
1

Power Strip Packing of Malleable Demands in
Smart Grid

Mohammad M. Karbasioun∗, Gennady Shaikhet†, Evangelos Kranakis‡, Ioannis Lambadaris∗

Carleton University, Ottawa, ON, Canada
∗Department of Systems and Computer Engineering {mkarbasi, ioannis}@sce.carleton.ca

†School of Mathematics and Statistics {gennady}@math.carleton.ca
‡School of Computer Science {kranakis}@scs.carleton.ca

Abstract—We consider a problem of supplying electricity to a
set of N customers in a smart-grid framework. Each customer
requires a certain amount of electrical energy which has to be
supplied during the time interval [0, 1]. We assume that each
demand has to be supplied without interruption, with possible
duration between ` and r, which are given system parameters
(` ≤ r). At each moment of time, the power of the grid is the sum
of all the consumption rates for the demands being supplied at
that moment. Our goal is to find an assignment that minimizes
the power peak - maximal power over [0, 1] - while satisfying all
the demands. To do this first we find the lower bound of optimal
power peak. We show that the problem depends on whether or
not the pair `, r belongs to a ”good” region G. If it does - then an
optimal assignment almost perfectly ”fills” the rectangle time×
power = [0, 1] × [0, A] with A being the sum of all the energy
demands - thus achieving an optimal power peak A. Conversely,
if `, r do not belong to G, we identify the lower bound A > A on
the optimal value of power peak and introduce a simple linear
time algorithm that almost perfectly arranges all the demands
in a rectangle [0, A/A]× [0, A] and show that it is asymptotically
optimal.

I. INTRODUCTION

A. Motivations

One of the main goals of Demand Side Management (DSM)
in smart grid is to reduce the peak to average ratio (PAR)
of the total consumed power of the network [1]. It has
several benefits for the grid such as reducing the amount of
additional supplementary power needed to satisfy the demand
during peak hours which itself results in decreasing the CO2

emissions of power plants. Also reducing the PAR decreases
the possibility of power outage due to sudden increase of
demands. Furthermore with the expected presence of plug-
in hybrid electric vehicles (PHEVs) to the market, finding
a proper scheduling of the electric demands becomes even
more crucial, since during charging hours of PHEVs the
average household load is expected to be doubled [2]. Also
by increasing the number of PHEVs, it is vital to design
and deploy suitable charging stations with proper scheduling
scheme for serving the customers [3]. Therefore finding a
proper scheduling algorithm resulting in a suitable PAR is
very important in the smart grid. Different approaches and
schemes are defined in this field, such as direct load control
(DLC) [4] (in which the utility can directly control the energy
consumption of some loads in customer side) and real time
pricing (RTP) [5] (which propose different pricing schemes

during a day). In addition in [6] authors propose a distributed
algorithm using game theory. In their model the power network
consists of demands each with its own energy demand and
also with its own minimum and maximum acceptable power
level and should be scheduled in their own requested time
intervals. Even though the goal of their algorithm is reducing
the total convex cost of the network, they still show that their
algorithm can be used to reduce the PAR in the network.
The problem in [6] is off-line Scheduling of demands, since
complete knowledge of the demands, such as number of
demands and the amount of energy needed by each of them
are known in advance. Other scenarios can happen when we
don’t have complete knowledge of the demands and hence we
need to perform on-line scheduling. For example in [7] authors
try to find some algorithms for different levels of knowledge
about the demands such as arrival times, durations and power
intensities. Also in [8] and [9] it is attempted to devise on-line
scheduling for the random arrival of demands. In this paper
we focus on off-line scheduling with a complete knowledge
of the demands prior to performing scheduling.

B. Model and Related Works

Consider a set N = {1, 2, ..., n} of energy demands
{Ai, i ∈ N}, needed to be scheduled in a finite time interval
[0, 1]. We assume that only ”rectangular” shape of scheduling
is permitted, meaning that each demand i ∈ N has to be
supplied without interruption in some interval [τi, τi+si] with
a constant power intensity di = Ai

si
. Obviously,

0 ≤ τi ≤ τi + si ≤ 1, i ∈ N . (1)

In addition to (1), we impose a demand malleability constraint.
That is, we assume the power system has parameters ` and r
with 0 ≤ ` ≤ r ≤ 1 so that

` ≤ si ≤ r, i ∈ N . (2)

This is motivated by existence electric appliances with flexi-
bility on the charging rate. As a special application we may
think of a PHEV parking lot with charging facilities where all
customers either are known a priori or should register before
parking their vehicles.

A set of pairs π = {(τi, si), i ∈ N}, satisfying (1)–(2) for
given parameters (`, r), will be called a scheduling policy. Let
Π = Π(`,r) be a set of all policies.

ar
X

iv
:1

30
2.

38
89

v1
 [

cs
.D

S]
 1

5
Fe

b
20

13

2

For a policy π ∈ Π, we define its maximal power as

Pπmax = max
t∈[0,1]

{Pπ(t)}, (3)

where, for (τi, si) ∈ π,

Pπ(t) =

n∑
i=1

(
Ai
si
· 1{τi≤t≤τi+si}

)
, 0 ≤ t ≤ 1.

We are interested in finding a scheduling that minimizes the
peak to average ratio in the power grid, i.e., in finding

Popt = inf
π∈Π

Pπmax. (4)

Note, that Popt, although it is not stated explicitly, depends on
the parameters ` and r.

C. Related literature

Our setting resembles a so-called strip-packing problem [10]
and [11]. Indeed by viewing the demands as rectangles, we
want to pack them with their side si parallel to horizontal axis
in a rectangular bin of width [0, 1] × Popt where an optimal
height Popt is unknown. The problem is known to be NP
complete (see [12]) and therefore an optimal height cannot
always be computed in polynomial time.

In the traditional strip packing (TSP) problem, however,
the height at any time t (Hπ(t)) for a scheduling policy π
is defined as the uppermost boundary of scheduled rectangles
at time t, while in our model (power strip packing - PSP)
the height of the strip packing is obtained from Equation (3).
This difference arises from the nature of the electric power,
in which the overall height (i.e. power) at any given time is
the sum of the scheduled (i.e. active) demands (See Figure 1).
Naturally, for any policy π, Pπ(t) ≤ Hπ(t) at any time t and
hence Pπmax ≤ Hπ

max.
For traditional strip packing problem, most commonly re-

ferred work is [11], which introduces an algorithm AFPTAS,
whose performance AFPTAS(N) satisfies AFPTAS(N) ≤
(1 + ε)Hopt + O(1/ε2). The algorithm is polynomial in both
n (the number of demands) and (1/ε) where the running time
is O(n log n + log3 nε−6 log3 ε−1). Using AFPTAS, Jansen
[13] generalized the setting of [11] to ”Malleable Tasks”
where each task could use different number of resources
(e.g. processor, memories,...) which can also alternate their

Fig. 1: Different interpretations of power and height in PSP and TSP.
For simplicity the height of each rectangle is assumed to be 1. In PSP:
P (t1) = 5 and P (t2) = 3 where in TSP H(t1) = H(t2) = 5.

Fig. 2: Good region vs. Bad region. The Good region is shown with
shadow.

service times. Both algorithms, especially the one in [13],
are complex. In our case, however, a much simpler, linear-
time algorithm is used to obtain a scheduling policy π with a
performance Pπmax satisfying

Pπmax ≤ Popt +
Amax
`

, Amax = max
i∈N

Ai; (5)

which, using the language of [11] and [13], corresponds to
performance ratio being exactly 1 (as an opposite to 1 + ε).

In next section we will present Theorem 1 which is the
main result of the paper. Then in Sections III and IV we
analyse the problem to find proper lower bound and upper
bound for Popt. Then based on theses results in Section V we
will prove Theorem 1. Finally in Section VI we will present
some computational results.

II. MAIN RESULTS

We start with some preparatory work. Let ` and r be fixed.
A real number w > 0 is called achievable, if it can be
represented as an integer combination of numbers from the
interval [`, r]. That is, if there exist an integer number q
and a set of positive real values: s1, ..., sq ∈ [`, r] such that∑q
i=1 si = w.
Lemma 1: A value w is achievable if and only if

⌈
w
r

⌉
≤ w

` .
The proof is given in Appendix A.

Lemma 1 implies that the point w = 1 is achievable if⌈
1
r

⌉
≤ 1

` . Define a good region to be the set of all pairs (`, r)
that makes w = 1 an achievable point (see Fig. 2):

G = {(`, r), ` ≤ r and 1 is achievable}.

If w is not achievable, we define its largest achievable point
w∗ = w∗(w) as:

w∗ = sup{v : v < w, such that v is achievable}

Lemma 2: If w is not achievable, then w∗(w) = r ·
⌊
w
r

⌋
.

The proof is given in Appendix B.

Using Lemma 2, if (`, r) /∈ G, then Z∗ = Z∗(1) = r · b 1
r c.

We are ready to state the main result of the paper.

Theorem 1: Let A =
∑n
i=1Ai. Then Popt ∈[

A, A+ Amax

`

]
, where

A =

A , if (`, r) ∈ G,
A

Z∗
, if (`, r) /∈ G.

(6)

3

As the number of demands n grows, the value of A grows as
well, thus making the interval

[
A, A+ Amax

`

]
tight. There-

fore, every scheduling policy π, whose corresponding value
Pπmax belongs to that interval, will be considered asymptoti-
cally optimal. In the last section two of such policies will be
introduced.

III. LOWER BOUND OF Popt

Theorem 1 will be proved in two main steps, each dealing
with lower and upper bounds respectively. Here we discuss
about lower bound.

Lemma 3:

Popt ≥ A. (7)

Proof: The Inequality (7) is obvious for (`, r) ∈ G
(making Z∗ = 1 and A = A). Therefore, in what follows
we assume (`, r) /∈ G and hence Z∗ < 1. To prove Lemma
3 we use the concept of the Fractional Strip Packing (FSP)
[14], according to which it is allowed to perform horizontal
cutting to each rectangle (si, di) in order to get a set of equal
width rectangles {(si, di1), (si, di2), . . . , (si, diQi

)} such that∑Qi

j=1 dij = di for all i = 1, . . . , n. Then, instead of packing
the original set {(si, di) i = 1, . . . , n} of rectangles, a
packing of a newly obtained set is performed.

Assume a certain set N of demands is given. For any FSP
policy θ, (that includes both assigning (si, di), i ∈ N , as well
as cutting), let P θmax and Hθ

max denote the maximal achieved
heights, calculated according to traditional and power strip
packing respectively. And let also PFopt and HF

opt denote the
FSP optimal values for traditional and power strip packing.
Clearly, A ≤ PFopt ≤ HF

opt and also

A ≤ PFopt ≤ Popt , (8)

A ≤ HF
opt ≤ Hopt . (9)

Next we will show that A
Z∗ ≤ P

F
opt, which, combined with (8),

proves Lemma 3.
Assume an arbitrary scheduling policy π ∈ Π(`,r)

is given. Cut each demand (si, di) horizontally to get
the new set of very short height rectangles N ′ =
{(si, di1), (si, di2), . . . , (si, diQi

)} such that dij = δ ∀i, j
where δ is an infinitesimal positive real value. Now we try to
pack these narrow rectangles in a strip of width 1 as follows:
Let call an FSP policy θ∗ as filling when there will not remain
space to put any new rectangle with any arbitrary width si
(` ≤ si ≤ r) in each of its rows, i.e. the sum of all gaps
in each row is always less than `. (maybe except for the last
row). (Θ∗ is the set of all possible fillings θ∗). Now to pack
all the narrow rectangle with a filling, we start with the first
narrow rectangle and put it in the first row and then try to
fill this row with subsequent narrow rectangles. After filling
a row we continue with filling subsequent rows until all the
narrow rectangles will be scheduled.

Lemma 4:

PFopt = min
θ∗∈Θ∗

P θ
∗

max (10)

The proof is given in Appendix C. So with respect to
Equation (10), in the sequel to show that A

Z∗ ≤ PFopt we just
consider fillings θ∗ ∈ Θ∗.

From Lemma 2 we know that in each row we cannot cover
the time axis more than Z∗, then the maximum height (i.e.
the upper boundary of the top row) cannot be less than A

Z∗ ,
otherwise the total area will be less than A. Combining this
fact with Inequality (9) results in:

A

Z∗
≤ HF

opt ≤ Hopt (11)

It proves Lemma 3 for TSP, but to prove this Lemma for
PSP we should take into account all possible gaps in each
row. Because, as mentioned before, the way of computing the
maximum height in PSP is different from TSP. Indeed in PSP
in calculating the height or more precisely the total power
at each time, only the active demands at that time will be
considered and gaps are not taken into account (Equation (3)
and Figure 1). Also note that by filling each row arbitrarily,
these gaps can split in more than just one part in a row and may
happen in different places of the time axis for different rows.
Lemma 5 tells that in any arbitrary filling there will be exactly
K0 = b 1

r c rectangles in each row and then in Lemma 6 it will
be shown that for any arbitrary filling, there will be exactly
K0 equal length and identically placed “gap-free” interval in
each row. Therefore for each filling θ∗, the resulted Pmax
here is indeed equal to Hmax and consequently PFopt = HF

opt.
Eventually using Lemma 4 together with (11) proves Lemma
3 for PSP.

Lemma 5: In any filling θ∗ for a set of narrow rectangles of
arbitrary widths si (s.t. ` ≤ si ≤ r), exactly K0 = b 1

r c = b 1
` c

narrow rectangles are needed (This may not apply for the last
row which may contain less rectangles).
The proof is given in Appendix D.

Lemma 6: Under the same conditions as in Lemma 5, each
row will contain K0 identical (i.e. equal length and identically
placed) intervals, (1−(K0−i+1)·` , i·`) for all i = 1, . . . ,K0,
which cannot contain any gaps (maybe except for the last row).

Proof: Assume that we are trying to put K0 arbitrary
width narrow rectangles in a row. Now assume that we want
to put the ith rectangle in this row. The largest value for the
starting time of ith narrow rectangle, i.e. τi, occurs when all
the narrow rectangles starting after τi, including ith rectangle
itself, have the same width `. Also all possible gaps happen
before τi. Then the length of the remaining time after τi is
: (K0 − (i − 1)) · ` and hence the largest value for τi is as
follows:

τi,largest = 1− (K0 − (i− 1)) · `

On the other hand the smallest value for the finishing time
of this rectangle, i.e. fi = τi + si, happens only when this
rectangle and all of the previous (i − 1) narrow rectangles
have the same width ` and no gap placed in the time axis
until after the fi. Then the smallest value for fi is:

fi,smallest = i · `

Therefore ith narrow rectangle starts at most at time τi,largest
and remains active at least until fi,smallest. Then we conclude
that the ith narrow rectangle (and only this one) is definitely

4

active during the following time interval (1−(K0−i+1)·`, i·`)
with the length:

i · `− (1− (K0 − i+ 1) · `)

=(K0 + 1) · `− 1 =

⌈
1

`

⌉
· `− 1 > 0

Therefore we have K0 = b 1
r c = b 1

` c active intervals with
equal non-zero length (K0 + 1) · `− 1.

Note that it is impossible for a demand to be completely
placed in the interval between two consecutive active intervals,
because the length of such an interval is 1 −K0 · ` which is
less than ` (because 1 < d 1

` e = (K0 + 1) · `).
Corollary 1: In ith active interval of any filling θ∗ (Lemma

6), when filling each row with narrow rectangles, definitely
the ith narrow rectangle in that row is scheduled and the ith

narrow rectangle is the only one which can be scheduled in
this interval (maybe except for the last row).
Using Lemma 6, we conclude that in FSP when filling the
rows with any arbitrary placement and with any arbitrary width
(si) for narrow rectangles, there will be exactly K0 gap-free
identical intervals in every row. Therefore the P θ

∗
max is exactly

the same as Hθ∗
max which is the sum of the heights of all the

rows.
Note that no one can change FSP above and get the lower

P θ
∗

max. For example if one tries to decrease the P θ
∗

max by just
one level, it needs to remove at least K0 narrow rectangles
from different gap-free intervals, either from one row or K0

different rows (corollary 1). Then these narrow rectangles will
form at least one new row which then only can keep the total
height the same as before and cannot decrease the P θ

∗
max. So

P θ
∗

max above is in fact minimum among all possible fillings
and hence using (10) in Lemma 4 it is equal to PFopt.

From Lemma 2 we know that in a filling of narrow
rectangles, in each row we cannot cover the time axis more
than Z∗ = r · b 1

r c, then the maximum height (i.e. the
upper boundary of the top row) cannot be less than A

Z∗ ,
otherwise the total area will be less than A. Therefore we
have: A

Z∗ ≤ P
F
opt ≤ Popt which proves Lemma 3.

In the next section we will use a simple linear time
algorithm, in which we try to keep the P (t) (and hence
Pmax) around A

Z∗ . Using this algorithm we will show that the
Popt ≤ A+ Amax

` which proves the upper bound of Theorem
1 and hence it also proves that this algorithm is asymptotically
optimum.

IV. ALGORITHM

From Lemma 1, we know that t = 1 is achievable if and
only if d 1

r e ≤
1
` . Based on this fact, in the sequel, we will

introduce different cases and in each case we will find a proper
policy which results in acceptable Pmax.

A. Ideal Cases

First assume that ` ≤ 1 and r = 1 (So 1 is achievable).
In this case we have an optimal policy π∗ as follows: stretch
the width of each demand to the whole time interval [0, 1],
and then piling the demands up on top of each other. Another
ideal case is when we have ` ≤ Ai

A ≤ r, i = 1, · · · , n. In this
case in optimal policy π∗ we have: si = Ai

A , therefore since

∑n
i=1 si =

∑n
i=1

Ai

A = 1, 1 is achievable. So in this case
we can simply stretch each intensity to A as Ai = Ai

A × A
and place the demands side by side. In both cases we have
P (t) = A for all t ∈ [0, 1] and hence:

Pπ
∗

max = A ≤ A+
Amax
`

(12)

So for Ideal cases, we can pack the demands in a strip of
height A and and because A ≤ Popt ≤ Hopt, the output in
this case is absolutely optimum.

B. Near Ideal Cases

In this case t = 1 is achievable and hence Z∗ = 1. Then
we perform scheduling policy π as follows: Simply divide the
time interval [0, 1] into K0 = d 1

r e non-overlapping time slots
with equal length S0 = 1

K0
and since in this case we have

d 1
r e ≤

1
` (Lemma 1), we are sure that ` ≤ S0 ≤ r.

Now we can start with the first demand and put it in the
first slot and continue this until the height of that slot becomes
greater or equal to the threshold value, A, then continue
by putting the next demand in the next slot and doing the
same procedure until all of the demands have been packed.
Therefore the height of each slot is at most A+ Amax

S0
. So in

this case we have:

Pπmax ≤ A+
Amax
S0

≤ A+
Amax
`

(13)

C. Non-Ideal Cases

In this case t = 1 is NOT achievable, so the constraints on
` and r are as follows:

0 < ` < r < 1 and
⌈

1

r

⌉
>

1

`

These conditions imply that b 1
r c = b 1

` c. Using Lemma 2, we
have: Z∗ = r · b 1

r c < 1.
In this case the chosen policy π is as follows: We simply

divide the time interval [0, Z∗] into K0 = b 1
r c non-overlapping

time slots with equal length r and leave the remaining part
of the time interval, i.e. [Z∗, 1] unscheduled. Now we can
use the same approach used in Subsection IV-B, while here
si = S0 = r, i = 1, . . . , n and K0 = b 1

r c and also the
threshold value is A

Z∗ . Then in this case we have:

Pπmax ≤
A

Z∗
+
Amax
r
≤ A+

Amax
`

(14)

V. PROOF OF THEOREM 1

Proof: Lemma 3 showed that A ≤ Popt, which proves
the lower bound part of Theorem 1. In addition in Section
IV, for each set of demands N with pair (`, r), resulting in
ideal, near-ideal, non-ideal cases, we introduced a policy π

with performance Pπmax ≤ A+
Amax
`

which results in:

Popt ≤ A+
Amax
`

(15)

which proves the upper bound part of Theorem 1. There-
fore combining inequalities (7) and (15) gives us: Popt ∈[
A, A+ Amax

`

]
which proves Theorem 1.

5

VI. COMPUTATIONAL RESULTS

Algorithm 1, which is called “Power Strip Packing” al-
gorithm, summarizes all the steps of packing the demands.
Clearly the running time of this algorithm is linear in n,
the number of demands. As we discussed in Section IV, we
showed for this algorithm we have:

PPSPmax ≤ A+
Amax

`
≤ Popt +

Amax

`
(16)

In obtaining the last inequality in (16) we used Inequality (7) in
Lemma 3. So as it was mentioned in Subsection I-C, using the
language of [11] and [13], it corresponds to performance ratio
being exactly 1. Therefore this algorithm is asymptotically
optimal for all different cases. Furthermore as we can see in
Algorithm 1, this algorithm is linear time.

We can achieve better performance in terms of flatter P (t)
for t ∈ [0, 1] and get lower Pmax, albeit at the expense of
increasing the number of operations. For example the greedy
algorithm works by ordering the demands by non-increasing
areas (Ai) and select si = S0 for i = 1, · · · , n exactly the
same as that of in PSP Algorithm 1 (and hence di = Ai

S0
). Then

start with the first (i.e. largest) demand and put it in a slot
with minimum total height and continue this for subsequent
demands until packing all of the demands. Note that when
greedy algorithm place a new demand in a slot, it is not
possible that the height of every slot being greater than A

Z∗ ,
otherwise the total area A

Z∗ × Z∗ exceeds A, the sum of
the demands. Therefore the height of each slot is at most
A
Z∗ + Amax

S0
. So the inequalities (13) and (14) are still valid and

hence it is also asymptotically optimal. However the running
time is O(n2).

Figures 4 and 3 illustrate the outputs of the presented al-
gorithms (Algorithm 1 and the greedy algorithm) for different
values of |N |, the number of demands, in near ideal cases and
non-ideal cases respectively. In these figures the demands, i.e.
Ai’s, are independent and identically uniformly distributed in
the interval [0, `]. For each value of |N |, each of the algorithms
is performed 30 times and then the mean value is depicted
as the corresponding Pmax of each algorithm. Furthermore
for some values of |N | the corresponding 0.95% confidence
intervals are shown in these figures.

As it can be seen from these figures, in both cases, with
or without ordering always we have: Pmax ≤ A

Z∗ + Amax

` .
However as we can see in these figures, ordering can improve
the performance of the algorithm albeit at the expense of
increasing the number of operations.

VII. CONCLUSION

In this paper considering a problem of supplying electricity
to malleable demands, we introduced off-line Power Strip
Packing (PSP) problem and showed that using a linear time
algorithm will result in asymptotically optimal performance.
One may extend this problem such that different demands can
have different scheduling bounds. Another (and may be more
important) extension to this problem is On-line Power Strip
Packing where the goal is serving the arriving demands with
different stochastic characteristics such as energy demands,

Algorithm 1 Power Strip Packing algorithm

1. INPUT `,r, Demands Ai i = 1, . . . , n
2. OUTPUT Pmax,Hmax and Scheduling policy
3. A =

∑n
i=1Ai, Amin = mini{Ai}, Amax = maxi{Ai}

4. if (r ≥ 1) or (` ≤ Amin

A ≤ Amax

A ≤ r) then
5. Perform Ideal Scheduling (Subsection IV-A)
6. Pmax = Hmax = A
7. else
8. if {d 1

r e ≤
1
` } then K0 = d 1

r e and S0 = 1
K0

and Z∗ = 1

9. else K0 = b 1
r c and S0 = r and Z∗ = r · b 1

r c
10. Threshold = A

Z∗

11. Fill each slot until its height exceeds the Threshold,
then continue with next slot

12. Pmax = Hmax = maxj{height of j-th slot , j =
1, . . . ,K0}

13. end if

scheduling bounds (`, r), arriving times and the deadline for
scheduling each of them.

APPENDIX A
PROOF OF LEMMA 1

Proof: Suppose that there is a sequence sj , j = 1, ..., q
satisfying ` ≤ sj ≤ r. Now Consider the following definition:
s′ , 1

q

∑q
j=1 sj =

∑q
j=1

1
q · sj (Clearly ` ≤ s′ ≤ r). Then w

is achievable if and only if there exist an integer value q and a
real value s′ such that ` ≤ s′ ≤ r and w = q.s′. So we have:

s′ =
w

q
⇐⇒ ` ≤ w

q
≤ r

⇐⇒ w

r
≤ q ≤ w

`
⇐⇒

⌈w
r

⌉
≤ w

`

Therefore the sequences sj , j = 1, ..., q satisfying ` ≤ sj ≤ r
exist if and only if dwr e ≤

w
` .

APPENDIX B
PROOF OF LEMMA 2

Proof: Instead of using
∑q
i=1 si, we just use its equivalent

value q · s′, where s′ = 1
q

∑q
i=1 si. Suppose that there exists

a value v = q · s′ such that w∗ < v < w which means
q·s′ > h·bwh c(Note that q·s′ 6= w because w is not achievable).
We know that: s′ ≤ h. Combining these two inequality results
in: q > bwh c, which implies that:⌈w

h

⌉
≤ q (17)

On the other hand ` ≤ s′, so we have q · ` ≤ q · s′ < w which
results in:

q <
w

`
(18)

Combing the inequalities (17) and (18) results in dwh e <
w
` ,

which contradicts the fact that w is not achievable (Lemma
1). Therefore the closest point to w which is also smaller than
w is w∗ = h · bwh c.

6

0 5 10 15 20 25 30 35 40 45
1

1.5

2

2.5

Number Of Demands

M
a
x
im

u
m

H
e
ig

h
t

A
/
Z

∗

Low= 0.35714 High= 0.43103 Z∗= 0.86206

Power Strip Packing WITH Sorting
Power Strip Packing WITHOUT Sorting

Normalized Upper Bound: (A/Z∗+Amax/Low)
A/Z∗

Fig. 3: Comparing performances of the algorithms for Non-Ideal
cases with A

Z∗ +
Amax

`
for different number of demands, where ` =

0.3571 and r = 0.43103 and Ai’s are independent and identically
uniformly distributed in the interval [0, `].

APPENDIX C
PROOF OF LEMMA 4

Proof: To prove Lemma 4 we will show that for any FSP
policy θ with P θmax, there exists a filling θ∗ with P θ

∗
max such

that P θ
∗

max ≤ P θmax. In θ, first consider an interval T = [t1, t2]
such that P (t) = P θmax ∀t ∈ T . Now suppose there is a gap
in T such that the length of this gap is more than the length of
a narrow rectangle completely placed in T . Then this rectangle
can be put in that gap while keeping the P (t) = P θmax in T .
Therefore we assume that T doesn’t contain this kind of gaps.
So in θ in every interval T such that P (t) = P θmax ∀t ∈ T
any rearrangement of the narrow rectangles does not increase
P θmax. Now we try to pick a rectangle scheduled in the interval
T (partly or completely) and put it in an unfilled row. This
results in a new scheduling θ′ with P θ

′
max ≤ P θmax. Now we

repeat this procedure for θ′ and continue doing it until we get
a scheduling θ∗ in which every row becomes filled (maybe
except for the last row), so θ∗ is a filling with P θ

∗
max ≤ P θmax.

APPENDIX D
PROOF OF LEMMA 5

Proof: With respect to the conditions 0 < ` ≤ r < 1
and d 1

r e >
1
` , we conclude that t = 1 is not achievable. Now

define K0 = b 1
r c = b 1

` c. So we have: (K0 + 1) = d 1
` e >

1
` ,

which means: (K0 + 1) · ` > 1 and hence: 1−K0 · ` < `. The
last inequality shows that there is no space to add even the
smallest narrow rectangle (i.e. si = `) to the point K0 · ` ≤ 1
and since ` ≤ si, K0 is the largest number of rectangles which
can fill a row and don’t exceed t = 1. On the other hand from
Lemma 2, Z∗ = K0 ·r is the largest achievable value in [0, 1],
i.e. K0r ≤ 1 and 1−K0r ≤ `. since si ≤ r, K0 is the smallest
number of rectangles which can fill a row such that there is
no space to add a new rectangle to this row. Therefore K0 is
the exact number of rectangles in each filled row.

0 5 10 15 20 25 30 35 40 45
1

1.5

2

2.5

Number Of Demands

M
a
x
im

u
m

H
e
ig

h
t

A
/
Z

∗

Low= 0.35714 High= 0.75758 Z∗= 1

Power Strip Packing WITH Sorting
Power Strip Packing WITHOUT Sorting

Normalized Upper Bound: (A/Z∗+Amax/Low)
A/Z∗

Fig. 4: Comparing performances of the algorithms for Non-Ideal
cases with A

Z∗ +
Amax

`
for different number of demands, where ` =

0.35714 and r = 0.75758 and Ai’s are independent and identically
uniformly distributed in the interval [0, `].

REFERENCES

[1] L. D. Kannberg, M. C. Kintner-Meyer, D. P. Chassin, R. G. Pratt, L. A.
DeSteese, J. G.and Schienbein, S. G. Hauser, and W. M. Warwick,
GridWise: The Benefits of a Transformed Energy System. Pacific
Northwest National Laboratory under contract with the United States
Department of Energy. http://arxiv.org/pdf/nlin/0409035, 2003.

[2] A. Ipakchi and F. Albuyeh, “Grid of the future,” IEEE Power and Energy
Magazine, vol. 7 , Issue 2, pp. 52–62, 2009.

[3] I. Bayram, G. Michailidis, M. Devetsikiotis, S.Bhattacharya,
A. Chakrabortty, and F. Granelli, “Local energy storage sizing in plug-in
hybrid electric vehicle charging stations under blocking probability
constraints,” in IEEE SmartGridComm 2011 Track architectures and
models, 2011, pp. 78 –83.

[4] N. Ruiz, I. Cobelo, and J. Oyarzabal, “A direct load control model for
virtual power plant management,” IEEE TRANSACTIONS ON POWER
SYSTEMS, vol. 24, No. 2, pp. 959–966, May 2009.

[5] C. Triki and A. Violi, “Dynamic pricing of electricity in retail markets,”
A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, vol. 7, No.
1, pp. 21–36, March 2009.

[6] A. H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober,
and A. Leon-Garcia, “Autonomous demand-side management based
on game-theoretic energy consumption scheduling for the future smart
grid,” IEEE TRANSACTIONS ON SMART GRID, vol. 1 , Issue 3, no. 2,
pp. 320–331, 2010.

[7] S. Caron and G. Kesidis, “Incentive-based energy consumption schedul-
ing algorithms for the smart grid,” in First IEEE International Confer-
ence on Smart Grid Communications (SmartGridComm), 2010.

[8] I. Koutsopoulos and L. Tassiulas, “Control and optimization meet the
smart power grid: Scheduling of power demands for optimal energy
management,” in Arxiv preprint: http://arxiv.org/abs/1008.3614v1, 2010.
[Online]. Available: http://arxiv.org/abs/1008.3614v1

[9] J. Le Boudec and D. Tomozei, “Satisfiability of elastic demand in the
smart grid,” in Arxiv preprint: http://arxiv.org/abs/1011.5606v2, 2011.
[Online]. Available: http://arxiv.org/abs/1011.5606v2

[10] E. Coffman, M. Garey, D. Johnson, and R. Tarjan, “Performance bounds
for level-oriented two-dimensional packing algorithms,” SIAM Journal
on Computing, vol. 9, Issue 4, pp. 808–826, 1980.

[11] C. Kenyon and E. Rémila, “A near-optimal solution to a two-dimensional
cutting stock problem,” Mathematics of Operations Research, vol. 25,
No. 4, pp. 645–656, 2000.

[12] A. Lodi, S. Martello, and M. Monaci, “Two-dimensional packing prob-
lems: A survey,” European Journal of Operational Research, vol. 141,
Issue 2, no. 2, pp. 241–252, 2002.

[13] K. Jansen, “Scheduling malleable parallel tasks: an asymptotic fully
polynomial time approximation scheme,” Algorithmica, vol. 39, Number
1, pp. 59 – 81, 2004.

[14] N. Karmarkar and R. Karp, “An efficient approximation scheme for the
one-dimensional bin-packing problem,” in 23rd Annual Symposium on
Foundations of Computer Science (SFCS ’08), 1982.

http://arxiv.org/abs/1008.3614v1
http://arxiv.org/abs/1011.5606v2

	I Introduction
	I-A Motivations
	I-B Model and Related Works
	I-C Related literature

	II Main results
	III Lower bound of Popt
	IV Algorithm
	IV-A Ideal Cases
	IV-B Near Ideal Cases
	IV-C Non-Ideal Cases

	V Proof of Theorem ??
	VI Computational Results
	VII Conclusion
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Lemma ??
	Appendix C: Proof of Lemma ??
	Appendix D: Proof of Lemma ??
	References

