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Abstract

People arrive one at a time to a theater consisting of m rows of length n. Being
unfriendly they choose seats at random so that no one is in front of them, behind
them or to either side. What is the expected number of people in the theater when
it becomes full, i.e., it cannot accommodate any more unfriendly people? This is
equivalent to the random process of generating a maximal independent set of an
m×n grid by randomly choosing a node, removing it and its neighbors, and repeating
until there are no nodes remaining. The case of m = 1 was posed by Freedman
and Shepp (11) and solved independently by Friedman, Rothman and MacKenzie
(12; 14) by proving the asymptotic limit 1

2 − 1
2e2 . In this paper we solve the case

m = 2 and prove the asymptotic limit 1
2 − 1

4e . In addition, we consider the more
general case of m × n grids, m ≥ 1, and prove the existence of asymptotic limits
in this general setting. We also make several conjectures based upon Monte Carlo
simulations.
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1 Introduction

Freedman and Shepp (11) posed the following “unfriendly seating arrange-
ment” problem:

There are n seats in a row at a luncheonette and people sit down one at a
time at random. They are unfriendly and so never sit next to one another
(no moving over). What is the expected number of persons to sit down?

This can be thought of as a special case of the following problem.

Consider the following natural process for generating a maximal indepen-
dent set of a graph. Randomly choose a node and place it in the indepen-
dent set. Remove the node and all its neighbors from the graph. Repeat this
process until no nodes remain. What is the expected size of the resulting
maximal independent set?

The problem of Freedman and Shepp asks one to analyze this process for the
case of a 1 × n grid. Solutions to this problem were provided by Friedman,
Rothman and MacKenzie (12; 14) who show that as n tends to infinity the
expected fraction of the seats that are occupied goes to 1

2
− 1

2e2 . (For a nice
exposition on this and related problems see (10).)

In this paper we study the generalization of this problem to the m × n grid
where m > 0 is fixed (see Figure 1).

In particular, we solve the following problem:

There are n seats on either side of a long rectangular dining table at which
people sit down at random, one at a time. They are unfriendly so that each
person requires that their neighboring seats and the seat across from them
is empty. What is the expected number of persons to sit down?
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Fig. 1. A saturated seating arrangement on an m × n grid with mn seats (and
m = 5, n = 13). Empty bullets represent unoccupied seats and gray bullets occupied
seats.

So, for the case case of the 2 × n grid, we show that the expected fraction of
seats occupied goes to 1

2
− 1

4e
, as n tends to infinity. The limiting fraction is

shown to exist for each m and we provide estimates on their values by way of
Monte Carlo simulations. We refer to the general m×n case as the Unfriendly
Theater Seating Arrangement Problem where people arrive at a movie theater
with m rows of n seats each.

1.1 Related work

The original seating arrangement problem was generalized to the case where
the number of seats left on either side of a new arrival must be at least b and
solved by Rothman and MacKenzie (12). (Clearly this can be thought of as the
maximal independent set process on a 1×n grid where each node is connected
to its b closest neighbors on either side.) They also discuss the relation of this
problem to the well-known Parking Problem that was first studied by Renyi
(16): Given the closed interval [0, x] with x > 1, let one-dimensional cars of
unit length be parked (i.e., without overlap) randomly on the interval. What
is the expected value of the number of cars as a function of x? Renyi shows
that this is .748... asymptotically in x. A recent related paper on this topic is
(5).

The number and size of random independent sets on grids (and other graphs)
is of great interest in statistical physics. These studies consider the case of
hard particles in lattices satisfying the exclusion rule that when a vertex of the
lattice is occupied by a particle its neighbors must be vacant. Such hard square
and hard lattice problems have been studied extensively both in physics and
combinatorics (1; 4; 6; 7; 9; 2; 3; 18; 19). Interestingly, we came to this problem
by way of studying the number of saturated secondary structures of a random
RNA sequence (13). We note that in all of these studies the independent sets
considered are not generated by the sequential process considered here and
thus the results do not apply in our context.
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1.2 Preliminary definitions

An m × n grid graph has vertex set {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n} and edge
set {{(i, j), (k, l)} | |i − k| + |j − l| = 1}. An independent set is a subset of
the vertices such that no two vertices are joined by an edge. An independent
set is called maximal (or saturated) if no vertices can be added to it to form
a larger independent set. For m fixed, define Fm,n to be the expected size of
a maximal independent set returned when the above process for generating a
maximal independent set is applied to an m × n grid.

1.3 Results of the paper

In the sequel we study the asymptotic behavior of the expected size of a
maximal independent set of an m × n grid. We prove in Section 2 that the
double limit

lim
m,n→∞

Fm,n

mn
exists. We also prove various inequalities and identities concerning the relative
sizes of the limits

fm := lim
n→∞

Fm,n

mn
when m is fixed. For specific values of m, results of (12) show that f1 is equal
to 1

2
− 1

2e2 . In Section 4 we show that f2 is equal to 1
2
− 1

4e
. We finish by

discussing the results of some Monte Carlo simulations for estimating fm for
small m > 2 along with some conjectures and open problems.

2 Asymptotics of the Expected Size of Saturated Configurations

In this section we prove the main result on the existence of asymptotic limits
of the expected size of random saturated configurations. First we begin with
some basic inequalities on saturated configurations, next we prove a basic
lemma on weakly superadditive functions on the integers and conclude with
proving the existence of the double limit limm,n→∞

Fm,n

mn
.

2.1 Basic inequalities

Consider an undirected graph G = (V, E) with V its set of vertices and E its
set of edges.
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Definition 1 A subset A of V is called G-independent (or independent in G)
if for no two different vertices u, v ∈ A is it true that {u, v} ∈ E.

Definition 2 For two subsets A, B of V we say that A is G-independent of
B if the following conditions hold:

(1) A ∩ B = ∅,
(2) for all u ∈ A and v ∈ B we have that {u, v} 6∈ E, i.e., no vertex of one

set is adjacent with a vertex of the other.

If the graph G is easily understood from the context we will simply say that
A is independent of B.

Let XG be the random variable that counts the number of occupied seats of a
saturated configuration in G, and let XA, XB, XA∪B be the random variables
that count the number of occupied seats of saturated configurations in the
subgraphs induced on A, B, A ∪ B, respectively.

Lemma 1 Consider a graph G. If A is G-independent of B then

E[XG] ≥ E[XA] + E[XB].

Moreover, if A ∪ B = V then we have equality E[XG] = E[XA] + E[XB].

Proof. It is clear that for every k, Pr[XG ≥ k] ≥ Pr[XA∪B ≥ k], and
therefore E[XG] ≥ E[XA∪B]. Additionally, if A is G-independent of B we
have XA∪B = XA + XB, and hence E[XA∪B] = E[XA] + E[XB]. 2

Lemma 2 If H is an induced subgraph of G then

E[XH ] ≤ E[XG],

where XG, XH are the random variables that count the number of occupied
seats of saturated configurations in G and H, respectively,

Proof. Observe that if a set is independent in H it is also independent in G.
Therefore for all k we have that

Pr[XH ≥ k] ≤ Pr[XG ≥ k].

Hence, E[XH ] ≤ E[XG]. 2

2.2 Weakly superadditive functions

Before proving the main limit theorem we will give the proof of a useful result
which is an extension of a theorem due to (8) on superadditive functions. First
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we state the following definition (see also (17)).

Definition 3 A function f defined on the nonnegative integers is called su-
peradditive if

f(s) + f(s′) ≤ f(s + s′), for all s, s′. (1)

An extension of this definition that will be useful in the sequel is the following.

Definition 4 A function f defined on the nonnegative integers is called weakly
superadditive if there is an integer constant c ≥ 1 such that

f(s) + f(s′) ≤ f(s + s′ + c), for all s, s′. (2)

Lemma 3 For any monotone function g(n) ≥ n and for any weakly superad-
ditive function f for which f(n)/g(n) is bounded, the limit

lim
n→∞

f(n)

g(n)

exists.

Proof. Let f be a weakly superadditive function f satisfying (2) for some

integer constant c ≥ 1 and set lim supn→∞
f(n)
g(n)

= a. Then, there exists a

strictly increasing sequence (ak) such that limk→∞
f(ak)
g(ak)

= a. For some fixed k,

and for any n, we can find 0 ≤ s ≤ g(ak)+c−1 such that g(n) = s+i(g(ak)+c).
Using induction on i and (2) we see that

f(n) = f(s + i(ak + c))

= f(s + (i − 1)(ak + c) + ak + c)

≥ f(s + (i − 1)(ak + c)) + f(ak)
...

≥ f(s) + if(ak).

Therefore

f(n)

g(n)
≥

if(ak) + f(s)

g(n)
=

f(ak)

g(ak) + c

(

1 −
s

g(n)

)

+
f(s)

g(n)
.

It follows that lim infn→∞
f(n)
g(n)

≥ f(ak)
g(ak)+c

, which yields

lim inf
n→∞

f(n)

g(n)
≥ lim

k→∞

f(ak)

g(ak) + c
. (3)

6



Since the sequence (g(ak)) is strictly increasing, we have limk→∞
f(ak)

g(ak)+c
= a

and the lemma follows. 2

2.3 Existence of double limit

Next we concentrate on the proof of the existence of the double limit. First
we prove a useful lemma.

Lemma 4 Let t be an increasing integer valued function such that

max{t(n), t(n′)} ≤ t(n + n′ + 1), for all n, n′ ≥ 1. (4)

Then the limit

lim
n→∞

Ft(n),n

t(n)n

exists.

Proof. Consider a t(n + n′ + 1) × (n + n′ + 1) grid and the following two
subsets of vertices to the left and right of the (n + 1)st column:

• A consists of the first 1, 2, . . . , n columns (which form a t(n + n′ + 1) × n
grid), and

• B consists of the last n′ columns n + 2, n + 3, . . . , n + n′ + 1 (which form a
t(n + n′ + 1) × n′ grid).

It is clear that A is independent of B in the t(n + n′ + 1) × (n + n′ + 1) grid.
In view of the main property in (4) of the function t and Lemmas 1 and 2 we
have

Ft(n),n + Ft(n′),n′ ≤Fmax{t(n),t(n′)},n + Fmax{t(n),t(n′)},n′

≤Ft(n+n′+1),n + Ft(n+n′+1),n′

≤Ft(n+n′+1),n+n′+1.

Therefore the function f(s) := Ft(s),s satisfies the hypothesis of Lemma 3.

This implies that the limit limn→∞
Ft(n),n

t(n)n
exists and completes the proof of

the Lemma. 2

For the time being we will use Lemma 4 to conclude that for various functions
t satisfying (4) it makes sense to define the limit

ft := lim
n→∞

Ft(n),n

t(n)n
. (5)
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The following definition provides a useful notation.

Definition 5 We use the following notation for the limit defined by (5) when

(1) t(n) = m is the constant function such that t(n) = m, for all n, and
m ≥ 1,

fm := lim
n→∞

Fm,n

mn
.

(2) if t := id is the identity function such that id(n) = n, for all n,

fid := lim
n→∞

Fn,n

n2
.

Now we can prove the main theorem.

Theorem 1 The double limit exists and the following identities hold

lim
m,n→∞

Fm,n

mn
= lim

m→∞
fm = fid.

Proof. Before proving the existence of the double limit we prove the following
inequalities for all integers m ≥ 1,

Claim 1. If id is the identity function then

m

m + 1
· fm ≤ fid,

Claim 2.
Fm,m

m2
≤

m + 1

m
· fm.

Let m ≥ 1 be a given integer. In view of Lemma 4 the quantities fm are well
defined. Therefore without loss of generality we may assume throughout that
m divides n.

First we prove Claim 1. Consider n/m rectangular grids each having dimen-
sions m × (n + n/m − 1) and separated from each other by n/m − 1 many
rows (i.e., 1 × (n + n/m − 1) grids). There results a square with dimensions
(n + n/m− 1)× (n + n/m− 1). Since the m× (n + n/m− 1) grids above are
independent of each other we can apply Lemma 1 in order to derive

n

m
Fm,n+n/m−1 ≤ Fn+n/m−1,n+n/m−1.

If we divide both sides by (n + n/m − 1)2 we get

n
m

Fm,n+n/m−1

(n + n/m − 1)2
=

n

n + n/m − 1
·

Fm,n+n/m−1

m(n + n/m − 1)
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=
1

1 + 1/m − 1/n
·

Fm,n+n/m−1

m(n + n/m − 1)

≤
Fn+n/m−1,n+n/m−1

(n + n/m − 1)2

and therefore the desired inequality in Claim 1 above follows by passing to
the limit as n → ∞ for m constant.

Next we prove Claim 2. Take n/m square grids each of size m × m and sepa-
rated from one another by columns (i.e, m × 1 grids). The resulting grid has
dimensions

m ×
(

n

m
· m +

(

n

m
− 1

))

= m ×
(

n +
n

m
− 1

)

.

Since the square grids above are independent of each other, Lemma 1 applies
to show that

n

m
Fm,m ≤ Fm,n+ n

m
−1.

Therefore if we divide both sides by m(n + n/m − 1) we derive

n
m

Fm,m

m(n + n
m
− 1)

≤
Fm,n+ n

m
−1

m(n + n
m
− 1)

.

Hence,
Fm,m

m2
≤

n + n
m
− 1

n
·

Fm,n+ n
m
−1

m(n + n
m
− 1)

,

which implies the desired inequality by passing to the limit as n → ∞.

It remains to prove the identities concerning the double limit. Indeed since
limm→∞

m+1
m

= 1 we have that

fid = lim
m→∞

Fm,m

m2
(by definition)

≤ lim
m→∞

fm (by Claim 2)

= lim
m,n→∞

Fm,n

mn
(by definition)

≤ fid (by Claim 1),

as desired. This completes the proof of Theorem 1. 2

The existence of the double limit can also be shown to imply that the square
grid is the asymptotic limit of rectangular m × n grids in which m is a func-
tion of n. More precisely, Theorem 1 implies the following corollary which
generalizes Lemma 4.
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Corollary 1 Let t be an increasing integer valued function such that t(n) →
∞ as n → ∞. Then the limit

ft = lim
n→∞

Ft(n),n

t(n)n
,

exists and is independent of t, namely ft = fid.

3 Inequalities on the Asymptotic Limits

In this section we prove several inequalities which compare the relative sizes
of the asymptotic limits {fm : m ≥ 1}.

Theorem 2 For any integers m, m′ ≥ 0 we have

mfm

m + m′ + 1
+

m′fm′

m + m′ + 1
≤ fm+m′+1.

Proof. First consider the case where both m, m′ ≥ 1. Consider the (m +
m′ + 1) × n grid and the following two subsets of vertices separated by the
(m′ + 1)st row:

• A consists of the top m rows (which is an m × n grid), and
• B consists of the bottom m′ rows (which is an m′ × n grid).

Clearly, A is independent of B in the (m+m′+1)×n grid. In view of Lemma 1
we have

Fm,n + Fm′,n ≤ Fm+m′+1,n.

It follows that

Fm,n

(m + m′ + 1)n
+

Fm′,n

(m + m′ + 1)n
≤

Fm+m′+1,n

(m + m′ + 1)n
.

Hence, passing to the limit as n → ∞ we derive that for all m, m′ ≥ 1

mfm

m + m′ + 1
+

m′fm′

m + m′ + 1
≤ fm+m′+1.

A similar proof will work if either m = 0 or m′ = 0. Details are left to the
reader. This completes the proof of the theorem. 2

As an immediate consequence of Theorem 2 we have the following inequality,

m

m + 1
· fm ≤ fm+1,
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for any integer m ≥ 1, obtained from Theorem 3 when m′ = 0. This in turn
is improved in Theorem 3 by using a more careful analysis.

Theorem 3 For all integers m ≥ 0 we have that

1

4(m + 1)
≤ fm+1 −

m

m + 1
· fm ≤

1

2(m + 1)
.

Proof. First consider the case m ≥ 1. Consider the (m + 1) × n grid G and
the m × n grid H . Let XG and XH be the random variables that count the
number of occupied seats in saturated configurations of G and H , respectively.
We can assume that H is obtained from G by eliminating the top row of G.
Since occupied seats cannot be adjacent, when eliminating the top row, at
most ⌈n/2⌉ occupied seats are being removed. Therefore, for every k we have
that

Pr[XG ≥ k] ≤ Pr[XH + ⌈n/2⌉ ≥ k]. (6)

Similarly, it is easy to see that we can never have more than three consecutive
unoccupied seats in the top row in any saturated configuration of G. This
means that the top row contains at least ⌊n/4⌋ occupied seats. Therefore, for
every k we have that

Pr[XH + ⌊n/4⌋ ≥ k] ≤ Pr[XG ≥ k]. (7)

If we take the expected values of the corresponding random variables on both
sides of (6) and (7) it follows that

⌊n/4⌋ + Fm,n ≤ Fm+1,n ≤ ⌈n/2⌉ + Fm,n,

which yields

⌊n/4⌋

(m + 1)n
+

Fm,n

(m + 1)n
≤

Fm+1,n

(m + 1)n
≤

⌈n/2⌉

(m + 1)n
+

Fm,n

(m + 1)n
.

Hence the result follows by passing to the limit as n → ∞. A similar proof
will work for the case m = 0. Details are left to the reader. 2

Observe that when m increases, the number of nodes of degree less than four as
a fraction of the total number of nodes of the grid drops. Therefore fm should
be a non-increasing function of m. Motivated by the result of Theorem 3 we
state the following conjecture.

Conjecture 1 fm > fm+1, for all m ≥ 1.
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Table 1 in Section 5 reports the results of Monte Carlo simulations which seem
to confirm the conjecture on the monotonicity of the sequence {fm : m ≥ 1}.

4 The 2 × n Grid

In this section, we are interested in the number of occupied seats when un-
friendly people arrive to sit at a long rectangular table with n chairs on each
side. See Figure 2.

Fig. 2. A seating arrangement on a 2×n grid with 2n seats. Empty bullets represent
unoccupied seats and gray bullets occupied seats.

We prove the following theorem:

Theorem 4

f2 = lim
n→∞

F2,n

2n
=

1

2
−

1

4e
.

The proof of the theorem will follow after first proving Lemmas 5 and 6 below.

Towards a proof of Theorem 4 we define three quantities an, bn, cn. For n > 0,
let an be the expected number of occupied seats on a 2× (n+2) grid with the
nodes (1, 1) and (1, n+2) missing. Let bn be the expected number of occupied
seats on a 2× (n + 2) grid with the nodes (1, 1) and (2, n + 2) missing. Let cn

be the expected number of occupied seats on 2× (n + 1) grid with node (1, 1)
missing. Note that by symmetry an is also the expected number of occupied
seats on a 2 × (n + 2) grid with the nodes (2, 1) and (2, n + 2) missing, bn is
also the expected number on a grid with (2, 1) and (1, n + 2) missing, and cn

is also the expected number on a grid with (2, 1), (1, n+ 1), (2, n+1) missing,
respectively. Figure 3 shows examples of the structures counted by an, bn, cn

for the case n = 12.

We first show the following lemma:

Lemma 5

lim
n→∞

an

2n + 2
= lim

n→∞

bn

2n + 2
=

1

2
−

1

4e
.

Proof. By elementary case analysis it is easy to derive the following recur-
rences for an and bn for n > 5:
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Fig. 3. A seating arrangement on a 2×(n+2) grid with 2n+2 seats used in computing
an(top), bn(middle), respectively, and a seating arrangement on a 2 × (n + 1) grid
with 2n+1 seats used in computing cn(bottom), for n = 12. Empty bullets represent
unoccupied seats and gray bullets occupied seats.

an =1 +
1

2n + 2
(
n−4
∑

k=1

(bk + bn−k−3) + 2(bn−1 + bn−2 + bn−3) + 4

+
n−4
∑

k=1

(ak + an−k−3) + 2(an−2 + an−3) + 4)

bn =1 +
1

2n + 2
(2

n−4
∑

k=1

(an−k−3 + bk) + 2(an−1 + an−2 + an−3)

+ 2(bn−3 + bn−2) + 4)

with initial conditions for (an, bn), for n ≤ 5, computed directly from the
definition as follows:

(an, bn) =























































(5/2, 2) for n = 1

(3, 19/6) for n = 2

(47/12, 31/8) for n = 3

(113/24, 283/60) for n = 4

(3981/720, 3980/720) for n = 5

(8)

From this, using elementary calculations, we derive the recurrences (for n > 5):

(n + 1)an =1 + nan−1 + an−2 + bn−1 (9)

(n + 1)bn =1 + nbn−1 + bn−2 + an−1. (10)

Letting un := an+4 + bn+4 we get

(n + 5)un = 2 + (n + 5)un−1 + un−2, (11)

for n > 1 where u0 = 1131/120 and u1 = 7961/720.
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Next we proceed to find an asymptotic formula for un using MAPLE (15).
After some simplifications we get

un = 2n + 12 −
Γ(n + 8,−1)

e(n + 6)!
,

where Γ(n,−1) :=
∫∞
−1 exp(−t)tn−1dt is the incomplete gamma function. From

this it is easily seen that

lim
n→∞

an + bn

4n + 4
=

1

2
−

1

4e
. (12)

Define dn := an − bn. Using (9) and (10) we get that

dn =
n − 1

n + 1
dn−1 +

dn−2

n + 1
.

The last recursion easily gives rise to the following explicit formula

dn =
(−1)n+1

(n + 1)!

which implies trivially limn→∞
an−bn

4n+4
= 0. This completes the proof of Lemma 5.

2

Let An be the 2× (n+2) grid with with the nodes (1, 1) and (1, n+2) missing
(see top grid depicted in Figure 3). We define by XAn

the random variable that
counts the number of occupied seats in a saturated seating arrangement of An.
We define similarly the grids Bn, Cn for the middle and bottom grids depicted
in Figure 3, respectively, and the associated random variables XBn

, XCn
. In

addition, let Xn be the random variable that counts the number of occupied
seats in a saturated seating arrangement on a 2 × n grid. Observe that by
definition F2,n = E[Xn], an = E[XAn

], bn = E[XBn
], cn = E[XCn

]. We now
prove the following lemma.

Lemma 6

lim
n→∞

F2,n

2n
= lim

n→∞

an

2n + 2
= lim

n→∞

bn

2n + 2
= lim

n→∞

cn

2n + 1
.

Proof. We prove only limn→∞
F2,n

2n
= limn→∞

an

2n+2
. The other identities are

proved similarly. Observe that An is an induced subgraph of the 2 × (n + 2)
grid. Therefore by Lemma 2 we have that E[XAn

] ≤ E[Xn+2]. Passing to the
limit it follows that

lim
n→∞

an

2n + 2
≤ lim

n→∞

F2,n+2

2(n + 2)
= lim

n→∞

F2,n

2n
.
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Similarly, the 2×n grid is an induced subgraph of An. Therefore by Lemma 2
we have that E[Xn] ≤ E[XAn

]. Passing to the limit we see that

lim
n→∞

F2,n

2n
≤ lim

n→∞

an

2n + 2
.

This completes the proof of Lemma 6. 2

The proof of Theorem 4 is now an immediate consequence of Lemmas 5 and 6.
As a corollary of the proof of Theorem 4 we also derive the following result.

Corollary 2

lim
n→∞

(F2,n+1 − F2,n) = 2f2.

Proof. For simplicity, we use the notation xn := F2,n. By elementary case
analysis it is easy to derive the following recurrences, for n ≥ 2, involving
xn, an, bn, cn, in addition to the recurrences derived at the beginning of the
proof of Lemma 5 (see Figure 3).

xn = 1 +
1

n
(cn−2 +

n−1
∑

k=2

(ck−2 + cn−k−1) + cn−2).

From these identities, using elementary calculations, we derive the following
recurrence (for n ≥ 2):

(n + 1)xn+1 = 1 + nxn + 2cn−1. (13)

Collecting terms in (13) we see that

xn+1 − xn =
1

n + 1
−

1

n + 1
xn +

2

n + 1
cn−1. (14)

By Lemma 6, limn→∞
cn

2n+1
exists and is equal to f2. Using (14) and passing

to the limit as n → ∞ we see that

lim
n→∞

(F2,n+1 − F2,n) = 2f2,

as desired. 2

5 Experimental Results and Open Problems

We do not know how to calculate the exact value of fm for m > 2. See Table 1
for the approximate predicted values of fm for m ≤ 15 based upon extensive
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Monte Carlo simulations.

Table 1
Experimental values for the asymptotic limit of the expected number of occupied
seats on m × n grids. The results are derived from the average of 100 experiments
on an m × 10, 000 grid.

m fm

1 0.4323

2 0.4078

3 0.3915

4 0.3847

5 0.3807

6 0.3778

7 0.3759

8 0.3744

9 0.3733

10 0.3724

11 0.3716

12 0.3710

13 0.3705

14 0.3700

15 0.3696

If we let m = n we get the interesting case of the expected size of a maximal
independent set generated by the above sequential process on a square grid.
Although we do not know of a way to compute analytically fid = limn→∞

Fn,n

n2 ,
Monte Carlo simulations (the average of 100 trials on a 400×400 grid) suggest
that fid is approximately equal to .3645.

Other interesting open problems arise when considering the above seating
arrangement process on other graphs or graph families. It is easy to show that
the case of the n node cycle yields the same asymptotic result as the 1 × n
grid. It is also not difficult to derive that if we add links to the 2×n grid so as
to form rings on the rows (i.e., a 2× n torus) the results again do not change.
In addition, for the case of the 3 × n torus it is easy to show that the limit
is 1/3 since every triangle must contain exactly one occupied seat. However,
in general we do not know what happens for the case of the m × n torus, for
m ≥ 4. Some other simple cases to analyze are cliques, stars and complete
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bipartite graphs but beyond these all questions appear to be open.
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