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Abstract

We present a generator for weighted instances of MAX k-SAT in which every clause
has a weight associated with it and the goal is to maximize the total weight of
satis¯ed clauses. Our generator produces formulas whose hardness can be ¯nely
tuned by two parameters p and ± that control the weights of the clauses. Under the
right choice of these parameters an easy-hard-easy pattern in the search complexity
emerges which is similar to the patterns observed for traditional SAT distributions.

What is remarkable, however, is that the generated distributions seem to lie in the
middle ground between decision and optimization problems. Increasing the value of
p from 0 to 1 has the e®ect of changing the shape of the computational cost from
an easy-hard-easy pattern which is typical of decision problems to an easy-hard
pattern which is typical of optimization problems. Thus our distributions seem to
bridge the gap between decision and optimization versions of SAT.

Furthermore, we demonstrate that these phase transitions are related to sudden
changes to a quantity similar to the backbone of a SAT formula. In our model not
only we know how the optimal solution looks like but we also prove it is unique.
Thus our generator comes with a proof of the optimality of the best assignment
which is basically the structural property that is related to the phase transition
phenomena observed.

1 Introduction

Phase transition phenomena in combinatorial search problems have proved a
fertile source of research activity for over a decade. An informal description of
a \phase transition" is the behavior whereby \small" changes in certain pa-
rameters of a system cause dramatic shifts in some globally observed quantity.
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A typical example of such a behavior is the satis¯ability (SAT) of Boolean for-
mulas. The computational cost of solving random 3-SAT instances (formulas
in Conjunctive Normal Form with 3 literals per clause) exhibits transitions
from easy to hard and back to easy[10,6] as the ratio of number of clauses
to variables increases. In combinatorial graph theory, similar phenomena have
been observed with respect to random n-vertex graphs in which edges are
added with some probability p(n); when one considers a certain property ¦
(connectivity, 3-colorability, etc.) then there is a value for the edge probability
p(n) where the property ¦ appears abruptly[5,1].

The interest in phase transition phenomena stems from experimental studies of
search heuristics for NP-complete problems[3,8,10,6,7], where the probability
of a random instance having a solution is mirrored in the run-time behavior
of the methods used to ¯nd the solution. Phase transitions usually depend on
some control or order parameter that can be adjusted to control the hardness
of the problem. For example, the probability that a random graph is connected
or has a hamilton cycle, etc. depends on the edge density[5,1]; the satis¯ability
and the hardness of 3-SAT formulas depends on the ratio of clauses to variables
[3,10,4,6], and so on.

In particular, instances \outside" the threshold region are typically solved
easily as opposed to instances close to the threshold point which are much
harder to solve. Furthermore, it has been observed that phase transitions
for NP-complete decision problems have easy-hard-easy patterns while phase
transitions for the corresponding optimization problems follow easy-hard pat-
terns[7,15,14].

Our motivation for this research is threefold; First we want to introduce a new
distribution of SAT instances that will bridge the gap and possibly help us
understand the relationship between the phase transitions of decision problems
and those of their optimization counterparts. Second, we want to identify
and locate di±cult instances that can be used in the development of new
solving methods. Finally, we want to understand the characteristics of optimal
solutions and the behavior of algorithms for ¯nding them with respect to
certain structural properties of the instances at hand.

The instances we generate are k-SAT formulas where every clause has a weight
associated with it. The goal is to ¯nd an assignment that maximizes the sum of
weights of the satis¯ed clauses. The generated instances are parameterized by
two quantities p and ± which control the weights associated with the clauses.
By carefully setting the values of these two parameters one can generate dif-
¯cult to solve formulas, thus making it possible to test algorithms on hard
generated instances only.

Furthermore, our generator has two more important characteristics that are
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related to the values of p and ±. The ¯rst one is a theoretical result proving
that the optimal assignment is unique. Since any satis¯ability heuristic when
fed with an instance from our generator will try to maximize the weight of
satis¯ed clauses, this characterization provides algorithm designers with an a
priori knowledge of the optimal assignment. We call this solution the hidden
or planted assignment. Thus by knowing what to expect, algorithm designers
will be able to evaluate better the e®ectiveness of their algorithms.

The second characteristic is the appearance of an easy-hard-easy pattern in
the search complexity for the optimal assignment. Although the problem we
consider here is amaximization one and phase transitions should exhibit \easy-
hard" patterns[7,15,14], by increasing the value of p from 0 to 1 one starts
with \easy-hard-easy" patterns which are typical of decision problems to end
up with \easy-hard" patterns which are typical of optimization problems.
Thus our distributions seem to bridge the gap between decision versions and
optimization versions of SAT. Furthermore, we were able to link this behavior
with a new threshold phenomenon which is related to the uniqueness of the
hidden assignment. Below the threshold, there are other solutions that achieve
equal total weight and di®er from the hidden one in a few variables. Above
the threshold however, the hidden assignment becomes the unique optimal
solution. Thus there exists a transition from a phase where there are more
than one good assignments to a phase where the optimal assignment is unique.
The point to be made is that this transition coincides with the hardest to solve
problem instances.

2 Generator for MAX k-WSAT

Our generator produces weighted instances of the MAX k-SAT problem, which
we call MAX k-WSAT. In general, MAX k-WSAT consists of Boolean expres-
sions in conjunctive normal form, i.e. collection of clauses in which every clause
consists of exactly k literals and has a positive integer weight associated with
it. Given an instance of this problem, one is looking for an assignment to the
variables that satis¯es a set of clauses with maximum total weight.

It is clear that MAX k-WSAT is NP-hard as MAX k-SAT reduces to it by
setting all weights equal to one. In this work we will present a generator for
instances for a degenerate version of MAX k-WSAT, in which all weights to
the clauses are either n2 or n2 + 1, where n is de¯ned below. While this sim-
pli¯cation may seem very restrictive at ¯rst look, it is all we need to create a
generator of k-SAT instances with useful computational properties. Further-
more, even when k = 2, the problem remains NP-hard.

To generate a formula with the above properties we ¯rst start with 2n vari-
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The model Fn;p;± (with super-clauses)

(1) Start with 2n variables, n green and n blue.
(2) (Create the formula) For every 2-tuple of variables x1; x2, irre-

spective of their color and without repetitions, add to the formula
the \super-clause"

c(x1; x2) = :(x1x2 + ¹x1¹x2):

(3) (Assign the weights) For all clauses c(x1; x2), set the clause weight
w(x1; x2) according to the following rule: If x1; x2 have the same color
then

w(x1; x2) =

8><>:n
2 + 1; with probability p

n2; otherwise

If x1; x2 have di®erent colors then

w(x1; x2) =

8><>:n
2 + 1; with probability p+ ±

n2; otherwise

Fig. 1. Generator for 2-WSAT formulas.

ables, n green and n blue, create the clauses and ¯nally assign weights to them.
We call our model Fn;p;±, where n indicates the number of variables of each
color and p; ± are the parameters used to control the maximum total weight
achieved by the hidden assignment (Figure 1). The user can choose any values
for ± and p provided p+± ∙ 1. (While we only show the generator for 2-WSAT
formulas, the extension to k-WSAT formulas should be straightforward.)

By looking at Figure 1 one should observe that the \clauses" c(x1; x2) are not
really clauses in the ordinary 2-SAT sense. In fact, c(x1; x2) = (x1+x2)(¹x1+¹x2).
We chose, however, to work with super-clauses as the results are much easier
to describe and the passing to ordinary 2-SAT expressions is again easy.

It is also clear from the model that the generated formulas are \dense" in that
they consist of all possible combinations of the 2n variables. Thus it makes
no sense to try to satisfy all super-clauses but it makes sense to try to satisfy
a suitable subset of those that incurs the maximum possible total weight. We
will be able to show later on (Theorem 3) that the best assignment (the hidden
assignment as we call it) is the one that has the green variables set to true
and the blue set to false (or vice versa).

De¯nition 1 An assignment is said to split the variables if exactly n variables
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are set to true and n are set to false (irrespective of their color).

The next lemma is used to reduce the space of good assignments. Since our
goal is to generate formulas where assignments are planted, this lemma allows
algorithm designers to test the quality of solutions found by their algorithms
by knowing what to expect for.

Lemma 2 (Look for split assignments) Any assignment that is not evenly
split is outweighted by some assignment with split variables.

Proof (Sketch) The particular choice of weights assigned to clauses makes
the overall weight achieved by the best unevenly split assignment less than
the weight achieved by any assignment with split variables. Thus it is always
best to look for split assignments. 2

While so far we have considered only WSAT formulas with super-clauses,
the same property applies when we break each super-clause to its constituent
clauses. We simply have to modify the model by assigning the weight w(x1; x2)
to each of the two sub-clauses. Thus from now on we will work only with
formulas that consist of super-clauses. To simplify things further we will work
only with split assignments since by Lemma 2 we are allowed to do so.

Our goal now is to show that for a suitable choice of the parameter ±, the
optimal assignment is one that has the green variables set to True and the
blue variables set to False (or vice versa).

Theorem 3 (Optimality of hidden assignment) There is a constant such

that for values of ± ¸ ­(
q
(1¡ p) lnn=n), the assignment which has only the

green variables set to true is optimal with high probability.

Proof (Sketch) The idea is to use Cherno® bounds to show that any split
assignment that has not separated the green from the blue variables has a
neighboring assignment that achieves even better weight, except of course the
hidden assignment. This suggests that these assignments cannot be optimal.
Eventually, we get that the hidden assignment is optimal with high probability
for the range of ± described in the theorem. 2

The optimality theorem characterizes implicitly the values of p for which it is
safe to assume that the hidden assignment is optimal with high probability.

5



Since by the de¯nition of the model we know that ± must be less than 1¡ p,
it is clear that the theorem will be true for values of p satisfying

1¡ p ¸ ­(
q
(1¡ p) lnn=n)

or equivalently

p ∙ 1¡ c lnn
n

(1)

for some constant c. Thus our approach cannot be used for all formulas, but
only for formulas where the monochromatic clauses are not too heavy, as
indicated by Equation 1 and the de¯nition of the model.

3 Hardness Results for WSAT

Our motivation in this section is to show that easy and hard k-WSAT instances
can be predictable in advance. This will enable designers of local search SAT
heuristics to test their algorithms on hard k-SAT instances only in which
the optimal solution is known beforehand. In the experiments that follow we
chose to work with MAX 2-WSAT formulas to illustrate the fact that these
formulas become extremely di±cult to optimize in direct contrast to ordinary
2-SAT formulas, which are solvable in linear time[2]. Although we leave a
more detailed analysis of k-WSAT formulas, k ¸ 3, for the ¯nal version of
this paper, preliminary work shows that they exhibit similar properties to the
2-WSAT case. In all the ¯gures that follow each sample point was computed
after generating 1000 random instances of MAX 2-WSAT.

The local search procedure we used for our tests is a modi¯ed version of
WalkSat[12] in which the strategy we used is to °ip the variable that belongs
to a random unsatis¯ed clause and results in the smallest decrease in the
overall weight of satis¯ed clauses. The main reason for choosing WalkSat is
because it is one of the best performing SAT procedures and because we believe
that these results on hard instances will be applicable to other SAT heuristics
as well. In the ¯nal version of this paper we plan to conduct experiments with
other heuristics and complete methods as well.

Figure 2 shows the median of the total number of variable °ips required by
WalkSat to locate an assignment that achieves the maximum total weight (as
is implied by the hidden assignment) for 2-WSAT formulas with p equal to
1
2
and n = 32; 34; 36; 38 and 40. As can be seen, an easy-hard-easy pattern

emerges which results in an exponential increase in computational cost in the
hardest region similar to the behavior of ordinary 3-SAT formulas [10,6].
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Fig. 2. Median number of total variable °ips for random 2-WSAT formulas as a
function of the parameter ±, when p = 1=2.

It is perhaps instructive at this point to comment a little on the shape of the
curves in Figure 2. Although the computational cost follows an easy-hard-
easy pattern, the second \easy" region where ± is large is no longer very
easy compared to the ¯rst region where ± is small. This is reminiscent of
the behavior of 3-SAT(B), the bounded decision versions of 3-SAT de¯ned by
Zhang[14], where one is looking for an assignment that violates no more than
B constraints. When B = 0, one has 3-SAT; when B is the optimal solution
cost, one has MAX 3-SAT. Thus, such distributions lie in some sense between
the decision problem and its optimization counterpart and like the WSAT
instances exhibit easy-hard-\less easy" patterns.

In general, as was shown in [7,15,13,14] and other works, the phase transitions
of some NP-complete decision problems follow easy-hard-easy patterns and
the phase transitions of some NP-hard optimization problems follow easy-hard
patterns. Thus one may ask, where is the easy-hard behavior of the WSAT
formulas? As we will see in Figure 3, WSAT formulas exhibit the behavior of
optimization problems but only when p grows larger than 1/2. Thus indeed
the value of p = 1=2 is middle ground and by increasing the value of p one
gets a wealth of distributions with higher computational costs.

Figure 3 shows the computational cost required to ¯nd a good assignment for
2-WSAT formulas with n = 34 variables and p ranging from 0:1 to 0:8. (Similar
¯ndings for other values of n are omitted due to space restrictions.) Starting
with p = 0:1 (curve in the front) we see that the point of maximum cost is
moving slowly to the right with a parallel increase in its maximum value, as p
becomes 0:4. However, when p becomes 0:5 or larger the points of maximum
cost are moving slowly to the left to acquire the maximum value when p = 0:8.
All the curves exhibit easy-hard-\less easy" patterns with the exception of the
curve for p = 0:8 which has an easy-hard pattern as ± increases from 0 to its
maximum value 0:200. Thus in this particular curve the computational cost
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Fig. 3. Computational cost for random 2-WSAT formulas with n = 34 and various
values of p and ±.

remains maximum for values of ± > 0:200.

4 Phase Transitions

An important characteristic of Figure 2 is that the transition region becomes
narrower (occurs for a smaller range of ±) for larger values of n when at the
same time the peak shifts to the left as n is increased.

Our goal in this section is to demonstrate a relationship between the hard re-
gion and a phase transition in the structural properties of the WSAT formulas.
It is clear that we cannot have a SAT/UNSAT transition as all instances are
unsatis¯able. A more profound concept related to phase transitions is that
of a backbone which in some sense is the set of all frozen decisions[11,13],
i.e. those with ¯xed outcomes for all possible solutions. For example, in SAT
the backbone of a formula is the set of all literals that are true in all sat-
isfying assignments[11]. A phase transition in such a case has the backbone
ratio raise from nearly 0 to nearly 1, with the hardest instances lying around
the 50% point, not only in their decision version but in their optimization
as well[11,13{15]. In the case of WSAT formulas, however, we chose not to
work with backbones as there is essentially only one solution and most of the
variables have a ¯xed value. We were able, however, to relate the WSAT be-
havior with the probability of uniqueness of the hidden assignment, which is
the crucial structural property of WSAT formulas.

Figure 4 shows the uniqueness probability of the optimal solution for p = 1=2
and a large range of values for n. Observe how the threshold function sharpens
up for larger values of n, like the satis¯ability threshold function for random
k-SAT formulas[10]. So, now, the question becomes: given an arbitrary value
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Fig. 4. Phase transition for p = 1=2 and various values of n.
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Fig. 5. Phase transition for p = 1=2 and various values of n, after rescaling.

of n how can we determine the value of ± that results in the most di±cult
to solve instances? The answer is given by ¯nite-size scaling[9], in which the
horizontal axis is rescaled by a quantity that is a function of n.

Figure 5 shows the result of rescaling the curves of Figure 4. The unique-
ness probability is plotted against ±0, a rescaled version of ± equal to ±0 =
±n²=2

p
1¡ ², where ² = 0:56. Finally, Figure 6 demonstrates how the compu-

tational cost for various values of n collapses into a universal curve. To obtain
these data we ¯rst normalized the curves shown in Figure 2 and then applied
the rescaling described previously. We see clearly that the critical point is
when the rescaled ± is equal to 0:60 which corresponds to the 65% uniqueness
probability in Figure 5. Thus the main empirical observation we can draw
from these pictures is that when p = 1=2, the hardest 2-WSAT formulas lie at
the point where about 65% of them have the hidden assignment as the optimal
one.
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Fig. 6. Computational cost for p = 1=2 and various values of n after rescaling.
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Fig. 7. Phase transition for p = 0:6; 0:7; 0:8 and various values of n.

To summarize our ¯ndings so far, we have seen that WSAT formulas exhibit
phase transitions that are related to the uniqueness probability of the optimal
assignment. Furthermore, we saw that by increasing the value of p (Figure 3)
one obtains the hardest to solve instances, with easy-hard patterns in their
cost. An interesting question is why does this happen. We believe that when
p is large, most clauses (irrespective of their color) have large weights which
makes it extremely di±cult to locate the variables that achieve the largest
overall weight. When on the other hand p is small, it is the value of ± that
de¯nes the hardest instances. Thus in this case we get easy-hard-easy patterns
with medium values for ± de¯ning the most di±cult to solve problems.

Another interesting question is whether the characterization we obtained using
¯nite size scaling for the case p = 1=2 also applies to other values of p. In
particular, it is important to know the threshold point for distributions with
large values of p as these generate the most interesting formulas from the
algorithm designer's point of view.
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Fig. 8. Phase transition for p = 0:7 and various values of n, after rescaling.

Figure 7 shows how the probability of uniqueness changes as a function of ±,
when p = 0:6; 0:7; 0:8 and n = 30; 34; 38. We were able to plot all these curves
in the same ¯gure as the separation introduced by increasing the value of p was
a lot more than the separation introduced by increasing the value of n. Fur-
thermore, it is worthwhile to observe how the threshold function sharpens up
for larger values for p indicating an abrupt change in the uniqueness probabil-
ity, similar to that observed for the backbone of SAT distributions[11,13{15].

It turns out that the rescaling formula

±0 = ±n²=2
p
1¡ ² with ² = 0:56

works equally well for other values of p (6= 1
2
) provided p is kept ¯xed and only

n varies. Figure 8 shows the result of rescaling the curves of Figure 7, when
p = 0:7. When the same rescaling is applied to the normalized computational
costs of ¯nding the best assignment for values of n = 30; 34; 38, we obtain the
universal match shown in Figure 9. The only di®erence is that the peak value
happens for a di®erent value of the rescaled ± (in this case ±0 = 0:46). What
is remarkable however, is that again the hardest to solve instances seem to
live at the 65% probability of uniqueness point as shown in Figure 8. Thus
using this approach one can concentrate on large values of p (where the really
hard WSAT distributions are) and use the rescaling formula to generate the
hardest to solve instances.

A ¯nal observation is that this methodology cannot be used for values of p
very close to 1. Theorem 3 limits the values of p where the hidden assignment
is optimal to those where p ∙ 1 ¡ c lnn

n
. In fact, by some experimentation

we were able to determine that the value of the constant c is close to 2. For
values of p larger than those implied by the theorem, the generated formulas
are essentially the same and no guarantees of optimality can be given.
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Fig. 9. Computational cost for p = 0:7 and various values of n after rescaling.

5 Conclusions

In this work we presented a generator for instances of MAX k-WSAT in which
every clause has a weight associated with it and the goal is to maximize
the total weight of satis¯ed clauses. We showed that our generator produces
formulas whose hardness can be ¯nely tuned by two parameters p and ± that
control the weights of the clauses. Under the right choice of these parameters
an easy-hard-easy pattern in the search complexity emerges which is similar
to the patterns observed for traditional SAT distributions.

Furthermore, the distributions examined here seem to lie in the middle ground
between decision and optimization problems. Increasing the value of p from 0
to 1 has the e®ect of changing the shape of the computational cost from an
easy-hard-easy pattern typical of decision problems to an easy-hard pattern
typical of optimization problems. Thus our distributions seem to bridge the
gap between decision and optimization versions of SAT. Furthermore, the
hardest instances overall seem to be the ones with the largest value of p.

Finally, we were able to relate these phase transitions with a new structural
property of the generated instances which is similar to the backbone of SAT
formulas. In particular, we showed how the hardness peak corresponds to a
point where there is a transition from formulas which have many optimal
assignments to formulas where the optimal assignment is unique. And this is
perhaps the most important characteristic of our generator; under the right
choice of the parameter ±, not only we know how the optimal solution looks
like but we also know it is unique. In conclusion, we believe that our generator
will be useful in the analysis and development of future SAT heuristics since by
knowing what to expect algorithm designers will better test the e®ectiveness
of their search procedures.
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