Formal Methods in Security

Prakash Panangaden
School of Computer Science
McGill University

- The role of formal methods
- Probabilistic reasoning

- The role of formal methods
- Probabilistic reasoning
- Channel capacity as a measure of anonymity

- The role of formal methods
- Probabilistic reasoning
- Channel capacity as a measure of anonymity
- Games, Capacities and Previsions

- The role of formal methods
- Probabilistic reasoning
- Channel capacity as a measure of anonymity
- Games, Capacities and Previsions
- Conclusions

Cryptography is assumed unbreakable.

- Cryptography is assumed unbreakable.
- Attackers have access to every message and can synthesize messages.

- Cryptography is assumed unbreakable.
- Attackers have access to every message and can synthesize messages.
- They can perform statistical analysis of intercepted messages.

- Cryptography is assumed unbreakable.
- Attackers have access to every message and can synthesize messages.
- They can perform statistical analysis of intercepted messages.
- What can be done to preserve secrecy or anonymity?

We model agents – including attackers – as processes in some formal system and

- We model agents including attackers as processes in some formal system and
- use tools like model checkers, bisimulation checkers to verify properties of the protocol.

- We model agents including attackers as processes in some formal system and
- use tools like model checkers, bisimulation checkers to verify properties of the protocol.
- The models may be probabilistic.

- We model agents including attackers as processes in some formal system and
- use tools like model checkers, bisimulation checkers to verify properties of the protocol.
- The models may be probabilistic.
- Legendary success: Gavin Lowe and the Needham-Schroeder protocol.

Using non probabilistic models does not allow one to analyze situations where the attacker uses statistical techniques to extract information.

- Using non probabilistic models does not allow one to analyze situations where the attacker uses statistical techniques to extract information.
- Probabilistic process algebra and metrics were used by John Mitchell et al.

- Using non probabilistic models does not allow one to analyze situations where the attacker uses statistical techniques to extract information.
- Probabilistic process algebra and metrics were used by John Mitchell et al.
- Anonymity protocols analyzed by Palamidessi et al.

- Using non probabilistic models does not allow one to analyze situations where the attacker uses statistical techniques to extract information.
- Probabilistic process algebra and metrics were used by John Mitchell et al.
- Anonymity protocols analyzed by Palamidessi et al.
- Probabilistic model checking developed by Kwiatkowska et al.; the PRISM system.

> We want to ensure that the identity of an agent performing some actions remains secret; the action itself can be visible.

- > We want to ensure that the identity of an agent performing some actions remains secret; the action itself can be visible.
- > Important in:

- > We want to ensure that the identity of an agent performing some actions remains secret; the action itself can be visible.
- > Important in:

 Electronic elections

- > We want to ensure that the identity of an agent performing some actions remains secret; the action itself can be visible.
- > Important in:

Electronic elections

Posting to bulletin boards

- > We want to ensure that the identity of an agent performing some actions remains secret; the action itself can be visible.
- > Important in:

Electronic elections

Posting to bulletin boards

File sharing, refereeing (!), ...

- > We want to ensure that the identity of an agent performing some actions remains secret; the action itself can be visible.
- > Important in:
 - Electronic elections
 - Posting to bulletin boards
 - File sharing, refereeing (!), ...
- > In some sense "dual" to secrecy.

 Crowds [Reiter and Rubin 1998]: initiator is anonymous

- Crowds [Reiter and Rubin 1998]: initiator is anonymous
- Onion Routing [Syverson, Goldschlag and Reed 1997]: anonymous communication

- Crowds [Reiter and Rubin 1998]: initiator is anonymous
- Onion Routing [Syverson, Goldschlag and Reed 1997]: anonymous communication
- Freenet [Clarke et. al. 2001]: anonymous information retreival

Nondeterministic or Probabilistic?

Nondeterministic or Probabilistic?

 Nondeterministic analysis can use the machinery of concurrency theory, but it does not allow one to reason about adversaries that make repeated observations and make statistical inferences

Nondeterministic or Probabilistic?

- Nondeterministic analysis can use the machinery of concurrency theory, but it does not allow one to reason about adversaries that make repeated observations and make statistical inferences
- The probabilistic approach is essential when the protocols themselves use randomization

Nondeterministic or Probabilistic?

- Nondeterministic analysis can use the machinery of concurrency theory, but it does not allow one to reason about adversaries that make repeated observations and make statistical inferences
- The probabilistic approach is essential when the protocols themselves use randomization
- However, usually both probability and nondeterminism is present.

 Beyond suspicion: to the observer, the culprit is not more likely than any other agent to be the culprit.

- Beyond suspicion: to the observer, the culprit is not more likely than any other agent to be the culprit.
- Probable innocence: the culprit has less than
 50% chance of being the culprit.

- Beyond suspicion: to the observer, the culprit is not more likely than any other agent to be the culprit.
- Probable innocence: the culprit has less than
 50% chance of being the culprit.
- Possible innocence: the culprit has less than
 100% chance of being the culprit.

Dining Cryptographers: Chaum 1988

Dining Cryptographers: Chaum 1988

- The problem:
 - Three cryptographers share a meal
 - The meal is either paid by M or by one of the diners, M decides who will pay
 - M informs each one whether they will pay or not

Dining Cryptographers: Chaum 1988

- The problem:
 - Three cryptographers share a meal
 - The meal is either paid by M or by one of the diners, M decides who will pay
 - M informs each one whether they will pay or not
- The goal: the cryptographers want to find out if one of them is paying without knowing who.

The dining cryptographers

Solution

- We insert a coin between each pair of cryptographers and toss it
- The result of each coin toss is visible only to the adjacent cryptographers
- Each cryptographer examines the two adjacent coins and says "agree" or "disagree"
- The one who pays (if any) will say the opposite of the truth.

The dining cryptographers

The number saying "disagree" is even if and only if M is paying. (This works for arbitrary graphs.)

- The number saying "disagree" is even if and only if M is paying. (This works for arbitrary graphs.)
- If the coins are fair then an external observer and the non-paying cryptographers will not be able to deduce who is paying.

- The number saying "disagree" is even if and only if M is paying. (This works for arbitrary graphs.)
- If the coins are fair then an external observer and the non-paying cryptographers will not be able to deduce who is paying.
- In fact they will not even be able to increase their probabilistic estimates.

In extreme cases it is easy to see that a statistical analysis of the outcomes will allow one to guess which way the coins are biased and thus who is paying.

- In extreme cases it is easy to see that a statistical analysis of the outcomes will allow one to guess which way the coins are biased and thus who is paying.
- This is not detected by the purely nondeterministic approaches.

- In extreme cases it is easy to see that a statistical analysis of the outcomes will allow one to guess which way the coins are biased and thus who is paying.
- This is not detected by the purely nondeterministic approaches.
- In less extreme cases of bias the situation is harder to analyze but clearly some information can leak out.

Coin 12 and Coin 13 are H, Coin 23 is T M chooses the payer uniformly at random.

	1 pays	2 pays	3 pays
1 says	d	\mathbf{a}	a
2 says	d	\mathbf{a}	d
3 says	d	d	a

We never see 1 saying d while 2 and 3 say a.

If we say "almost never" then the nondeterministic approach will say this is fine!

Information Theory Summarized

X, Y are random variables and x, y represent possible values.

Entropy: $H(X) = -\sum_{x} p(x) \log p(x)$ Uncertainty in X.

Conditional Entropy: $H(X|Y) = -\sum_y p(y) [\sum_x p(x|y) \log p(x|y)]$ Uncertainty in X when Y is known.

Mutual Information: I(X;Y) = H(X) - H(X|Y)What Y reveals about X and vice versa.

Channel Capacity

A channel is just a triple

$$(\mathcal{X}, \mathcal{Y}, p(\cdot|\cdot))$$

where \mathcal{X} is the set of input symbols, \mathcal{Y} is the set of output symbols and p(y|x) is the probability of observing y if x is input.

Given an input distribution p(x) we can define random variables X and Y.

The **channel capacity** is given by

$$C = \max_{p(x)} I(X; Y).$$

© Channel capacity measures the propensity of a system to leak information.

- Channel capacity measures the propensity of a system to leak information.
- Usually we try to increase the channel capacity, but here

- Channel capacity measures the propensity of a system to leak information.
- Usually we try to increase the channel capacity, but here
- we want the channel capacity to be as low as possible.

Capacity of What?

Capacity of What?

Ira Moskowitz et. al. studied the capacity of a covert channel to measure how much information could be leaked out of a system by an agent with access to a covert channel.

Capacity of What?

- Ira Moskowitz et. al. studied the capacity of a covert channel to measure how much information could be leaked out of a system by an agent with access to a covert channel.
- We are viewing the protocol itself as an abstract channel and thus adopting channel capacity as a quantitative measure of anonymity.

Sanity Check

Sanity Check

To what does capacity 0 correspond?

Sanity Check

- To what does capacity 0 correspond?
- It corresponds precisely to strong anonymity, i.e. to the statement that A and O are independent.

Other Things

Other Things

Palamidessi's group has modelled the DC protocol in the PRISM language and shown how to compute the capacity.

Other Things

- Palamidessi's group has modelled the DC protocol in the PRISM language and shown how to compute the capacity.
- One can consider the theory of hypothesis testing and analyze attacks made using Bayesian decision rules. We have bounds on the probability of error. This has been greatly extended in a new paper which uses some ideas from convexity theory to give new bounds.

The right way to understand the interactions of adversaries is to model them as games.

- The right way to understand the interactions of adversaries is to model them as games.
- This causes an interaction between probability and nondeterministic choices.

- The right way to understand the interactions of adversaries is to model them as games.
- This causes an interaction between probability and nondeterministic choices.
- One has capacities rather than measures. Used in economics and in concurrency theory by Gupta, Jagadeesan, Desharnais and Panangaden.

Far reaching generalization and development of these ideas by Jean Goubault-Larrecq

- Far reaching generalization and development of these ideas by Jean Goubault-Larrecq
- He has a 641 page document (in French)!!

- Far reaching generalization and development of these ideas by Jean Goubault-Larrecq
- He has a 641 page document (in French)!!
- Related work by Mislove, Keimel, Plotkin and Tix.

- Far reaching generalization and development of these ideas by Jean Goubault-Larrecq
- He has a 641 page document (in French)!!
- Related work by Mislove, Keimel, Plotkin and Tix.
- The theory is ready to be used.

Information theory is a rich and powerful way to analyze probabilistic protocols.

- Information theory is a rich and powerful way to analyze probabilistic protocols.
- The theory of games and capacities needs to be combined with information theory.

- Information theory is a rich and powerful way to analyze probabilistic protocols.
- The theory of games and capacities needs to be combined with information theory.
- All kinds of beautiful mathematics: convexity theory, domain theory in addition to traditional information theory.

Existing Collaborations

Existing Collaborations

I am designated an Équipe étranger of INRIA Futur and work closely with Catuscia Palamidessi. Her part of the collaboration is supported by INRIA and mine by McGill university and to a small extent by FQRNT.

Existing Collaborations

- I am designated an Équipe étranger of INRIA Futur and work closely with Catuscia Palamidessi. Her part of the collaboration is supported by INRIA and mine by McGill university and to a small extent by FQRNT.
- Josée Desharnais and François Laviolette (U. Laval) collaborate with Jean Goubault-Larrecq. Looser ties with me, Vincent Danos and others.