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Abstract. Scenarios (Use cases) are a means to capture a system’s functionality and be-
havior in a user-centered perspective. Thus they are used in most modern object-
oriented software development methods to help elicit and document user requirements.
Scenarios also form a kind of abstract level test cases for the system under development.
Yet they are seldom used to derive concrete system test cases. In this paper we present a
procedure to use scenarios in a defined way to systematically derive test cases for sys-
tem test. This is done by formalization of natural language scenarios into statecharts,
annotation of statecharts with helpful information for test case creation/generation and
by path traversal in the statecharts to determine concrete test cases.

1. Introduction
In developing a software system, validation and verification are recognized as vital activities. They
are especially valuable when applied early in the development process, as errors found during the
specification and design phase are much cheaper to correct then errors found in consequent phases
[5]. Early validation and verification thus greatly reduce error fixing and fault cost.
Testing plays an important role in validating and verifying systems. Yet test preparation and the de-
velopment of test cases is often done only just before testing starts, at the end of the development
process, even though analysis as well as design would greatly profit from the insight gained by de-
velopers in creating test cases and preparing tests. Moreover, testing is often done in an ad-hoc man-
ner, and test cases are quite often developed in an unstructured, non-systematic way. This is mainly
due to the reality of commercial software development (only limited resources are available and only
sparse resources are allocated to testing) and less to lack in available methods or lacking problem
understanding. Any testing strategy has to address this practical issue if it is to be successfully ap-
plied. To improve testing in practice, systematic test case development and integration of test devel-
opment methods with ‘normal’ system development methods is central. Test cases are only devel-
oped in a systematic way if clearly defined methods are applied. Test development methods will only
be used if they are easy to apply, blend into existing development methods and do not impose an in-
appropriate overhead or intolerable cost.
Many strategies and approaches to testing exist. Besides established techniques like control and data
flow testing or boundary analysis/domain testing [4, 17], formal languages for specification and spe-
cialized testing languages are gaining increased attention. Yet a gap is opening between the state of
the art and the state of practice. The gap in-between what theoretically could be done and what really
is done in practice, is mainly due to the following reasons (the list is not intended to be complete):
- Lack in planning / time and cost pressure: In real-world projects tests are conducted under

immense time and cost pressure, as often the project at the end of the development process is be-
hind schedule and over budget already. Detecting faults causes additional delays. As a conse-
quence, both test preparation and execution are frequently performed only superficially. Cost and
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time needed for testing are hard to be estimated with reasonable accuracy. Moreover, testing is
often insufficiently planned for and not enough time and resources are allocated for testing.

- Lacking (test) documentation: Tests are not properly prepared, no test plans are developed and
tests are not documented [29].

- Drudgery: Testing and test case development are tedious, wearisome, repetitious, error-prone
and time-consuming activities which prompt fatigue and inattentive work, even if sound testing
strategies and methods are applied.

- Lacking tool support: For this reason, testing has to be supported by tools. But only limited tool
support does exist. Extended tool support and more especially automatic test case generation is
restricted to systems which are formally specified. Even if automatic test case generation may be
applied in a formally defined system, the resulting test suites are of immense size and generally
only poor coverage is reached.

- Formal languages /specific testing languages required: Many test methods use formal specifi-
cation languages or specific testing languages (thus requiring special training and education).
Their application is extremely costly, they are difficult to apply and/or can only be applied to
limited problems or very specific domains.

- Lacking measures, measurements and data to quantify testing and evaluate test quality: In
most projects only little testing data (error statistics, coverage measurements, and so on) is col-
lected during testing or available from other projects. Because of missing data only little can be
said about the benefits and economics of testing, different approaches can not be compared and
processes can hardly be improved. The quality of tests, and thus to some extent of the product, is
often not assessed. Furthermore, the missing data further aggravates the problem of accurate test
planning and allocation of the necessary resources.

The issues mentioned above may be addressed by various approaches. The problems of documenta-
tion and planning, for example, may be alleviated by improvements to the testing process, by use of
and adherence to appropriate methods and clear definition of testing criteria, by testing strategies, or
by a list of documents and deliverables that have to be produced during development of the system.
Formal languages or specialized testing languages may allow for better automation of the testing
process and for better tool support; closer integration of testing with established development meth-
ods may reduce cost and the need for special purpose languages, and (re)using software artifacts cre-
ated in the analysis, specification and design phase may improve efficiency in test design and reduce
drudgery and time pressure.
The strategy last mentioned above is the one pursued in our approach: To help bridge the gap be-
tween the state of the art and the state of practice, we propose the use of scenarios, not solely for re-
quirements elicitation and specification (as done in leading object-oriented development methods),
but for system testing, too, formalizing narrative natural language scenarios into more formal state-
charts and deriving test cases from statecharts. We thus allow for – and enforce (in parts) – a system-
atic test case development. In designing the method, we try to utilize synergies between the phases of
system analysis & specification and system test.
The rest of the paper is organized as follows: Section 2 serves as an introductory chapter to define
and present the problem and shortly sketch the proposed solution. In section 3 we present the basic
concepts and principles of the SCENT method, and describe the individual steps in the procedure of
scenario creation, formalization and test case generation. In section 4 the method presented in this
paper is compared to related work and in section 5 we present some conclusions.
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2. Problem Disposition and Solution Strategy
In this section we take another look at some of the problems in testing and testing methodologies.
Then we present the key concepts of the SCENT method and shortly introduce the notion of scenar-
ios and use cases.

2.1. The Problem
To deliver a software product of high quality, an efficient, reliable quality process has to be imple-
mented and sound (engineering) principles have to be followed and adhered to. And after all that can
be done to construct quality products, testing as an analytical means to software quality has to be per-
formed in a timely and systematic manner.
But in many projects, testing is done as a last minute effort to show the application to be functional
and functioning, much more than to uncover errors and show its compliance to requirements. This is
- at least partially - due to the following facts:
1. Testing is done in the last phase of the development only: Developers start the development of

test cases only after most of the system development has been done. But testing can (and should)
be started with as soon as the specification has been written. By developing test cases early in the
development process, many errors, omissions, inconsistencies and even over-specifications may
be found in the analysis or design phase still. It’s cheaper to remove errors in the early phases.

2. Testing methods are not integrated with (software) development methods. Testing hardly
uses any artifacts of earlier phases directly, but much work is needed to create test cases from the
requirements specification and design models. It’s easy to leave testing to be done at the end of
the development, as testing and test preparation is not enforced earlier by the development meth-
ods.

3. Test cases are not created/generated in a systematic manner. Test cases are chosen randomly,
by experience, according to some rules of thumb or according to insufficient criteria (statement
coverage, input coverage, …). Testers are left with no definite procedure on how to derive test
cases.

These concerns can be reduced by extended tool support. But as mentioned before, testing is not a
simple task that can be easily automated. It is not possible at the time being to automate the whole
testing process and achieve acceptable test coverage in given time for projects relying on natural lan-
guage specifications [23, 26]. Therefore, proper tool support helps to alleviate the problems men-
tioned above. It does not, however, solve them.

2.2. A Proposal to Solve the Problem: The SCENT Approach
We propose a practice-oriented scenario-based approach to support systematic test case develop-
ment, that utilizes early artifacts of the development process in later phases again, in order to realize
synergies between the closely related phases of system analysis and system test. We call our ap-
proach the SCENT method - A Method for SCENario-Based Validation and Test of Software.
In SCENT, we aim at providing a method that is – or easily can be – integrated with software devel-
opment methods, a method that helps developers create test cases and think about testing early on in
the development process and that supports systematic generation of test cases. SCENT enables sce-
nario-based test case development for system test of software systems, taking, as is appropriate for
system test, a functional testing strategy.
The key ideas in our approach are:
1. Use natural language scenarios not only to elicit and document requirements, to describe a

system’s functionality and specify a system’s behavior, but also to validate the system under de-
velopment while it is being developed,
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2. Uncover ambiguities, contradictions, omissions, impreciseness and vagueness in natural lan-
guage descriptions (as scenarios in SCENT are at first) by formalizing the narrative scenarios in
statecharts [10],

3. Annotate the narrative scenarios and/or the statecharts where needed with pre- and post-
conditions, data ranges and data values, and non-functional requirements, especially performance
requirements, to supply all the information needed for testing and to make the statecharts suitable
for the derivation of actual, concrete test cases,

4. Systematically derive test cases for system test by traversing paths in the statecharts and docu-
menting the test cases.

These key concepts need to be supported by and integrated with the development method used to de-
velop the application or the system, respectively. Most object-oriented methods support use cases
and statecharts or comparable state-transition diagrams. Thus, the basic integration of the proposed
method in any one of those methodologies is quite simple and straightforward.
In section 3 we describe the method in more detail.

2.3. Scenarios
Scenarios play an important role in our approach. But even though scenarios are nowadays ubiqui-
tous and have long been used in human-computer-interaction, strategic planning and requirements
engineering, a single, formal, agreed upon definition what a scenario is, does not exist.
We define scenarios informally to be any form of description or capture of user-system interaction
sequences. The terms scenario, use case and actor are defined as follows:

Scenario – An ordered set of interactions between partners, usually between a
system and a set of actors external to the system. May comprise a concrete se-
quence of interaction steps (instance scenario) or a set of possible interaction
steps (type scenario).
Use case [13] – A sequence of interactions between an actor (or actors) and a
system triggered by a specific actor, which produces a result for an actor. A type
scenario.
Actor – A role played by a user or an external system interacting with the system
to be specified.

3. Basic Principles of the SCENT- Method
By creating scenarios during requirements specification and system analysis, the requirements engi-
neer produces a first set of abstract test cases. In SCENT, we reuse scenarios that were created dur-
ing the analysis phase in test case development. The idea of using scenarios/use cases in testing is not
new, however. Jacobson in his book and articles mentioned that use cases are well suited to be used
as test cases for integration testing [13, 14]. Others have taken up, formalized and extended the no-
tion of using scenarios to test a system (see for example [11] and [7]). In section 4 of this paper, a
more detailed description of related work is given. But despite the ubiquity of scenario approaches, a
practical method supporting testers in developing test cases from scenarios has not emerged yet [27].
The approach as presented in this paper represents ongoing research. The ideas presented are vali-
dated by application of the method in practice (see section 5).

The SCENT method comprises three main parts: Scenario creation, scenario formalization and test
case derivation. All three are described in more detail in the following sections.
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3.1. Scenario Creation
Many scenario processes are lacking a step procedure – a cookbook – for the creation and use of sce-
narios. In SCENT we define a procedure to elicit requirements and document them in scenarios. In
this procedure we use a scenario template to format scenarios according to a common layout and
structure. This template is not described in detail in this paper. A description of the template may be
found in [24], the template itself may be downloaded from http://www.ifi.unizh.ch/groups/req/ftp/
SCENT/ScenarioTemplate.pdf.

3.1.1. A Step Procedure for Scenario Creation
To create scenarios, first a list of all the persons and systems who interact with the system under con-
sideration is created (or more precisely: a list of the roles these persons and systems play). All system
in- and outputs are specified and all external events are listed. All the actors, the events and all sys-
tem in- and outputs are uniquely named and a glossary of terms is created.
Having determined the actors, coarse scenarios are created capturing the main uses of the system.
Ask questions like: “How does every actor interact with the system?”, “How does the system react to
every external event?” in order to create short natural language descriptions of system usage.
These first scenarios might be on a type or on an instance level: They may describe interaction as
seen by a distinct user (e.g. Fred Brown pushes the button) or on the more abstract level of roles (e.g.
Fred Brown is an operator, thus: The operator pushes the button).

Table 1: Scenario Elicitation, Creation and Structuring

# Step Description Results
1 Find all actors interacting with the system List of actors
2 Find all (relevant system-external) events List of events (triggers)
3 Determine results and output of the system System output
4 Determine system boundaries System boundaries
5 Create coarse overview scenarios (instance or type scenarios on

business process or task level)
List of scenarios

6 Prioritize scenarios according to their importance and assure that
the scenarios cover all system functionality

 List of prioritized scenarios
 Links scenarios – actors

7 Transform instance to type scenarios. Create a step-by-step de-
scription of events and actions for each scenario (task level)

Coarse grained flow of actions in sce-
narios

8 Create an overview diagram Overview Diagram
9 Have users review and comment on the scenarios and diagrams Comments and annotations to scenarios
10 Extend the scenarios by refining the description of the normal

flow of actions, break down tasks to single working steps
Description normal flow of actions
Hints on test case derivation

11 Model alternative flows of actions, specify exceptions and how to
react on exceptions. Include hints on test case derivation

Alternative flows of actions, exception
handling in scenarios

12 Factor out abstract scenarios Abstract scenarios
13 Include performance/ non-functional rqmts./ qualities in scenarios Scenarios, annotated with qualities
14 Revise the overview diagram Revised overview diagram
15 Have users check and validate the scenarios (Formal reviews) Validated scenarios



6

In the following steps, instance scenarios are transformed into type scenarios. The scenarios are re-
fined by defining a step description for every scenario, and the scenarios are validated with the cus-
tomer and/or the user. Alternative flows are modeled and abstract scenarios (sequences of interac-
tions that appear in more than one scenario) are factored out.
Non-functional requirements and qualities are documented in natural language or with other appro-
priate means (formulas, timing constraints, pictures, graphics, screenshots, sketches, …) in a special
section of the scenario description. Abstract test cases are determined and information helpful to test
case development is captured in the scenario descriptions (e.g. reminders what not to forget or what
specifically to test for, values of particular interest, results of activities and computations that serve
as an oracle in testing, …).

Figure 1: Scenario Elicitation, Scenario Creation and Structuring

Define main and subordinate scena-
rios, prioritize scenarios and assure
function coverage

Create coarse preliminary
scenarios

Have users review scenarios

Refine scenarios, include alterna-
tive flows, exception handling

Define all actors

Define all system external events Define all in- and outputs

Define system boundaries

Create overview diagramCreate detailed scenario
description

Include non-functional
requirements

Review scenarios with
user/customer

Factor out abstract scenarios Correct errors

Structure scenarios according
to template Error correction

(Joint development sessions)

Preliminary work: Starting point
for scenario determination

Approved scenariosChange management,
keep scenarios up to date
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Table 1 gives an overview of the 15 steps of the scenario creation process as defined in our method,
and the purpose and results or deliverables of each step are listed.
Even though the procedure is presented as a sequence of steps, it is in reality highly iterative. Figure
1 shows the order of the activities in the scenario creation process. User involvement is depicted by
shading: Darker shading indicates heavier user involvement.

3.1.2. An Example
As an example we choose the well-known and familiar automated teller machine (ATM). A short
specification is given below (Figure 2).

At an ATM the customer may inquire the balance of his/her account or withdraw money
up to a certain amount and at given piecing (only multiples of CHF 20 up to the per-
sonal limit may be dispensed). The customer needs a card and a personal identification
number (PIN) to get access to the system and perform the mentioned banking transac-
tions. The system interacts with a central bank system to get customer and account
information and to inquire and update account balances. No receipts are issued.

Figure 2: The ATM machine specification
Because of space limitations only a short, partial description of the ATM example is given; the steps
of the procedure are only touched upon to illustrate the procedure.
Below, excerpts of the scenario creation process for the ATM are presented. Numbers are relating to
steps in the scenario creation procedure of Table 1.
1. Identify actors: In the example we identify four actors: the “Customer”, the “Service Personnel”, the “Operator” and

the “Banking system”.
2. Identify external events: Customer inserting card, entering PIN-code, choosing action, entering amount, taking back

card, taking cash; operator filling bills; service personnel servicing machine.
3. Determine system input, results and output of the system. System input: Cards, PINs, choices for actions, amounts,

bills. System output/results: Cards, balance info, cash/bills.
4. Determine system boundaries: All persons and the banking system belong to the environment. Customer and account

information are kept in the bank system.
5. Create coarse scenarios (instance or type scenarios on business process or task level): (1)Inquire Balance,

(2)Withdraw cash, (3)Service ATM, (4)Reload bills
6. Prioritization of scenarios: First priority (1), (2), (4), secondary: (3). Assure that the scenarios cover all system func-

tionality.
We further develop only one scenario. We choose scenario (2)Withdraw cash: A customer with-
drawing money at the teller machine.
7. Create a step-by-step scenario description:

Scenario 2: Withdraw cash
The customer withdraws money
Actor: Customer
Flow of actions:
1. The customer inserts the card
2. The system checks the card’s validity
3. The system displays the “Enter PIN” Dialog
4. The customer enters his PIN
5. The system checks the PIN
6. The system displays the main menu
7. The customer chooses “Cash Withdrawal” from the main menu
8. The system displays the cash withdrawal dialog
9. The customer enters the desired amount



8

10. The system returns the card
11. The system dispenses the money
12. The system displays the welcome screen

8. The overview diagram is omitted to keep the example short. It is a “standard” use case diagram in UML notation.
9. Scenario validation: Have users review and comment on the scenarios and the overview diagram. Validation of the

narrative scenarios in a first step is done by walking customers and users through the scenarios. Later on formal user
reviews are scheduled and conducted (Step 15).

10. Scenario refinement: The steps in the coarse-grained scenario are refined to single, in the context “atomic” actions.
The first step does not have to be clarified as it presents a single action by the customer. The second step may well
be refined:
2.1 The system reads the card number and transfers the card number to the bank system to be validated
2.2 The bank system checks the card number and returns a validation code: Code 1: Card is valid, Code 0: Card not
valid, return card to customer, Code –1: Card missing or reported as stolen, withdraw card
3. The system displays the “Enter PIN” Dialog
4.1 The customer pushes a numeric key
4.2 The system displays a masking character (echo key) in the input field on the screen
4.3 The customer pushes a numeric key
4.4 …

11. Model alternative flows of actions, specify exceptions and how to react to them. In SCENT, exceptional flows are
separated from the normal flow of actions. By doing so, the developer of a scenario is forced to consciously think
about alternatives and exceptions that could happen in any and every single scenario step. Moreover the normal flow
of actions thus remains uncluttered by alternatives.
In the example above, step 1
1. The customer inserts the card
may have the exception that the card can not be entered (e.g. the slot is obstructed). The corresponding entry in the
alternatives section of the scenario description may read:
1a. The slot is obstructed
1a.1The customer informs a human teller or calls and informs the service department.
1a.2If a human teller was informed: The teller informs the service department
1a.3The service department repairs the machine. Goto scenario (4)Service ATM

12. Factoring out abstract scenarios: Certain sequences in a scenario might be reused in other scenarios. In the example,
the authentication procedure is factored out:
1. The customer inserts the card
2. The system checks the card’s validity
3. The system displays the “Enter PIN” Dialog
4. The customer enters his PIN
5. The system checks the PIN
6. The system displays the main menu

13. Include non-functional requirements in scenarios: Performance requirements are included in the scenarios, qualities
are appended to the scenarios. As an example, we assume that the validity-check of a card that has been inserted at
the ATM must be performed in less than two seconds. Moreover, the color red is only to be used for error messages.
The second step in the scenario description is correspondingly changed to read:
1. The customer inserts the card
2. The system checks the card’s validity. This operation must take less than two seconds
3. The system …
and the requirement on the use of the color red is appended to the scenario:
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…
12. The system displays the welcome screen
Non-functional Requirements: The color red is to be used for error messages only

14. Revise the overview diagram: Abstract scenarios, newly found scenarios and scenarios that have been divided or
joined have to be updated in the overview diagram. The diagram and the scenario descriptions have to be kept con-
sistent.

15. Scenario validation: Have users check and validate the refined scenarios (Reviews). Scenarios are altered and up-
dated according to errors and problems found (Iterate through steps 10 to 15 of the procedure).

3.2. Scenario Formalization
Scenarios are validated by users and customers throughout the scenario creation process by reviews
(inspections) and walkthroughs (see Section 3.1.). Scenarios prove valuable in validating require-
ments: As (functional) requirements are captured in the form of interaction descriptions, the user
does not have to read and validate an enumeration of required features, abstract functions and quali-
ties that are pulled out of usage context (as they are in traditional specifications). Requirements are
captured in descriptions of the flow of actions. Thus, scenarios ‘naturally’ bundle requirements that
belong together. They do so longitudinally, that is from the start of a transaction to the end of trans-
action. Dependencies between requirements and the interactions between features are at least par-
tially described in scenarios as well.
Yet natural language scenarios, as they have been created in the scenario creation process so far, suf-
fer from the problem of all natural language specifications: Natural language is not precise, definite
and unequivocal (as is shown by this very sentence: Does the negation of ‘not precise’ also extend to
‘definite’ and ‘unequivocal’, or is the scope of the negation limited to the adjective directly following
it?). Narrative scenarios may be ambiguous, inconsistent and incomplete. Reviews by users may find
some of these problems, but many inconsistencies and omissions might slip by undetected.
Formalization helps in finding and avoiding these problems. Formal languages allow for formal rea-
soning, (strong) verification and proof of correctness. But formal languages have their own short-
comings, too: They require knowledge of a special language, are hard to understand and their appli-
cation may be error-prone.
In SCENT we take an intermediate way by converting natural language scenarios into semiformal
statecharts. This formalization helps to find many omissions, ambiguities and inconsistencies, yet the
graphical representation of scenarios can well be understood by users, given some guidance by the
developers. Thus, the formalization is a very helpful fault-finding procedure and can be seen as a part
of static testing.

3.2.1. The Formalization Step
In the formalization step, structured natural language scenarios are transformed into statecharts. This
step is in SCENT informal itself. In fact, the mapping of scenarios to statecharts is a creative model-
ing step that can not be formalized. The statecharts created from scenarios by one developer might
significantly differ from statecharts developed from the same scenarios by another developer.
We define some heuristics to support developers in the transformation step. The heuristics are:
- As soon as first scenarios have been developed (step 5 and 7 in the scenario creation procedure),

create statecharts to match the scenarios.
- Create a statechart for each scenario. The normal flow, all exceptional flows and all alternatives

of a given scenario are captured in one statechart.
- The statecharts are refined along with the scenarios, thus providing for a continuous validation

and ongoing check for inconsistencies, omissions and ambiguities in the narrative scenarios. As
the coarse overview scenarios are refined to reflect the interactions on task level, new states are

jean-pierre corriveau
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introduced in the statecharts, states are expanded to comprise substates, and parallelism may be
caught in parallel states, as appropriate.

- Model the normal flow of a scenario first. Integrate the alternative flows later on. Check if alter-
natives are missing. This can be done by investigating which events may occur in a given state. If
an event could occur that has not been modeled, a transition is missing and usually an action or
an alternative flow in a scenario is missing as well.

- Represent abstract scenarios as hierarchical statecharts.
- A single step in a scenario usually translates into a state or a transition in a statechart1. As the

steps are mapped to either states or transitions, missing states and transitions will emerge and
need to be added. Superfluous states (and transitions, if any) need to be deleted or merged with
needed states (or transitions).

- External and internal events are mapped to state transitions, the triggering event is the state tran-
sition to the initial state.

- At first, statecharts are not integrated. These partial models help to enable traceability (from de-
sign and tests to requirements and vice versa). Statecharts may be integrated later on to create a
model of the full system [8].

- Check the statecharts for internal completeness and consistency. Are all the necessary states
specified? Are all the states in a statechart connected? Has every statechart an entry and an exit
node? Are there no dangling links? Can every state be entered and left (except the final state)?
Are all the necessary transitions specified? On what events will a state be entered, on what events
can a state be left? Check the event list created for scenario elicitation to see if all relevant events
are handled. Ask questions like: “The system being in this state, what will happen if the user does
this or that?” “Are states and events named expressively and consistently, following some
scheme?”

- Cross-check statecharts. Do states, transitions and events appearing in more than one scenario
have the same names?

Creation of scenarios and of statecharts is an iterative process. Statecharts have to be validated with
the user either by inspection or review, or by paraphrasing and recounting them to the customer (end
user, procurer) in a narrative style. All (important) paths are traversed; the developer guides the cus-
tomer through the flows. This validation activity works hand in hand with the phase of test case deri-
vation: The paths traversed with the customer to validate the statecharts are test cases that need to be
tested in system test. Again it has to be emphasized that the process is not a sequential one, many of
the activities may – at least partially – be done in parallel; they profit one from another and make use
of the same artifacts.
The statecharts developed at first pass may be integrated to a full system model in a following step
(as desired. It is not mandatory in the method, but might help in design as the integration of all state-
charts represents a full system model).

3.2.2. Statechart Annotation
Statecharts describe the behavior of a system (how does a system behave in response to events and
given conditions, ...), but let out other important information as data, performance and qualities.
Nevertheless, this additional information is important for testing: Many errors are data-related and
may only be found by test cases that can not be directly derived from statecharts (The sample bug

                                               
1 If a working step in a scenario does not map to a state or transition, but needs to be modeled in more than one state or
transition, respectively, this usually indicates that the step should be refined (broken down into substeps, its components).
This will not normally be the case, as states can be created at various levels of abstraction and at various granularity lev-
els - to the modelers will. But states at quite different abstraction levels in one statechart are an indication for insuffi-
ciently subdivided and refined scenario steps.

jean-pierre corriveau
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statistics in [3] show that this kind of bugs might well account for up to one third of all errors).
Moreover, concrete test data, that is input values and expected output, can only partially be derived
from statecharts directly.
For this reason, we extend the statecharts notation to include information important for testing. In
particular, the additional testing information may comprise the following:
- Preconditions (and postconditions as needed)
- Data: Input, expected output and ranges
- Nonfunctional requirements.
The information is captured in annotations as shown in Figure 4.

Figure 3: A statechart representing the Figure 4: ‘Authentication’-Statechart
‘Authentication’ scenario with alternative flows and annotations

Preconditions are captured in banner-like notes. Data is annotated to states and – if applicable – to
transitions alike: Ranges are specified in square brackets (or alternatively in curly braces, if square
brackets are used for other purposes – see Figure 4 for an example). Expected results can be speci-
fied for key-values. Descriptions of expected data formats and restrictions may be specified in the
statechart and/or references to the specification may be inserted. If desirable (for readability or un-
derstandability of the model, for example, or if paralleled in the domain), specific states for data
validation may be modeled.
Performance requirements are annotated in square brackets as well. Performance requirements span-
ning more than one state or transition are specified by attaching the (timing) constraint to a dashed
line connected to the affected states/transitions.

UC 002: Authentication v0.1

Customer
inserts card

System
checks PIN

System checks
the card’s validity

Customer
enters PIN

Card
entered

PIN
entered

PIN valid
Display main menu

Card valid
Display ‘Enter PIN’ Dialog

UC 002: Authentication v0.4

Eject card

Customer
inserts card

System checks
the card’s validity

Retain card

Customer
enters PIN

System
checks PIN

Card valid
Display ‘Enter

PIN’ Dialog
Invalid PIN

Display
retry msg

PIN
entered

Card
retained
Display

msg

Card
ejected
Reset Card

inserted

PIN valid
Display main menu

Third
invalid PIN

Timeout
Display 

welcome
screen

Display
error msg

Card invalid

Card can’t
be read
Display

error msg

Card can’t fully
be inserted

Display
error message

Precondition: ATM is operational, card is being inserted

Annotations PIN consists of more than 3 and less than 7 numerals
The color  to be used for error messages onlyred

[<2s]

[<0.05s]

{PIN  [0..9]  }6
4
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3.2.3. An Example
As an example of the formalization process, we consider the abstract scenario “Authentication” of
the ATM example introduced in section 3.1.2, step 12.
At first the normal flow of actions is modeled in a statechart (see Figure 3).
Then the alternative flows are modeled (see Figure 4).
Once a scenario is modeled in a statechart, the statechart is annotated as needed. Preconditions and
data annotations are included in the statecharts. In the example, valid and invalid PINs are distin-
guished by state transitions, but no indication as to what an invalid PIN is, is made. So a data anno-
tation may specify the ranges and the form of a PIN (see Figure 4). Furthermore, two performance
constraints have been specified in the example: The verification of the card’s validity shall not take
more than two seconds (assuming the network connection in-between ATM and banking system to
be sufficiently fast) and the validation of the PIN shall not take more then five hundredth of a second
(assuming the PIN can be validated algorithmically, just knowing the PIN and an encryption key
read in from the card).

3.3. Test Case Derivation
Test case derivation in the SCENT method comprises three steps:
Step 1 (mandatory). Test case derivation from statecharts.
Step 2 (mandatory). Testing dependencies among scenarios and additional tests (e.g. testing for spe-

cific qualities).
Step 3 (optional). Statechart integration and test case derivation from the integrated statechart
In this paper, only the first step is described in more detail. To support the second step, we define a
new diagram type called dependency charts in SCENT. In dependency charts, timing, logical and
causal dependencies between scenarios are captured and depicted. Thus, testing dependencies among
scenarios is supported by test case derivation from dependency charts. For a detailed description of
dependency charts see [24]. Additional test cases are developed using special testing information
supplied in the scenarios: The notes taken during scenario creation and refinement now are used to
enhance the initial test suite.

3.3.1. Test Case Derivation from Statecharts
In SCENT, test cases are derived by path traversal in statecharts. First, the normal flow of actions
represented in the statechart is followed, then the paths representing the alternative flows of actions
and the exceptions are traversed. In the method, we cover all nodes and all links in the graph, that is:
all states and all transitions are covered by at least one test case. If desired, a more elaborate cover-
age could be chosen (e.g. switch or n-switch coverage [6, 9, 18]). Most states and many transitions
are traversed more than once as annotations are used to refine test cases. Abstract scenarios are inte-
grated in the calling scenarios, to allow for thorough tests of single scenarios. The statecharts are not
integrated, though. The partial character of scenarios is thereby preserved, enabling traceability from
test cases to requirements and vice versa. Furthermore, the user-oriented view of scenarios is thus
promoted into testing, scenario prioritization may be utilized to determine test priorities, and finally
the state-space of the (partial) solutions is thereby limited to prevent a combinatorial state/transition
explosion. The incremental development procedure as encouraged by the use of scenarios is sup-
ported by not integrating the statecharts: Changes in a scenario (=changes in system usage) are usu-
ally confined to changes in one statechart and changes to test cases derived from the one statechart.
Annotations in the statecharts are taken into account in developing tests: Preconditions to statecharts
define test preparation that has to be done before test cases derived from the statechart can be exe-
cuted – the testing setup is determined by the preconditions.
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The data specified in the scenarios and annotated in the statecharts help develop boundary value tests
– tests that traverse the same path in the statecharts for every boundary value of data ranges as well
as for a data value just above and/or below the boundary, as is done in boundary-value analysis. Do-
main testing techniques and data flow testing can be applied to derive further test cases ([3, 4, 17]).
Furthermore, as path traversal in statecharts will only generate tests for valid sequences of events, the
tester has to ensure inclusion of invalid event sequences in the test. These tests are constructed by
evoking or generating events while the machine is in a state where it should not respond to the gen-
erated events. Thus, exception testing can be improved and systematized and a better test coverage
can be achieved.
Notes on performance and nonfunctional requirements in the scenarios help to formulate test cases to
test these properties.

3.3.2. Test Case Derivation in the Example
To illustrate test case derivation from statecharts, we present some test cases as created by path tra-
versal of the statechart depicted in Figure 4. The first test case follows the normal flow of actions:
The card can be inserted and the card as well as the PIN are valid. The next test case considers the
exception of an incorrect PIN entered. Next an invalid PIN is entered (PIN too short; this test case
takes into account the data annotations specified in the statechart). Finally, a third invalid PIN is en-
tered to provoke another validation failure and traverse the Third invalid PIN link (see Table 2).
In the statechart, the paths that have been traversed are marked. If the developer/tester encounters a
data annotation, be it on a link or in a state, he/she creates a test case for every boundary value/one
above/one below. This means that in the example, the tester has to develop a test case using a key
that is too short (three numerals), a key that is four and six numerals long, respectively, and a key
that is too long (seven numerals). If a character key was used, the tester would test for keys using in-
admissible characters. In this example it is obvious that state-transition tests are not sufficient: Even
though the state-machine will differentiate between valid and invalid PINs, it does not indicate why a
key is invalid. Is it because the PIN does not meet required syntactical or formal attributes (length,
only admissible characters), or is it because the user has entered a PIN that is syntactically correct
but not valid as it is not the user’s PIN? And even if this difference is modeled by distinct transitions
(incorrect PIN vs. invalid PIN), still the tester has to test for all kinds of (syntactically) incorrect en-
tries, e.g. key to long, key to short, key has inadmissible character, key does not include at least one
non-alphanumerical character, and so on.
Annotations of performance requirements are tested for in like manner.

Table 2: Test Cases for the ATM Example

Test preparation: ATM operational, card and PIN (1234) have been issued, card is being inserted
ID State Input/User actions/ Conditions Expected output

1.1 Card sensed Card can be read, card valid, valid PIN (1234)
entered in time Main menu displayed

1.2 Card sensed Card can be read, card valid, invalid PIN (1245)
entered in time (first try) Retry message displayed

1.3 Retry msg Invalid PIN (123) entered in time, second try Retry message displayed
1.4 Retry msg Invalid PIN (1234567) entered in time, third try Card retained, user informed
… … … …
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The test cases in Table 2 might well be refined to reflect more details in requirements: The normal
flow of actions captured in test case 1.1 in Table 2 above can be broken down to single steps as il-
lustrated in Table 3. The decision on the level of abstraction in testing (to what detail shall be tested)
depends on the kind of test (unit level, integration, system) to be run and on the testing that has been
performed before (full tests on a system level can not be done because of the resulting test suite size
or at least is not economical to do so).

Table 3: Refined Test Cases for the ATM Example

Test preparation: ATM operational, card and PIN (1234) have been issued, card is being inserted
ID State Input/Actions/ Conditions Expected output

1.1 Card sensed Card is taken in Card inserted, validation
screen displayed

1.2 Card inserted Validate Card Card is valid, ‘Enter PIN’-
dialog displayed

1.3 Card valid Customer enters PIN PIN (1234) entered in time,
validation screen displayed

1.4 PIN entered Validate PIN PIN is valid, main menu
displayed

… … … …

4. Related Work
Even though literature on scenarios abounds, test case derivation from scenarios is yet in its infancy.
Scenarios are used in most object-oriented development methods, notably also in the UML (Unified
Modeling Language), and many different approaches have been developed over the last couple of
years. Yet, in the area of testing, only few scenario-based approaches exist. In the following, we re-
view some approaches with regard to use case creation, scenario formalization and support for test-
ing activities:
- Jacobson’s Use Case Approach [13-15] was one of the first to disseminate the use of scenarios

and propagate a user-centered requirements capture and specification. The approach does not,
however, propose any defined procedure on how to create scenarios, nor on how to us scenarios
in testing. Scenarios are not formalized in the approach. No specific description format or tem-
plate is advocated. Furthermore, use cases – as groupings or collections of functionalities and re-
quirements – are rarely truly independent in practice. But in Jacobson’s work only very limited
support for modeling dependencies between scenarios is given (uses and extends relations).
However, to derive tests from scenarios the dependencies between scenarios have to be known,
else crucial parts of the system will/may not be tested for.

- Hsia et al. [11] have proposed and described a more formalized approach to scenario creation and
validation, constructing scenario trees. Their approach is based on regular grammars and equiva-
lent (conceptual) state machines. Scenario creation and formalization are core-parts of the ap-
proach. The use of scenarios to derive test cases however is only shortly sketched and no further
procedure has been specified. Their main use of scenarios in testing is for acceptance test. Our
approach is close to the one proposed by Hsia in many respects. It differs though in central is-
sues:
- Scenario elicitation is conducted via scenario trees in the Hsia approach. In our approach we

define an iterative step-by-step procedure to create scenarios in structured natural language.
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- Scenario trees are formalized into regular grammars in the Hsia approach. These grammars
describe a conceptual state machine, defining a formal abstract model. One model for each
user view is created. The definition, use and maintenance of these grammars is labor-
intensive and requires special training and skills on the side of the developers. Furthermore
the grammars are not intelligible to customers and users. Changes to scenarios reflected in the
grammars are quite cumbersome.
In contrast we formalize scenarios into statecharts, every statechart representing one scenario.
Statecharts need not be (but may be!) integrated. The notation is expressive and understand-
able to users, and changes in scenarios are easily reflected in the statechart representation.

- In the SCENT method a definite procedure for test case derivation from statecharts is speci-
fied, creating concrete test cases (defining the settings/environment and the input values
needed for test execution). In the Hsia approach, basis paths are used to generate scenarios
from the conceptual state machine, these scenarios are used as input for acceptance testing.
No concrete test cases are created.

- In our approach, statecharts are annotated with preconditions, data and nonfunctional re-
quirements to enhance the creation of test cases. No equivalent concept has been defined in
the Hsia approach.

- Dependencies and relationships among scenarios may in SCENT be modeled in dependency
charts [24] and dependencies may be tested for accordingly. In their approach, Hsia et al. do
not propose any way to handle inter-scenario dependencies.

- Firesmith [7] extends the scenario approach to model scenario lifecycles and the relationship
between different scenarios. The benefit of scenarios in testing is only hinted at, the development
of test cases is not addressed at all.

- Regnell et al. [20, 21] in their approach aim at overcoming the problem of lacking synthesis of
single scenarios to reach a full picture of the whole system by formalizing and integrating the use
cases of a system. Testing is touched upon, but no strategy to test case selection is defined. The
main aim of [20] is to present improvements to the OOSE/Use Case Driven Analysis UCDA ap-
proach of Jacobson [13] by identifying weaknesses and problems in UCDA and defining a possi-
ble solution. [21] focuses on the representation, extending the former approach to include a hier-
archical structured representation. Testing and the derivation of test cases is not an issue in the
approach.

- Potts et al. [19] describe a scenario analysis approach with an emphasis on an inquiry-based pro-
cedure in the analysis process. They define a process for capturing and describing reasoning and
discussion about requirements. In their approach, they take changing requirements and the rea-
soning process into account, supplying a model for scenario evolution. Testing as such is not an
issue in their work.

- Lee et al. [16] use Petri nets for the analysis and integration of use cases. They emphasize the
importance of incremental specification of partial system behavior and of consistency and com-
pleteness checks for requirements engineering techniques. Then they argue that an extended Petri
net approach satisfies these demands. They define Constraints-based Modular Petri Nets
(CMPNs), introduce Petri net slices to analyze system behavior, present a procedure to create
CMPNs from scenarios and show how the model can be checked for consistency and complete-
ness. As some of the approaches mentioned above, this approach tries to integrate and analyze
use cases. However, it does not define a procedure for test case derivation from scenarios. No
scenario creation procedure is specified either; scenario descriptions are input to the method.

- Message sequence charts MSCs were used in different approaches to formalize scenarios or to
capture requirements of systems (see [1] for an example). Yet MSCs suffer from the disadvan-
tage that they are getting overloaded fast when all exceptions and alternatives of a scenario are to
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be integrated in one chart. On the other hand, they miss an abstraction mechanism to decompose
complex system descriptions.

5. Conclusions
In this paper we have presented the SCENT method, a scenario-based approach to support the tester
of a software system in systematically developing test cases. This is done by eliciting and docu-
menting requirements in natural language scenarios, using a template to structure the scenarios. Sce-
narios then are formalized into statecharts. Finally, test cases are derived by path traversal in state-
charts.
The method introduced in this paper has been applied in practice to two projects at the ABB Re-
search Center in Baden/Switzerland. First experiences are quite promising as the main goal of the
method, namely to supply test developers with a practical and systematical way to derive a first set of
test cases, has been reached. The projects in which the method was applied were applications to re-
mote monitoring of embedded systems [12].
The use of scenarios was perceived by the developers as helpful and valuable in modeling user inter-
action with the system. Developers especially appreciated the integration of the users and the direct
feedback they received in creating and refining scenarios.
Not surprising, the creation of coarse overview scenarios and the iterative refinement of scenarios
down to sequences of atomic actions proved to be valuable and was very much appreciated by users
and developers.
The application of the method (and of scenario approaches in general) was not without difficulties,
however. Some of the problems that surfaced in applying the methods were:
- Contrary to the positive experience in modeling user interaction in scenarios, it was troublesome

to model system internal interaction and the interaction with other systems in scenarios as well.
Instead of using scenarios, the developers preferred to create state machines and/or other models
directly.

- Developers did not want to specify scenarios down to the level needed for test case design. Sce-
narios were used to model user interaction with the system at an abstract level, then refined to
cover all the systems tasks. At this point it was not easy to convince the developers that further
refinement and specification was needed, if scenarios were to be used for test case generation.

- Scenario management was considered a major problem throughout the development. As the pri-
mary scenarios created in SCENT are natural language descriptions and as they interrelate with
many of the other artifacts produced in the software engineering process, there is threefold to
manage: Keep scenarios consistent in themselves (as one specific scenario may exist in many
versions and representations, e.g. as a natural language scenario and as a statechart, and as differ-
ent scenarios may be related one to another), keep scenarios and other documents and artifacts
consistent (e.g. all the links between scenarios and models derived from scenarios like class and
behavioral models, and more especially the links between scenarios and other parts of the speci-
fication), and finally keep scenarios up-to-date when requirements, the environment and the de-
velopers’ understanding of the problem are changing.

The formalization process posed some specific problems, as the mapping of scenario actions to states
or transitions is not definite and clear-cut. A scenario transformed into a statechart by one developer
may differ significantly from a statechart developed from the same scenario by another developer.
Scenario formalization is not free, some extra work is needed; in fact, the development of statecharts
might take quite some time and bind some resources. However, the extra work put into scenario for-
malization pays back in many ways:
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1. As mentioned before, the transformation of structured-text scenarios into a semiformal statechart
representation helps in verifying and validating narrative scenarios. Omissions, inconsistencies
and ambiguities are found. The specification is thus improved.

2. Developers gain a deeper understanding of the domain and the system to be built because they
have to understand the details to formalize the scenarios.

3. The statecharts created in the transformation may well be used and reused in design and imple-
mentation.

4. The formalized scenarios are (re)used in testing. Test case preparation and expenses are moved
from the testing phase late in the development process to earlier activities, thus alleviating the
problem of testing poorly done under time pressure. By using a systematical way to develop test
cases, test coverage is improved.

The cost of developing the statecharts is justified by the benefits of an improved specification and
enhanced testing.
Test case creation on the other hand was unproblematic (as expected).
Future work will be done in the direction of defining a coverage criterion for requirements captured
in scenarios or in other natural language documents and descriptions, and measuring/quantifying the
improvement in coverage gained by applying the SCENT method. We are also aiming at more
tightly integrating non-functional requirements into scenarios and statecharts.
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