Visiting
library

Exit libraryUsing
library facility

Query
catalogue

Conduct
transaction

Borrow Books
Update
personal data

Get deleted*

*

|| || || means concurrent
execution

Return Books

Figure 5. Relationships between the scenarios for library users in a Jackson style
notation

DEFINITION. A closed statechart is a statechart which has exactly one entry state and
which can be left if and only if it is in exactly one exit state. By convention, the entry
state of a closed statechart A is named enabled_A. The exit state is named exit_A.

Figure 6 shows a shorthand notation for closed statecharts. The bars at the top and the
bottom of the chart symbolize the entry and exit states, respectively. Since we model
every scenario with exactly one entry and one exit state (see 3.1 above), all our scenario
statecharts are closed ones.

3.3 Composing Scenario Statecharts

Now we can define the four composition templates for scenario statecharts as described in
Figure 7. As the semantics of the concurrency template is not intuitively clear, it is
explained using a normal statechart (Fig. 7 e). For alternative and iteration, conditions
must be defined that determine the alternative to be taken and the number of iterations,
respectively. The iteration template models a WHILE-DO iteration. States with no trig-
gering condition are unconditional transitions, i.e. they have the trigger “true”.

9

enabled_A
...

...

...

exit_A

out IN(exit_A)

(a) (b)

Shorthand notation
for closed statechart:

out
∧

A

...
...

...

A

any network of
states or statecharts

any network of
states or statecharts

Figure 6. A closed statechart in normal notation (a) and in a shorthand notation (b)

(a) sequence (b) alternative

condcond

(c) iteration (d) concurrency

cond
cond

exit_C

IN(exit_A)
IN(exit_B)

enabled_C

∧

IN(exit_C)

(e) interpretation
 of (d)

¬

¬

C

A

B

C

A B

C

A B

B

C

A

C

A

Figure 7. Statechart templates for scenario composition

Using these templates, we can now model all scenarios concerning library users together
in a single statechart model (Fig. 8). The construction is guided by the ordering of the sce-
narios given in Figure 5. Get Registered is followed by an iteration of Visiting library
which is labeled Admitted to library. This iteration in turn is followed by Get deleted. In a
second step, Visiting library is refined by an iteration of Using library facility, followed by
Exit library. In the next step, Using library facility is specified to be a concurrent composi-
tion of Query catalogue and Conduct transaction. In the last step, the latter scenario is re-
fined to be an alternative of Borrow Books, Return Books, and Update personal data.
Instead of working top down, construction could have proceeded bottom up, too.

Owner
single staechart: a la Binder this is not scalable...

10

Get registered

Exit library

Query
catalogue

Update
personal data

Get deleted

wants to
borrow

wants to
return

wants to
update

Conduct transaction

Using library facility

Working in library

Visiting library

work
finished

work
finished

Use library
Quit user
status

Admitted to library

Library user

¬

Borrow Books Return Books

Figure 8. Integrated model of all scenarios for Library user

The complete scenario model of the library is modeled on an abstract level in Fig. 9. The
detailed models for Librarian and Exit gate are still to be specified.

Figures 8 and 9 illustrate that the notation supports both bottom-up and top down devel-
opment of scenario models. Components in any state of completion (from unspecified via
informal texts to full-fledged statecharts) fit together well in the composition framework

Owner
good luck doing the Watch with such an approach...Also, this is actor-based states, no hint as how this goes to internal components.If each state is a scenario, then this picture organizes the states of the actors in the scenarios, not of all components

11

described above. As every component of the model is a statechart, a model under devel-
opment is always analyzable and executable, no matter how complete it already is.

Library user Librarian Exit gate

Library

Figure 9. Scenario model of complete library system on an abstract level

3.4 Treating Overlapping Scenarios

Scenario composition as described above applies to disjoint scenarios only. This is due to
the fact that the states of the component scenarios must be disjoint for proper composi-
tion. In my approach, states represent steps in the user-system interaction process. As
long as different scenarios model disjoint portions of this process, there is no problem.

However, we also may have overlapping scenarios. Typically, this situation occurs when
scenarios describe variants or facets of the same portion of the process (for example,
normal execution and exception situations). In this case, the overlappings must be
resolved prior to composition. This can be accomplished in two ways: (1) The overlap-
ping scenarios can be decomposed into mutually disjoint sub-scenarios. (2) They can be
fused into one single scenario. The concurrency features of statecharts are particularly
helpful to accomplish the fusion of scenario variants.

3.5 Executing Scenario Models

Every statechart model is executable. The canonical mapping (see section 2) defines a
finite state automaton which provides the required semantics for execution. However, the
events in scenario models will frequently not be specified formally enough for direct exe-
cution. For example, when executing the scenario Borrow books (Fig. 4 a), the analyst
must decide which of the three events (ok, invalid, overdue books borrowed) shall occur
when being in state Validating. Therefore, execution must be interactive or script-driven.
In the former case, the analyst interactively decides which events shall occur in a given
state. In the latter case, the analyst annotates the states of the model with event scripts
prior to execution.

Parts of the model which have not yet been specified can be treated in two ways during
execution: for any unspecified statechart, the simulator running the execution may either
insert a transition from the entry to the exit state and issue a warning message or, in an
interactive execution session, it may request the analyst to supply an exit trigger.

Owner
extremely important restriction!!

Owner
critical!! option 1 sounds too demanding though obviously simpleroption 2 with concurrency needs to be worked out!! He does not do that!!

12

4 MODEL ANALYSIS AND VERIFICATION

One of the principal advantages of a formal or at least semiformal model is that some of
its properties can be formally analyzed and verified. The integrated scenario model allows
analysis and verification of the complete behavioral specification of a system. This goes
far beyond the analysis capabilities we had until now for isolated scenarios.

By exploiting the properties of statecharts, we can
• detect deadlocks
• determine reachability of states
• verify required mutual exclusions
• find inconsistent events and actions, particularly in inter-scenario relationships
• uncover incompleteness
in the behavioral specification of a complete system.

4.1 Deadlocks

Deadlocks occur when concurrent scenarios mutually wait for internal events to happen
(see Fig. 10 a for a simple example). Such deadlock situations can be detected using a
formal procedure. When applying the canonical mapping (see section 2) to the scenario
model, any deadlock becomes equivalent to the existence of a non-redundant state that
can be left by the occurrence of internal events only. As no internal event can occur when
the system is in a non-redundant state, the system is deadlocked (Fig. 10 b).

D(a)

A

B

C

X

Y

s/f r/s

e/r

(A,X)

(B,X) (B,Y) (A,Y)

(C,X) (C,Y)

s/f r/s

r/s s/f

e/r e/r

r/s

(b)

Assumption: r, s internal events, e external event

Figure 10. (a) Two concurrent statecharts with a deadlock. (b) Result of canonical
mapping of statechart D, showing the deadlocking state (A,X)

4.2 Reachability

A necessary condition for the reachability of a state T from another state S is that there
exists at least one path of state transitions from S to T. This property can easily be
checked: the canonical mapping is applied to the scenario model. The resulting state dia-
gram is analyzed with an algorithm to determine paths in directed graphs. However, the
existence of a path of transitions is not a sufficient condition for reachability. Addition-
ally, there must exist a feasible sequence of events triggering the transitions of at least one
existing path. The existence of such a sequence of events must be determined by the ana-

13

lyst. The statechart model greatly simplifies this task because the set of existing paths and
the set of possible events leading through any of these paths can be generated from the
model.

4.3 Mutual Exclusion

DEFINITION. Two statecharts or plain states A, B are mutually exclusive, if and only if the
system cannot concurrently be both in A and B.

LEMMA . Let A, B be statecharts or plain states within a statechart S and let S' be the result
of the canonical mapping of S. A and B are mutually exclusive if and only if conditions
(i) or (ii) hold:
(i) A and B are not concurrent statecharts or states
(ii) Any product state in S' containing both A and B is either redundant (i.e. it is imme-

diately left upon entry) or it is unreachable from every other state.

The procedure to verify both conditions of the above lemma for a given pair of statecharts
or states is obvious. Thus, required mutual exclusions between scenarios or parts of them
can easily be verified in the scenario model.

4.4 Inconsistent Events and Actions

When working bottom up, it will frequently happen that the same events and actions are
named differently in different parts of the model. A common glossary of events and
actions contributes to the reduction of such errors, but normally does not eliminate them
completely. When the model components are composed to form an integrated scenario
model, such inconsistencies show up and can be corrected. At the latest any attempt to
execute the model will show that expected transitions do not happen due to misnamed
events and actions.

4.5 Incompleteness of the Model

When the scenarios are composed to an integrated model, missing parts (e.g. unspecified
behavior in certain cases or missing transitions) are much easier to detect than in a set of
separately modeled scenarios. Nevertheless, the statechart paradigm allows for intended,
well controlled incompleteness during construction of the model (see end of section 3.3).

4.6 Tool Support

The verification of absence of deadlocks, reachability and mutual exclusion is based on
formal procedures, so these procedures can be automated. Together with an execution
simulator we thus can construct a powerful set of tools to support and partially automate
the task of model validation and verification.

14

5 DIRECTIONS OF FURTHER RESEARCH

5.1 Including Formal Models of External Agents

The possible behavior of any external agent (human or machine) can be modeled using
closed statecharts, too. Such models, in particular those of humans, will include nonde-
terminism, i.e. there will be states with different transitions triggered by the same event. If
this is the case, a randomly chosen transition from the set of enabled transitions will be
taken. All external agent statecharts together with the system model statechart can be
composed to a super statechart using the concurrency composition. This super statechart
may then be analyzed to verify properties in the interaction between external agents and
the system.

For example, deadlocks can also occur when some external agent produces an external
event e only after the system has generated some action a and, on the other hand, the sys-
tem waits for the occurrence of e in order to initiate a. Deadlocks of this kind can be
detected when analyzing the super statechart.

Reachability of states becomes decidable in the super statechart. Details are beyond the
scope of this paper.

5.2 Extending the Scenario Model to a General System Model

Scenarios are related not only by their execution order, but also by data. For example, the
outcome of validation in Borrow books depends on the results of previous executions of
Borrow books and Return books for the same user.

Therefore, a really complete description of the external behavior of a system requires not
only a scenario model, but also a specification of the data and functionality of the system.
The latter can be done by an object model that specifies properties and behavior of the
objects in the system domain.

The challenge is, whether the two specifications can be integrated into one model, using a
common foundation of concepts, notations, and semantics. A single unified model for
both scenarios and domain objects has considerable advantages over separate models:
• only one requirements model must be created and maintained,
• more and deeper analyzes and verifications can be made,
• the model can be used as a basis for the generation of full-fledged prototypes,
• a single notation lowers communication barriers between requirements engineers and

customers.

My future research will concentrate on the definition of such a universal model, combin-
ing the ideas of object models and statecharts.

Statecharts can be extended with object modeling capabilities in different ways (Coleman,
Hayes, and Bear 1992, Glinz 1993). The basic idea in my approach is to define a compo-
sition hierarchy for objects which is equivalent to that of statecharts: every object is con-
sidered to be a state. The state of elementary objects may be refined into a state diagram.
Independent objects have concurrent states. Complex objects have an object decomposi-
tion which is equivalent to a statechart. Thus, the overall behavior of the object model can
be interpreted using statechart semantics.

Owner
again, the restriction that his be concerned with UCs that is with external agents...

Owner
crucial point

Owner
good point!

Owner
did he deliver...see long paper of 116 pagemixing state machines of objects and those of scenarios in the same integrated statechart is interesting (see example next page).what i like here: definitely an upfront testable model!Or is it really since it may use hierarchy and concurrency?Answer: it is since semantically it is reducible to state machines thuogh cross-products of concurrent states could explode computationally.

15

Figure 11 gives a first impression of how a model that integrates scenarios and domain
objects could look.

Library user Librarian Exit gate

Name
First Name
Address
UserBarcode

BookBarcode
Borrowed (y | n)
DateBorrowed

Borrow
Return

Name
FirstName

Name

Title
Year
Source
Pages

Query
Update

-> borrows

<- has borrowed

<- authored by

-> authors

-> catalogued as

<- is copy of

-> refers to
<- has attached

Validate (!usercode,

Modify (!new data)

Borrow (!bookcode, !usercode, ?(ok | denied))

Return (!bookcode, !usercode, ?(ok | error | not borrowed))

Query (!criteria, ?result)

Update (!item, !new data)

object with / without state

scenario

-> x

<- y
msg (!in, ?out)

static relationship

message with input
and return data

state transition

?status)

operations attributes

initial state mark

Ordinary create and delete operations are not modeled in this figure

Inspect
Modify
Register
Validate

Library

User

Book

Catalogue

Author

Keyword

Item

Register (!new
 user, ?result)

Inspect (!user,
 ?user status)

Figure 11. Sketch of a unified system model for library application (see text for further
explanation)

Owner
hum... this one is really about data objects whereas fig 8 is about scenarios...The one thing new here wrt scenarios is that we have library user and librarian interacting through objects

16

I will first give some comments on concepts and notations. Any stored data in a system
constitutes a part of the overall system state. However, it does not make sense to represent
this data as hierarchies of explicitly modeled states. The number of required states would
explode immediately. Instead, data is modeled as attributes of objects. The objects should
be interpreted as representatives of classes, i.e. of a set of objects with equal structure and
behavior.

We need to represent static relationships, communication (by messages), and state transi-
tions in the same model. In order to clearly distinguish the three, state transitions are now
drawn by dotted lines. Furthermore, it is convenient to modify the notation of concur-
rency, because all domain objects are concurrent. In Figure 11, we assume that at a given
level of decomposition, all objects and scenarios with an initial state mark have a concur-
rent internal behavior.

The potential benefit of integrating scenarios and domain objects in a single model is
demonstrated using the process of borrowing a book. The object model describes what
happens to a book when it is borrowed (using the objects Book and User and the relation-
ship between them), but does not specify who uses the Borrow operation in which context.
The scenario Borrow books describes how borrowing a book looks from a library user's
viewpoint, but does not specify the data dependencies between the scenario currently
running and previous ones. Both views together yield the complete picture, making the
interactions and dependencies between scenarios and objects visible and analyzable.

5.3 Validating the Model

We plan to validate the usability and applicability of the statechart approach to scenario
modeling and composition first by re-modeling text-based scenarios from an industrial
project. At the same time, we are looking for industrial partners willing to try our ap-
proach on their projects. Our role will be to coach these projects and to evaluate the ease
as well as the difficulties the persons involved had with this kind of modeling.

6 DISCUSSION

6.1 Why Statecharts?

Principally, any notation that allows the expression of states and state transitions can be
used for the representation of scenarios. However, the special features of statecharts con-
cerning parallelism, hierarchy, event handling, and graphic representation make state-
charts a particularly appealing choice when compared with other approaches.

With plain state automata, the number of states explodes as soon as several parallel sce-
narios have to be integrated. Therefore, the practical use of state automata is limited to the
representation of single scenarios. However, state automata form a sound theoretical basis
for all statechart-style approaches.

Programming languages that provide event handling and synchronous parallelism have
similar expressive power as the statechart notation presented in this paper. In my opinion,
however, a graphical representation of structures is more illustrative than a textual one. It

Owner
yep... states of data do not belong herebut this paragraph avoids repication and dynamicity...

Owner
i don't really see the merging: we need figs 8 and 11...

Owner
big assumption:it's good to think about system-level states...

17

might be a good idea to define both a graphic and a textual notation. The latter could be
useful to specify scenarios on a detailed level.

When scenarios are represented by grammars (Hsia et al. 1994), scenario composition can
be achieved by nesting and parallel parsing of grammars. The latter requires a special
construct for rules that have to be parsed in parallel. However, a grammar notation of an
integrated set of scenarios will quickly become unreadable as the set grows in size.
Grammars could potentially be used as an internal notation from which suitable external
representations (for example, scenario traces) are produced.

Petri Nets are another candidate notation. However, Petri Nets lack the abstraction capa-
bilities of statecharts. Furthermore, the usual requirement of ignoring events that are un-
solicitated in the current state forces the analyst to clutter a Petri Net model with a lot of
transitions in order to consume these events.

6.2 Notation vs. Method

The approach presented in this paper is primarily a notation that allows the representation
of a set of scenarios in a unified, consistent model. It is not a method how to solve the
semantic integration problems that arise when separately developed scenarios have to be
brought together. However, it helps to spot these problems. Furthermore, a lot of integra-
tion problems can be avoided if a statechart model is used from the beginning to model
every scenario as a part of a global model of behavior.
Thus, we have a situation similar to the one in information modeling: there, for example,
the entity-relationship model provides an excellent notation for integrated data models,
but does not provide a method of achieving the integration of different, separately ana-
lyzed views of the data.

6.3 The Role of Abstraction

Due to the abstraction and decomposition properties of statecharts, a complete scenario
model does not become a monster of complexity. On any level, details can be omitted.
These details can be modeled in separate lower level diagrams or can be omitted com-
pletely from the model if considered to be unimportant. Figure 9 shows a model on an ab-
stract level where Figure 8 provides the details for one component of the abstract model.
These abstraction capabilities become particularly important when unifying scenario and
object models. For example, Figure 11 would be unreadable if the details of Library user,
Librarian, and Exit gate had to be modeled in the same diagram.

7 CONCLUSIONS

In this paper, I have generalized the idea of representing scenarios as state automata.
Working with statecharts provides us with a well defined formal basis for model con-
struction, analysis, and execution.

The scenario model provides a powerful notation for documenting scenarios and for un-
derstanding their interrelationships. The model integrates single scenario models without

Owner
interesting observation...wish he could show an example

Owner
if you say so...

Owner
but isn't this the real problem!!

Owner
good point against grammars but not against MCSs

18

modifying them. Thus, all constituent scenarios are still visible in the integrated model
and can be retrieved as views. Formality in the model allows the verification of important
properties and contributes to a better understanding and validation of scenarios.

Furthermore, this approach has the potential for integrating domain object models with
scenario models into a single, unified model of system requirements.

REFERENCES

Anderson, J. S., B. Durney (1993). Using Scenarios in Deficiency-Driven Requirements
Engineering. Proc. IEEE Int. Symposium on Requirements Engineering, San Diego. 134-
141.

Coleman, D., F. Hayes, S. Bear (1992). Introducing Objectcharts or How to Use State-
charts in Object-Oriented Design. IEEE Transactions on Software Engineering 18, 1 (Jan
1992), 9-18.

Glinz, M. (1993). Hierarchische Verhaltensbeschreibung in objektorientierten System-
modellen – eine Grundlage für modellbasiertes Prototyping. In: Züllighoven, H. et. al.
(eds.): Requirements Engineering '93: Prototyping. (Report 41 of the German Chapter of
the ACM). Stuttgart: Teubner. 175-192. [Hierarchical Description of Behavior in Object-
Oriented System Models – a Foundation for Model-Based Prototyping (in German)]

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems. Sci. Computer
Program. 8 (1987). 231-274.

Harel, D. (1988). On Visual Formalisms. Communications of the ACM 31, 5 (May 1988).
514-530.

Hsia, P., J. Samuel, J. Gao, D. Kung (1994). Formal Approach to Scenario Analysis.
IEEE Software 11, 2 (March 1994). 33-41.

Jacobson, I., M. Christerson, P. Jonsson, G. Övergaard (1992). Object-Oriented Software
Engineering: A Use Case Driven Approach. Amsterdam, etc: Addison-Wesley.

Leveson, N.G. et al. (1994). Requirements Specification for Process-Control Systems.
IEEE Transactions on Software Engineering 20, 9 (Sept. 1994). 684-707.

Rubin, K.S., A. Goldberg (1992). Object Behavior Analysis. Communications of the ACM
35, 2 (Sept 1992). 48-62.

