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Abstract

We present the first location oblivious distributed unit disk graph
coloring algorithm having a provable performance ratio of three (i.e.
the number of colors used by the algorithm is at most three times the
chromatic number of the graph). This is an improvement over the
standard sequential coloring algorithm since we present a new lower
bound of 10/3 for the worst-case performance ratio of the sequential
coloring algorithm. The previous greatest lower bound on the per-
formance ratio of the sequential coloring algorithm was 5/2. Using
simulation, we also compare our algorithm with other existing unit
disk graph coloring algorithms.

1 Introduction

A unit disk graph is a graph that admits a representation where nodes are
points in the plane and edges join two points whose distance is at most
one unit. In wireless ad hoc networks, communicating nodes are sometimes
assumed to have the same communication range. For this reason, unit disk
graphs are used to model wireless ad hoc networks. Breu and Kirkpatrick [1]
showed that determining if an abstract graph is a unit disk graph is an NP-
hard problem, which implies that finding a unit disk graph representation is
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also NP-hard. This difficulty has led to the development of two varieties of
algorithms on unit disk graphs depending on how the graphs are represented.
If the unit disk graph representation is given (i.e. vertices are points in the
plane and edges join pairs of points whose distance is at most one unit) then
this situation is referred to as location-aware since each node is aware of its
geometric location. On the other hand, if one is simply given an abstract
graph (i.e. that a valid representation exists), then this situation is referred
to as location oblivious. Location oblivious algorithms are desirable because
they can be implemented without the use of a GPS (Global Positioning
System).

A coloring of a graph G is a function c mapping vertices of G to a set
of colors (which can be thought of as a set of integers) such that adjacent
vertices are assigned different colors. The graph coloring problem is to find a
coloring which uses the minimum number of colors. The minimum number of
colors needed to color a graph G is called its chromatic number and is denoted
by χ(G). It has been pointed out by Hale [5] that the problem of assigning
different frequencies to nodes which are within communication range from
each other can be formalized as a graph coloring problem. Algorithms using
a small number of colors are desirable because they allow the use of fewer
frequencies. However, the graph coloring problem is NP-complete [6], even
for unit disk graphs [4].

The performance ratio of a coloring algorithm is defined as the ratio of
the number of colors it uses over the chromatic number of the input graph.
Approximation algorithms have been proposed to address the unit disk graph
coloring problem (see Erlebach and Fiala [3] for a survey), but there exists
no coloring algorithm that is

1. distributed,

2. location oblivious, and

3. has a performance ratio of three.

In this paper, we introduce the first distributed unit disk graph coloring
algorithm that has all these three properties.

A standard approach used in the context of coloring graphs is the sequen-
tial coloring algorithm. The sequential coloring algorithm is the algorithm
that colors the nodes of a graph in an arbitrary order, assigning to each node
the lowest color that has not been assigned to one of its neighbors. In the
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literature, the greatest lower bound on the worst-case performance ratio of
the sequential coloring algorithm over unit disk graphs is 5/2, by Caragiannis
et al. [2]. Therefore, it was unclear whether one slightly more complex algo-
rithm with a performance ratio of three is better than the trivial sequential
algorithm. In this paper, we show that algorithms having a performance ra-
tio of three outperform the sequential coloring algorithm in the worst-case by
providing an example where the performance ratio of the sequential coloring
algorithm is exactly 10/3.

The rest of this paper is organized as follows: In Section 2, we review
related work on coloring unit disk graphs. In Section 3, we give our coloring
algorithm. We prove its termination, correctness and performance properties
in Section 4. In Section 5, we give new lower bounds on the worst-case
performance ratio of sequential coloring of unit disk graphs. In Section 6,
using simulation, we compare the average performance ratio of our algorithm
with other algorithms. In Section 7, we discuss some optimization techniques
we used to speed-up the simulation. We conclude in Section 8.

2 Related Work

A sequential coloring algorithm takes a graph as input, computes some or-
dering on the nodes, and greedily assigns colors to nodes according to that
order. Each node is assigned the lowest color that has not been assigned to
any of its neighbors. We denote the maximum degree of a graph G by ∆(G),
and the size of the largest clique in G (the clique number of G) by ω(G).
Since the number of colors used by a sequential coloring algorithm cannot
exceed ∆(G) + 1, we have that χ(G) ≤ ∆(G) + 1. On the other hand, since
no two nodes in a clique can have the same color, we have that χ(G) ≥ ω(G).
For unit disk graphs, Marathe et al. [8] pointed out the following relation:
∆(G) ≤ 6ω(G)− 6. This implies that all sequential unit disk graph coloring
algorithms have a performance ratio of at most six. In fact, a minor ad-
justment of that proof shows that the performance ratio is no greater than
five [3].

What distinguishes sequential coloring algorithms from each other is the
order in which they color the nodes. When an arbitrary order is used, we will
simply refer to it as the sequential coloring algorithm. For graphs embed-
ded in the plane, the lexicographic ordering is the one induced by the (x, y)
coordinates of the nodes (nodes with smaller x-coordinate are colored first,
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distributed location worst-case
oblivious perf. ratio

sequential yes yes 5
lexicographic yes no 3
smallest-last no yes 3

Table 1: Summary of Unit Disk Graph Coloring Algorithms Properties.

with ties broken according to the y-coordinate). For the case of unit disk
graphs, Peeters [10] showed that the lexicographical ordering achieves a per-
formance ratio of three. Note that this approach can be easily implemented
in a distributed manner provided the nodes are aware of their location.

The smallest-last coloring algorithm [9] computes the following ordering
over the nodes of a graph G: a node v of minimum degree is colored last (ties
are broken arbitrarily). The rest of the ordering is computed recursively on
the graph G\{v}. For an ordering < of the nodes of a graph G, we introduce
the following notation:

1. Gv is the subgraph of G induced by every node u of G where u ≤ v;

2. deg(u, Gv) is the degree of node u in Gv;

3. span(<) is the maximum value of deg(v, Gv) according to the order <.

Sequentially coloring the nodes of a graph according to < leads to a coloring
using at most span(<) + 1 colors. Lexicographical orderings have span no
greater than 3ω(G) − 3. Matula and Beck [9] showed that the smallest-last
ordering has minimum span. As pointed out by Gräf et al. [4], this implies
that the smallest-last coloring algorithm achieves a performance ratio of at
most three over unit disk graphs. However, this algorithm is not distributed.
Table 1 summarizes unit disk graph coloring algorithms properties. As one
can see, there seems to be a trade-off between being distributed, location
oblivious, and having a worst-case performance ratio of three. We show that
in fact, no such trade-off exists.
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The nodes located within each sector,
including u, form a clique.

Figure 1: The neighborhood of a node does not contain more than 6ω(G)−6
nodes.

3 Location Oblivious Distributed Algorithm

Before giving the details of our algorithm, we first remind the reader why it
is the case that for all unit disk graphs G, the following relation holds:

∆(G) ≤ 6ω(G)− 6.

To see this, divide the neighborhood of a node u in six sectors as shown
in Figure 1. Since each sector has diameter one, the nodes located within
each sector, including u, form a clique. Therefore, u has at most 6ω(G)− 6
neighbors. As we mentioned in Section 2, since any coloring must use at
least ω(G) colors, this implies that any sequential coloring algorithm has a
performance ratio of at most six over unit disk graphs.

Lexicographic coloring achieves a performance ratio of three because for
every node u, no more than 3ω(G)− 3 neighbors of u will choose their color
before u. The key of our algorithm is to show how to compute an ordering
that has this property in a distributed manner when the nodes do not know
their position in the plane (i.e. in a location oblivious manner). The main
observation is the following: in every unit disk graph G, there is at least one
node that has at most 3ω(G)− 3 neighbors.

We denote by ω(u) the size of a largest clique in which node u belongs.
If the neighborhood of a node u has size at most 3ω(u) − 3, we say that it
has the small neighborhood property. Lexicographic coloring exploits the fact
that the leftmost node has this property. In fact, all nodes on the convex
hull of the nodes also have this property. Since the size of a maximum clique
in a unit disk graph can be computed in polynomial time, even without the
unit disk representation [11], each node can locally determine whether or not
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Algorithm 1 RankingPhase(id, Gid)

Input: id, a node identifier
N , a list containing the identifiers of the neighbors of node id
Gid, the subgraph of G induced by N

Output: ranks, a table containing the neighbors ranks
1: max clique← ω(Gid)
2: while {u ∈ N : rank[u] = 0} 6= ∅ do
3: if rank[id] = 0 and |{u ∈ N : rank[u] = 0}| ≤ 3 ∗ max clique − 3

then
4: ranks[id]← max{u ∈ N : ranks[u]}+ 1
5: send rank(id, ranks[id])
6: else
7: receive rank(u, r)
8: ranks[u]← r
9: end if

10: end while

it has the small neighborhood property. Notice that since ω(u) ≤ ω(G) for
every node u, if a node has the small neighborhood property, then it also has
at most 3ω(G)− 3 neighbors.

The intuition behind our algorithm is the following: in order to reach a
performance ratio of three, nodes having the small neighborhood property
can pick their colors after their neighbors. We then remove all these nodes
from the graph, recursively color the remaining subgraph, put the removed
nodes back in, and then sequentially color them. Recursion is guaranteed to
make progress because there are always nodes having the small neighborhood
property. What remains to be shown is how this can be done in a distributed
manner.

The distributed algorithm works in two phases. In the first phase, the
nodes establish a local order by each selecting a rank. The ranks, together
with the identifier, determine the local order in which they will decide their
color. The second phase is the actual coloring.

The underlying idea of the ranking algorithm is the following: we want
to make sure that for every node u of a unit disk graph G, no more than
3ω(u) − 3 ≤ 3ω(G) − 3 nodes pick their color before u. In order to ensure
this, each node u collects the connectivity information of its distance one
neighborhood and computes ω(u).
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Algorithm 2 ColoringPhase(id, N, ranks)

Input: id, a node identifier
N , a list containing the identifiers of the neighbors of node id
ranks, a table containing the neighbors’ ranks

Output: colors, a table containing the node’s colors (initial values are all 0)
1: while {u ∈ N : colors[u] = 0} 6= ∅ do
2: if colors[id] = 0 and

//if the node has not yet chosen its color and,
//in its neighborhood, it has maximum rank among
//the nodes which have not yet chosen their color
{u ∈ N : colors[u] = 0 and 〈ranks[id], id〉 < 〈ranks[u], u〉} = ∅ then

3: colors[id]← min{i > 0 : {u ∈ N : colors[u] = i} = ∅}
4: send color(id, colors[id])
5: else
6: receive color(u, c)
7: colors[u]← c
8: end if
9: end while

A node u having a total number of neighbors less than or equal to 3ω(u)−3
(i.e. having the small neighborhood property) selects rank one and informs
its neighbors of its decision. A node u having more than 3ω(u)−3 neighbors
must wait. Ranking information from neighbors is recorded in a table. When
the number of neighbors of a node u with undetermined rank becomes less
than or equal to 3ω(u) − 3, node u takes a rank that is one more than the
maximum rank among its neighbors. Node u then informs its neighbors
about its decision. This process continues until all nodes have chosen their
rank. Algorithm 1 gives the details of the ranking phase.

When all neighbors have chosen their ranks, a node may start the coloring
phase. Note that two neighbors may have chosen the same rank. Locally,
nodes then choose their color according to the order induced by the pair
〈rank, id〉. Nodes with higher rank pick their color first, and ties are broken
according to their identifier. Algorithm 2 gives the details of the coloring
phase.
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4 Theoretical Properties

We now prove the termination and correctness of our algorithm. We also
show that it has a performance ratio of at most three.

Proposition 4.1 After Algorithm 1 terminates, all nodes have selected a
rank.

Proof: Suppose after Algorithm 1 terminates, there is a set of nodes S of
G which have not yet chosen their rank. This means that every node u ∈ S
has more than 3ω(u)−3 neighbors which have not yet chosen their rank (i.e.
which are in S). In particular, this is true for a node v which is on the convex
hull of S. Also, since v is on the convex hull of S, all of its neighbors which
are in S are located on a half-plane whose boundary passes through v. Thus,
v cannot have more than 3ω(v)− 3 neighbors in S, which is a contradiction.
Therefore, when no more messages are being sent, all nodes have chosen their
ranks. �

Proposition 4.2 Algorithm 2 produces a valid coloring.

Proof: First of all, Algorithm 2 terminates. The reason for this is that,
among the nodes which have not yet chosen their color, there is always a
node which is a global maximum according to the ordered pair 〈rank, id〉.
In particular, this node is a local maximum which will pick its color. Also,
no two neighbors can pick their color at the same time. This is because the
ordered pair 〈rank, id〉 induces a total order on the nodes. Therefore, of two
neighbor nodes which have not picked their color, at most one of them can
satisfy the condition on line 2. Finally, no two neighbors can pick the same
color. This is because the second one will only pick a color which is still
available (line 2). �

Lemma 4.3 For a node u of a unit disk graph G, let h(u) denote the number
of neighbors of u with higher rank than the rank of u. Then |h(u)| ≤ 3ω(u)−3.

Proof: In Algorithm 1, a node u will choose its rank only when fewer
than 3ω(u)− 3 of its neighbors have undetermined rank (line 1). Also, when
u chooses its rank, it chooses it such that it is greater than all ranks that
have been chosen in its neighborhood. Therefore, only less than 3ω(u) − 3
nodes could potentially choose rank greater than the one chosen by u. �
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Proposition 4.4 Using the order computed by Algorithm 1, the color chosen
by a node u in Algorithm 2 is less than or equal to 3ω(u)− 2.

Proof: In the neighborhood of u, only nodes with rank greater than u can
choose their color before u. By Lemma 4.3, there are no more than 3ω(u)−3
such nodes. Therefore, the color chosen by u is no greater than 3ω(u)−2. �

Theorem 4.5 Using the order computed by Algorithm 1, the number of col-
ors used by Algorithm 2 to color a unit disk graph G is no greater than three
times the optimal. During the execution of these algorithms, each node sends
exactly two messages, each one having size O(log n).

Proof: By Proposition 4.4, all nodes u are assigned color at most 3ω(u)−
2 ≤ 3ω(G)−2. The performance ratio follows from the fact that at least ω(G)
colors are needed to color G. In Algorithm 1, each node sends exactly one
rank message. In Algorithm 2 each node sends exactly one color message.
This is why each node sends exactly two messages. Each message only carries
a type, the rank or color of the sender, as well as its identifier. The number
of different ranks and colors is bounded by the number of nodes. Therefore,
the size of a message is bounded by the size of the greatest identifier, which
is O(log n). �

5 Lower Bounds

We now give new lower bounds on the worst-case performance ratio of the
sequential coloring algorithm for unit disk graphs. The currently greatest
lower bound is 5/2, given by Caragiannis et al. [2]. To prove a lower bound
of b, we have to show that there exists a unit disk graph G for which there
exists an ordering < of the nodes such that the number of colors used by the
sequential coloring algorithm is at least b · χ(G). The construction of such a
unit disk graph proceeds as follows: first, decide what the chromatic number
of the graph will be. Then, at least one node must pick color b · χ(G). In
order to ensure this, it must have at least b · χ(G)− 1 neighbors, picking all
colors ranging from 1 to b · χ(G) − 1. The construction of the graph then
continues recursively in order to force these nodes to pick these colors. To
force the sequential algorithm to use many colors, one needs to construct a
graph with vertices of high degree. The difficulty lies in increasing the degree
of vertices without increasing the chromatic number of the graph.
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Figure 2: Lower Bound of 5/2.

Figure 2 reproduces the lower bound of 5/2 of Caragiannis et al. [2].
The chromatic number of that graph is two (dashed and solid circles form a
bipartition) but there exists an ordering of the nodes such that the sequential
coloring algorithm uses five colors.

We now prove a lower bound of three. A case where a performance ratio
of three can be reached is shown in Figure 3. This graph is bipartite (no two
dashed nodes touch each other, and no two solid nodes touch each other).
Hence, it can be colored with two colors. However, it is also possible to order
the nodes in such a way that the sequential coloring algorithm uses six colors.
In order to do this, first take all disks with label 1 in an arbitrary order. Since
they form an independent set, the sequential coloring algorithm will assign
color 1 to all of them. Then, take all disks with label 2. Since they form an
independent set and each of them touches a disk with label 1, the sequential
coloring algorithm will assign them color 2. Repeat this procedure until the
only disk with label 6 has been colored with color 6. Using this ordering, the
sequential coloring algorithm will then use six colors whereas only two colors
are necessary, which means that in that case, it achieves a performance ratio
of three. Table 4 (page 19) gives the exact positions of the points generating
the unit disk graph of Figure 3. Column seq gives the colors assigned by the
sequential coloring algorithm, while column opt gives an optimal coloring of
the graph. Thus, since the graph shown in Figure 3 is triangle-free, we have
proved the following:

Proposition 5.1 For triangle-free unit disk graphs, the worst-case perfor-
mance ratio of the sequential coloring algorithm is at least three.

The reason why it is interesting to restrict the preceding proposition to
triangle-free unit disk graphs is that the bound is tight for that class of
graphs, as shown below.
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Proposition 5.2 For triangle-free unit disk graphs, the worst-case perfor-
mance ratio of the sequential coloring is at most three.

Proof: Suppose that there exists a node u of a unit disk graph G such
that the color attributed to u by the sequential coloring algorithm is 7. This
means that u has degree at least 6. Since no node of a unit disk graph
can have more than five independent neighbors [8], at least two of these six
neighbors, say v and w, are neighbors of each other. Therefore, v, w and u
form a triangle, which means that G is not triangle-free. �

For graphs that are not necessarily triangle-free, we show a worst-case
lower bound of 10/3. The construction is depicted in Figure 4. As one can
see, this graph can be colored using only three colors (solid, dashed and
dotted nodes form a 3-partition of the graph). However, there exists an
ordering of the nodes such that sequentially coloring the graph in that order
uses ten colors, leading to a performance ratio of 10/3. In order to force the
sequential coloring algorithm to use ten colors, the solid bold node which has
degree nine is colored last. Its nine neighbors are forced to take all colors
ranging from one to nine thereby forcing color ten on the solid bold node.
The coloring of its neighbors is forced in a similar fashion. Exact location of
the points are given in Table 5 (page 20), as well as the three-partition of that
graph. Nodes are listed in the order that the sequential coloring algorithm
needs to use in order to use ten colors. The existence of this graph allows us
to conclude the following:
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Proposition 5.3 For unit disk graphs, the worst-case performance ratio of
the sequential coloring algorithm is at least 10/3.

The importance of this last result is that we now have a confirmation that
there exist cases where it is worth making the effort of computing an ordering
which is guaranteed to achieve a performance ratio of three. However, as we
see from our simulations, when nodes are randomly and uniformly placed in
a unit square, all strategies are equally good on average.

6 Simulation Results

In the preceding section, we saw that it is fairly complicated to build an
example where the sequential coloring algorithm achieves a performance ratio
worse than three. Here, using simulation, we compare the coloring algorithm
introduced in this paper with other existing coloring algorithms. Using a
fixed radius of 0.05, we first randomly generated 400 unit disk graphs of
200 nodes each. Nodes have been placed on a unit square and their x and
y-coordinates have been chosen following a uniform distribution. We also
generated unit disk graphs having up to 2000 nodes, by incrementally adding
100 nodes to each of the 400 unit disk graphs.

We then colored each of these unit disk graphs using five different col-
oring algorithms. Using the heuristic described in the next section, we also
computed a lower bound on the size of the maximum clique for each of these
unit disk graphs. In order to optimize the running time of the simulation, the
same heuristic has also been used to simulate the three-cliques-last coloring
algorithm.

The five coloring algorithms we have used are the following: sequential
(nodes are colored in the order induced by their identifier), three-cliques-last
(the algorithm introduced in this paper), lexicographic (nodes are colored
from left to right), smallest-last (nodes of small degree are colored last) and
largest-first (nodes of large degree are colored first).

The difference between smallest-last and largest-first is the following: in
smallest-last, a node u with minimum degree in a graph G is colored last,
and the order in which the other nodes are colored is computed recursively
on the graph G \ {u}. In largest-first, a node u with maximum degree is
colored first, and the order in which the other nodes are colored is computed
recursively on the same graph. Although the largest-first ordering is easier
to compute in a distributed manner, it is not known whether it provides a
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better upper bound than five on the performance ratio on unit disk graphs.
Smallest-last ordering, on the other hand, is non-trivial to compute in a
distributed manner but is known to provide an upper bound of three on the
performance ratio when coloring unit disk graphs.

Figure 5 shows the simulation results we obtained. It displays the average
number of colors used by each algorithm as a function of the number of
nodes in the graph. It also plots the average estimated value of the size of
a maximum clique. As explained in the next section, this estimated value
is a lower bound on the actual size of a maximum clique. Therefore, it is
also a lower bound on the chromatic number. Table 3 (page 19) gives the
exact values of our simulation results. On all these values, the maximum
standard deviation was 1.2. Therefore, the 95% confidence interval is at
most ±2 1.2√

400
= 0.12.

The first observation that can be made by looking at the simulation re-
sults is that the algorithm we proposed in this paper (three-cliques-last)
provides almost no significant improvement over sequential coloring. In fact,
the difference between values obtained for the two algorithms is less than the
width of the 95% confidence interval. However, this does not really mean

14



that our algorithm performs badly. What it really means is that sequential
coloring performs better than expected. Looking at Table 3, we can see that
the ratio of the average number of colors used over maximum clique size is
always below 1.17. This means that the sequential coloring algorithm per-
forms quite well although the only known upper bound on the performance
ratio is five.

Also, it is not surprising to see that the algorithm which performed the
best is the smallest-last coloring. As discussed in Section 2, smallest-last
ordering attains minimum span. Since the span of an ordering provides an
upper bound on the number of colors that will be used, smallest-last coloring
can be expected to provide good results.

What is really interesting is to see is that largest-first coloring provided
better results than both three-cliques-last and lexicographic. There is no
known proof that largest-first has a performance ratio better than five, and
still it performs better than algorithms which have an upper bound of three
on the performance ratio. Since largest-first is distributed, location oblivious
and simpler to implement than three-cliques-last, looking at the simulation
results allows us to conclude that it is preferable to use largest-first even
though there is no proof that it performs better.

7 Simulation Optimization

Since computing the maximum clique in the neighborhood of a node can be
quite time consuming for simulation purposes, we used some heuristics to
compute a lower bound on the size of a largest clique. The main idea of
our heuristic is the following: the size of the largest clique is the maximum
number of nodes contained in a subset of the plane whose diameter is at
most one. Since the geometric shape maximizing an area of fixed diameter
is the circle, it is reasonable to hope that the maximum number of nodes
contained in a disk of radius one is a good approximation of the size of a
maximum clique. Since it is sufficient to look at disks having two nodes on
their boundaries, there are only 2

(
n
2

)
such disks to look at. Since counting

the number of nodes in such a disk can be done in linear time, the maximum
number of points contained in a disk of radius one can be computed in time
O(n3).

For a node u, let C(u) be the maximum number of nodes contained in
a disk of radius one which also contains u, ω(u) be the size of a maximum
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clique containing u, and N(u) be the set containing u and its neighbors. The
heuristic we used is the following: if |N(u)| ≤ 3C(u) − 3, then use C(u) as
an estimate for ω(u). Otherwise, compute the exact value of ω(u). Using
this estimate instead of computing the exact value of ω(u) does not affect
the simulation results. If a node u is such that |N(u)| ≤ 3C(u)−3, then it is
also the case that |N(u)| ≤ 3ω(u)− 3 and therefore it will be assigned rank
one in Algorithm 1 anyway.

nodes % nodes % nodes % nodes %
100 0.9999 600 0.9977 1100 0.9968 1600 0.9957
200 0.9996 700 0.9976 1200 0.9966 1700 0.9953
300 0.9991 800 0.9975 1300 0.9964 1800 0.9950
400 0.9987 900 0.9971 1400 0.9962 1900 0.9946
500 0.9982 1000 0.9971 1500 0.9960 2000 0.9943

Table 2: Percentages of nodes u such that |N(u)| ≤ 3C(u)− 3.

Table 2 shows the proportion of nodes u which were such that |N(u)| ≤
3C(u)−3. On all these values, the maximum standard deviation was 0.0020.
Therefore, the 95% confidence interval is at most ±20.0020√

400
= 0.0002. The

first observation to be made is that the heuristic allowed us to accelerate the
simulation in more than 99% of the cases. This means that the heuristic was
worth using it. The second observation to be made is that the percentages
diminish as the graph becomes denser. This makes sense, because the area
of a disk of diameter one is only 1/4 the area of the unit disk around a node.

The most important observation to be made is that all nodes such that
|N(u)| ≤ 3C(u)−3 are assigned rank one in Algorithm 1. Therefore, Table 2
also gives a lower bound on the proportion of nodes which are assigned rank
one. Since this proportion is always higher than 99%, the order used by
Algorithm 2 in the second phase is almost the same as the one used by the
sequential algorithm, and this gives an intuition of why the simulation results
are so similar for these two algorithms.

8 Conclusion

We presented the first distributed location oblivious coloring algorithm which
achieves a performance ratio of three on unit disk graphs. However, simula-
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tion results showed that this algorithm does not provide a significant improve-
ment over the algorithm which sequentially colors the nodes in an arbitrary
order. Simulation results also showed that, in the average case, largest-first
(which is also distributed and location oblivious) performs better than the
algorithm we proposed. It also performs better than lexicographic coloring,
which also has a worst-case performance ratio of at most three. However,
no one has shown whether largest-first has a better worst-case performance
ratio than five. In fact, it is also an open question whether coloring the nodes
of a unit disk graph in an arbitrary order can, on the worst case, use less
than five or more than 10/3 times the minimum number of colors that are
necessary.
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Appendix 1: Tables

nodes lgst-cl sml-last lgst-first lex seq 3-cl-last
100 3.275 3.31 3.31 3.345 3.3775 3.3775
200 4.4 4.46 4.4725 4.5525 4.56 4.56
300 5.305 5.4175 5.4375 5.575 5.675 5.675
400 6.04 6.1625 6.2025 6.3825 6.4825 6.4825
500 6.7825 6.9 6.9625 7.2 7.375 7.375
600 7.44 7.5975 7.6825 7.9425 8.145 8.145
700 8.0025 8.1725 8.2975 8.6875 8.8925 8.8925
800 8.6125 8.815 8.9425 9.355 9.5575 9.56
900 9.1375 9.3575 9.5525 9.97 10.27 10.27
1000 9.695 9.9075 10.085 10.5625 10.825 10.8225
1100 10.2325 10.4975 10.7 11.1675 11.4875 11.4925
1200 10.7325 10.97 11.21 11.7675 12.1575 12.1575
1300 11.1875 11.45 11.7275 12.3025 12.7075 12.705
1400 11.6375 11.96 12.23 12.8875 13.35 13.3525
1500 12.1 12.46 12.815 13.4 13.9 13.8975
1600 12.6475 12.965 13.3975 14.0175 14.4925 14.5025
1700 13.0225 13.3725 13.76 14.4625 15.0675 15.0725
1800 13.445 13.815 14.28 14.925 15.595 15.5875
1900 13.8225 14.205 14.73 15.4725 16.1575 16.155
2000 14.25 14.61 15.235 15.9675 16.6225 16.6325

Table 3: Simulation Results.

seq opt x y seq opt x y seq opt x y
1 1 12910 3765 1 2 9460 4875 3 1 5775 2970
1 1 13570 9955 2 1 10360 5190 3 2 11935 5190
1 1 5130 7870 2 1 5730 5295 3 2 6165 6555
1 1 8110 2977 2 2 12535 8560 4 1 12100 6910
1 1 8830 8725 2 2 6790 1575 4 2 7105 4470
1 2 10575 10570 2 2 7965 8100 5 1 8215 6160
1 2 14035 6615 3 1 11065 8905 6 2 10072 7104
1 2 4365 3850

Table 4: Lower bound of 3 (radius = 2168).
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seq opt x y seq opt x y seq opt x y
1 1 10154 14461 2 2 6773 8419 5 2 6825 10271
1 1 10428 2425 2 2 6825 12147 5 2 6905 2140
1 1 3293 1290 2 3 11310 13269 5 3 11474 7463
1 1 6057 13660 2 3 4726 14069 5 3 7130 5679
1 1 7942 1209 2 3 7915 1738 5 3 9849 11523
1 1 9814 6022 2 3 9584 7993 6 1 5026 8021
1 1 9943 7968 3 1 11500 11905 6 1 7004 10370
1 2 13717 3696 3 1 11511 6890 6 1 7964 3530
1 2 14087 9128 3 1 12490 2455 6 2 10927 10465
1 2 1831 7075 3 1 6429 6703 6 2 9981 6703
1 2 4737 10801 3 1 7920 11967 7 2 8797 10439
1 2 6257 3913 3 2 10091 4570 7 3 6515 7422
1 2 8160 7126 3 2 3651 8807 7 3 9337 3827
1 2 8652 12511 3 2 5037 12966 8 1 9463 9783
1 3 11249 4475 3 2 9430 8462 8 2 8330 5298
1 3 12298 11575 3 3 14277 8193 9 3 7946 8853
1 3 12601 936 3 3 4124 2140 10 1 8270 7085
1 3 13222 6370 3 3 6289 10084
1 3 4904 5544 3 3 7367 3809
1 3 5075 8610 3 3 9718 931
1 3 8044 10751 4 1 13113 8044
2 1 12023 10094 4 1 5295 2621
2 1 2048 8734 4 1 6811 8534
2 1 3577 6765 4 2 10507 13161
2 1 5142 10620 4 2 5351 5546
2 1 6586 4865 4 2 9011 2275
2 1 9636 11642 4 3 10253 9712
2 1 9767 4171 4 3 12577 2834
2 2 11127 250 4 3 3471 7387
2 2 11550 5714 4 3 6447 12048
2 2 13015 1641 4 3 9804 6144
2 2 14171 6687 5 2 10792 2852
2 2 4330 1582 5 2 5177 7384

Table 5: Lower bound of 3.3 (radius = 1812).
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