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Abstract

The aim of this paper is to study communication in networks where nodes fail in a
random dependent way. In order to capture fault dependencies, we introduce the neighbor-
hood fault model, where damaging events, called spots, occur randomly and independently
with probability p at nodes of a network, and cause faults in the given node and all of its
neighbors. Faults at distance at most 2 become dependent in this model and are positively
correlated. We investigate the impact of spot probability on feasibility and time of com-
munication in the fault-free part of the network. We show a network which supports fast
communication with high probability, if p ≤ 1/c log n. We also show that communication
is not feasible with high probability in most classes of networks, for constant spot proba-
bilities. For smaller spot probabilities, high probability communication is supported even
by bounded degree networks. It is shown that the torus supports communication with
high probability when p decreases faster than 1/n1/2, and does not when p ∈ 1/O(n1/2).
Furthermore, a network built of tori is designed, with the same fault-tolerance properties
and additionally supporting fast communication. We show, however, that networks of
degree bounded by a constant d do not support communication with high probability, if
p ∈ 1/O(n1/d). While communication in networks with independent faults was widely
studied, this is the first analytic paper which investigates network communication for
random dependent faults.
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1 Introduction

As interconnection networks grow in size and complexity, they become increasingly vulnerable
to component failures. Links and nodes of a network may fail, and these failures often result in
delaying, blocking, or even distorting transmitted messages. It becomes important to design
networks in such a way that the desired communication task be accomplished efficiently in
spite of these faults, usually without knowing their location ahead of time. Such networks
are called fault-tolerant.

The fundamental questions of network reliability have received much attention in past
research under the assumption that components fail randomly and independently (cf., e.g.
[1, 3, 4, 12, 14] and the survey [13]). On the other hand, empirical work has shown that
positive correlation of faults is a more reasonable assumption for networks [6, 16, 18]. In [18],
the authors provide empirical evidence that data packets losses are spatially correlated in
networks, and in [16], the authors use the assumption of failure spatial correlation to enhance
network traffic management. Furthermore, in [6], the authors simulate failures in a sensor
network using a model much like that of the present paper; according to these authors, the
environment provides many spatially correlated phenomena resulting in such fault patterns.
Physical and logical phenomena generally affect physical components, causing failures in a
positively correlated way. E.g., on August 14, 2003, faults cascaded on the power distribution
network and deprived part of North America of electricity. Logical phenomena, like computer
viruses and worms, also cause dependent faults. Lightning strikes hitting one node of an
electric network cause power outages in entire city blocks.

As our society is increasingly dependent on information networks, it becomes essential to
study questions relating to tolerance of dependent positively correlated faults. However, no
analytic work has been done for communication networks under this assumption about faults.

In this paper, we consider the problem of feasibility and time of communication in networks
with dependent positively correlated faults. To the best of our knowledge, this is the first
analytic paper which provides this type of results for network communication.

1.1 Model and Problem Definition

A communication network is modeled as an undirected graph G = (V,E) with a set of nodes
V connected by a set of undirected links E. We say that two nodes are adjacent (or neighbors)
if they share a link. The distance between nodes u, v ∈ V is the minimum number of links
which must be traversed from u to reach v; it is denoted by dist(u, v). In a network, Γ(u)
is the set of nodes adjacent to u; Γi(u) is the set of nodes v ∈ V whose distance from u is
i; we also denote by Γ≤i(u) the set of nodes v ∈ V whose distance from u is at most i. A
node is said to be functional, or fault-free, when it executes only its predefined algorithm
without any deviation, and doing so, transmits all messages correctly, in a timely manner and
without any loss; a node which is not functional is said to be faulty. Faults can be of different
types: at opposite ends of the spectrum are crash and Byzantine faults. Faults of the crash
type cause faulty components to stop all communication; these components can neither send,
receive nor relay any message. Faulty nodes of the Byzantine type may behave arbitrarily
(even maliciously) as transmitters. We say that faults are permanent when they affect the
nodes for the entire duration of a communication process; otherwise, the faults are said to be
transient. In this paper, we assume that faults are permanent and of crash type. Throughout
the paper, log means logarithm with base 2 and ln means the natural logarithm.
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We consider communication in the fault-free part of the network, where all nodes exchange
messages with each other. Communication among functional nodes is feasible if the fault-free
part of the network is connected and contains at least two nodes. We measure communication
time under the all-port message passing model, where nodes can communicate with all their
neighbors in one round, and under the 1-port model, in which every node can send a message
to at most one neighbor in one round. Under the all-port model, communication can be
completed in time D if the fault-free part of the network has diameter D. Hence, we study the
connectivity and diameter of the fault-free part of the network. Moreover, we seek networks
of low maximum degree ∆. Since in the 1-port model communication can be completed in
time D∆, networks of low maximum degree and low diameter of the fault-free part support
fast communication also in the 1-port model.

In order to capture fault dependencies, we introduce the neighborhood fault model, where
damaging events, called spots, occur randomly and independently at nodes of a network, with
probability p, and cause permanent crash faults in the given node and all of its neighbors.
Faults at distance at most 2 become dependent in this model and are positively correlated.
We investigate the impact of spot probability on feasibility and time of communication in the
fault-free part of the network.

We design general networks and bounded degree networks which support fast and highly
reliable communication despite relatively high spot probabilities. We also prove bounds on
spot probability such that highly reliable communication is not supported.

We focus attention on the problem of feasibility and time of communication, guaranteed
with high probability, i.e., with probability converging to 1 as the size of the network grows.
Under the all-port model, in which time of communication is proportional to the diameter,
this problem reduces to the question for what spot probability the fault-free part of the
network is connected and when it has diameter at most D, with high probability. Under the
1-port model, the same reduction is valid for networks of a given degree.

1.2 Related Work

Dependent fault models were introduced in the study of integrated circuit manufacturing
yields. This research models defects as the result of impurities, positioned randomly and
independently, affecting nearby circuit components in a dependent way. Results were proposed
mainly according to the quadrat-based and center-satellite approaches. In [15], the author
proposed a coarse approach to analyzing production yields based on the assumption that
faults occurred in clusters inside a defined grid pattern on Very Large Scale Integration (VLSI)
wafers; this quadrat-based model offered provably good results and ease of use required by
the industry. Then, in [10], the authors introduced a detailed model of manufacturing defects
in VLSI wafers based on the center-satellite concept for ecological sampling [17]. Later on,
in [2], the authors proposed a simplified center-satellite model of manufacturing defects on
VLSI wafers for the study of the memory array reconfiguration problem. In fact, both the
center-satellite and quadrat-based approaches are still in use for System on Chip (SoC) (cf.,
e.g., [8, 9]) and VLSI (cf., e.g., [5, 19]) applications. Throughout this field of literature,
the consensus is that results originating from the center-satellite approach, as opposed to
quadrat-based approaches, are more difficult to apply but provide better prediction quality.

The above approach should be contrasted with the literature on fault-tolerant commu-
nication in networks. Many results concerned random link and/or node failures (cf., e.g.
[1, 3, 4, 12, 14] and the survey [13]) but, to the best of our knowledge, in all cases faults
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were assumed to be independent. In [1], the author shows the existence of networks in which
O(log n)-time broadcast can be done, under the 1-port model, with high probability, despite
links which fail randomly and independently with positive constant probability. In [3], the
authors design a network of logarithmic degree which can support high probability commu-
nication in time O(log n) when faults occur randomly and independently on links and nodes
with any constant probabilities smaller than 1. In [12], the authors design a similar network
which can support communication with high probability in time O(log2 n) with Byzantine
faults.

Our present research focuses on communication network failures which occur in a depen-
dent way. We consider networks modeled by arbitrary graphs, hence the geometry-dependent,
quadrat-based approach to fault dependencies is not appropriate. Our neighborhood fault
model, more appropriate for general graphs, is a simplified version of the center-satellite
approach.

1.3 Our Results

All our results address the general problem for which spot probabilities p there exist networks
supporting communication with high probability, and if so, if this communication is fast in
the all-port and 1-port models. Hence we ask for which spot probabilities the fault-free part
of the network is connected of size larger than 1, and if so, does it have a small diameter.
Moreover, in our positive results we seek networks of low maximum degree. The results are
summarized in Table 1. In what follows, we discuss them in detail.

In Section 2, we address the questions regarding general networks. We first show that there
exists a constant c, such that for spot probability p ≤ 1/c log n, there exists an n-node graph
whose fault-free part has logarithmic diameter and logarithmic degree, with high probability.
Hence it supports high probability communication in time O(log n) in the all-port model and
in time O(log2 n) in the 1-port model. On the negative side, we show that for constant spot
probability p, there exist constants c1 and c2 such that: if all degrees in a graph are at most
c1 log n then the graph is disconnected with high probability; if all degrees in a graph are at
least c2 log n then the graph has all nodes faulty with high probability. In either case, highly
reliable communication is not possible. This leaves some very particular networks undecided.
For example, this negative result does not cover the important case of the hypercube, for some
constant spot probabilities. Therefore, we study the hypercube separately and prove that,
for any constant spot probability 0 < p ≤ 1, this network does not support high probability
communication. The above should be contrasted with the results from [3, 4] showing that, for
independent faults, fast highly reliable communication is possible for arbitrary constant fault
probabilities in some graphs and for small constant fault probability, even in the hypercube.

In Section 3, we investigate communication in bounded degree networks. We show that
the torus supports communication with high probability when p ∈ 1/ω(n1/2). (As usual,
ω(f) denotes the set of functions g such that g/f →∞.) However, the diameter of an n-node
torus is at least Θ(

√
n) and the fault-free part has the same large diameter. Hence we seek

networks with the same fault-tolerance properties, but with small diameter. We construct a
bounded degree network built of tori, whose fault-free part has diameter O(log n) whenever
p ∈ 1/ω(n1/2). Hence this network supports high probability communication in logarithmic
time, both in the all-port and in the 1-port models. On the negative side, we show that
neither the torus nor the above network can support highly reliable communication when
p ∈ 1/O(n1/2). Finally, we prove that networks of degree bounded by a constant d cannot
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support communication with high probability when p ∈ 1/O(n1/d).

Spot Network Degree Diameter Theorem
probability
p ≤ 1

c log n RBTT Θ(log n) O(log n) Theorem 1
p ∈ Θ(1) Any ≤ c1 log n not feasible Theorem 2

≥ c2 log n

p ∈ Θ(1) Hypercube log n not feasible Theorem 3
p ∈ 1/ω(n1/2) Torus 4 Ω(

√
n) Theorem 4

p ∈ 1/O(n1/2) Torus 4 not feasible Theorem 6
p ∈ 1/ω(n1/2) Toroidal Tree 8 O(log n) Theorem 5
p ∈ 1/O(n1/2) Toroidal Tree 8 not feasible Theorem 7
p ∈ 1/O(n1/d) Any d ∈ Θ(1) not feasible Theorem 8

Table 1: Summary of results. “Diameter” means the diameter of the fault-free part of the
network. “Not feasible” in the Diameter column means that communication with high prob-
ability is not feasible.

2 General Networks

In this section, we focus on general networks. We first design a network which supports
communication with high probability when spot probability p ≤ 1/c log n, for some positive
constant c. We then establish two bounds on node degrees showing that a large class of
networks cannot support communication with high probability when spot probability is a
positive constant.

2.1 Upper Bounds

This section is dedicated to proving the following result.

Theorem 1 There exists a n-node graph whose fault-free part has diameter O(log n) and
logarithmic degree, with high probability, for spot probability p ≤ 1/c log n, where c is some
positive constant.

The network construction is based on a binary tree structure where each node of the tree
represents a group of nodes and each link of the tree represents a random set of links between
nodes in adjacent groups. To be more precise, for a fixed m, we define a random n-node graph
G(n, m). Let x = dn/me. Partition the set of all nodes into subsets S1, . . . , Sx, of size m, (Sx

of size at most m) called supernodes. Let S = {S1, . . . , Sx} be the set of all supernodes.
Let L = blog xc. Arrange all supernodes into a binary tree T with L + 1 levels 0, 1, . . . , L,

placing each supernode Si on level blog ic. Level 0 contains the root and levels L − 1 and
L contain leaves of T . The supernode S1, is the root of T . For every 1 ≤ i ≤ bx/2c, S2i is
the left child of Si and S2i+1 is the right child of Si in T (S2i+1 exists if x ≥ 2i + 1). For
every 1 < i ≤ x, supernode Sbi/2c is the parent of Si. If a supernode is a parent or a child of
another supernode, we say that these supernodes are adjacent in T .
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The set of edges of G(n, m) is defined as follows. If supernodes Si and Sj are adjacent
in T , then there is an edge in G(n, m) between any node in Si and any node in Sj with
probability pl. Moreover, supernodes have no interior links. The graph G(n, m) is called a
Random Binary Thick Tree (RBTT ). See Figure 1.

random links

m-supernode

Figure 1: Random Binary Thick Tree

In the remainder of this section, we analyze RBTT and show that, if p ≤ 1/c log n,
for some constant c > 0 to be defined below, then it supports communication with high
probability in time O(log n). Before we are ready to prove Theorem 1, we need to establish
an upper bound on the number of spots in each supernode, and a lower bound on the number
of functional nodes in each supernode. These two results will be used in the proof of two
connectivity lemmas needed in the proof of the theorem. We consider the n-node RBTT
with link probability pl = 1/18 ln n and m = d1152 ln2 ne nodes per supernode, when spot
probability is p ≤ 1/(768 ln n). Hence, we take c = 768/ ln 2.

Let C1 be the event that all supernodes in RBTT contain less than 6 lnn + 1 spots.

Lemma 1 The event C1 occurs with probability at least 1− 1/n.

Proof. Let p = k/768 ln n, with 0 < k ≤ 1. Let Ni be the random variable which counts
the number of spots in Si. Since 1152 ln2 n ≤ m < 1152 ln2 n + 1, we have that (3/2)k lnn ≤
E[Ni] = mp < k((3/2) ln n + 1/4). Using Chernoff bounds (see [7, 11]) with parameter
(1 + ε) = 4/k, we can show that, for a fixed Si, we have Ni < 6 ln n + 1 with high probability.
More precisely,

Pr[C1] = Pr[(∀Si ∈ S) Ni < 6 ln n + 1]

≥ 1−
∑
Si∈S

Pr[Ni ≥ (4/k)k((3/2) ln n + 1/4)

≥ 1− n

(
e(4/k−1)

(4/k)(4/k)

)k((3/2) ln n+1/4)

≥ 1− n

(
ke

4

)6 ln n

≥ 1− nn−6 ln(4/e)

≥ 1− 1/n,
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for 0 < k ≤ 1.

Let C2 be the event that all supernodes in RBTT have more than 288(1−ε) ln2 n functional
nodes, for a given constant 0 < ε ≤ 1.

Lemma 2 The event C2 occurs with probability at least 1− 1/nd log n, for some positive con-
stant d.

Proof. Fix the set of spots in the graph. Pick a spot-free node u. The event FFu that node
u is fault-free occurs if none of its links has a spot as an endpoint. Since u is in a supernode
adjacent to at most 3 other supernodes, it may have a link to at most 18 lnn + 3 spots, if
event C1 holds. It follows, for large enough n, that

Pr[FFu] ≥ Pr[FFu ∧ C1]
= Pr[FFu | C1] Pr[C1]

≥
(

1− 1
18 ln n

)18 ln n+3

Pr[C1]

≥ 1
4

(
1− 1

n

)
.

Let Ni be the random variable which counts the number of non-faulty nodes in Si. Since,
under event C1, at most 6 lnn + 1 spots occur in any supernode, at least m− 6 ln n− 1 nodes
are fault-free, if C1 occurs. Thus,

E[Ni] ≥ Pr[C1] · (m− 6 ln n− 1) · Pr[FFu]

≥
(

1− 1
n

)
· (1152 ln2 n− 6 ln n− 1) · 1

4

(
1− 1

n

)
≥ 288

(
1− 6

1152 ln n
− 1

1152 ln2 n

)(
1− 1

n

)2

ln2 n

and therefore E[Ni] ≥ 288(1− ε′) ln2 n, for any constant 0 < ε′ ≤ 1, if n is sufficiently large.
We use a Chernoff bound to show that, with high probability, Ni ≥ 288(1 − ε′)(1 − ε′′) ln2 n
for any constant 0 < ε′′ ≤ 1. It follows that the probability of this event is

Pr[C2] = Pr[(∀Si ∈ S) Ni > 288(1− ε′)(1− ε′′) ln2 n]

≥ 1−
∑
Si∈S

Pr[Ni ≤ 288(1− ε′)(1− ε′′) ln2 n]

≥ 1−
∑
Si∈S

e−(ε′′)2288(1−ε′) ln2 n/2

≥ 1− nn−144(1−ε′)ε′′2 ln n

= 1− n1−144(1−ε′)ε′′2 ln n.

Using the previous results, we now present two connectivity lemmas in preparation for
the proof of the main theorem of this section.
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Lemma 3 All functional nodes are connected to at least one functional node in each supern-
ode adjacent to their own, with probability exceeding 1− 1/n13.

Proof. Fix a node u. Let N(u) denote the set of supernodes adjacent to the supernode
containing u. Consider the event γu,Sk

that u has a link to at least one functional node in
a given supernode Sk ∈ N(u). The event γu,Sk

occurs unless all links from u to functional
nodes in Sk do not exist. From Lemma 2, we get for any constants 0 < ε′, ε′′ ≤ 1

Pr[γu,Sk
] ≥ Pr[γu,Sk

∧ C2]
= Pr[C2] Pr[γu,Sk

| C2]

≥ Pr[C2]
(
1− (1− 1/18 ln n)288(1−ε′)(1−ε′′) ln2 n

)
≥ Pr[C2]

(
1− e−

288(1−ε′)(1−ε′′) ln2 n
18 ln n

)
= Pr[C2]

(
1− n−16(1−ε′)(1−ε′′)

)
≥

(
1− n−d ln n

)(
1− n−16(1−ε′)(1−ε′′)

)
,

and hence Pr[γu,Sk
] ≥ 1− n−15. Furthermore, since the graph contains at most n functional

nodes, which should be connected to at least one functional node in at most 3 supernodes,
the estimated probability is at least

Pr[(∀u ∈ V (∀Sk ∈ N(u))) γu,Sk
] ≥ 1−

∑
u∈V

∑
Sk∈N(u)

Pr[¬γu,Sk
]

≥ 1− 3n Pr[¬γu,Sk
]

≥ 1− 3nn−15

> 1− n−13.

Lemma 4 All functional node pairs in supernodes at distance 3 are connected by a fault-free
path with probability at least 1− 1/n1.9.

Proof. This lemma is proven in steps, defining connection probabilities and lower bounds on
the number of connected nodes at distances 1, 2, and 3.

Fix 4 supernodes, Su, Si, Sj , Sk, which form a simple path in RBTT. I.e., Su is adjacent
to Si, which is adjacent to Sj , which is adjacent to Sk.

Fix a node u in Su. Let Xi be the random variable which counts the number of functional
nodes i ∈ Γ(u) located in Si. From Lemma 2, each supernode contains more than 288(1 −
ε) ln2 n fault-free nodes, for any 0 < ε ≤ 1 with probability 1 − 1/nd log n, for some positive
constant d. Since the link probability is pl = 1/18 ln n,

E[Xi] ≥ Pr[C2]288(1− ε) ln2 n/18 ln n

= (1− 1/nd log n)16(1− ε) ln n

≥ 16(1− ε′) ln n,
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with some 1 > ε′ > ε. The probability that a functional node has at most 16(1−
√

3/8(1− ε′))(1−
ε′) ln n such neighbors is

Pr
[
Xi ≤ 16

(
1−

√
3/(8(1− ε′))

)
(1− ε′) ln n

]
≤ e

−
“√

3/(8(1−ε′))
”2

16(1−ε′) ln n/2

= n−3.

Let A be the event that node u has at least 16
(
1−

√
3/(8(1− ε′))

)
(1 − ε′) ln n functional

neighbors in Si.
Assume event A occurs. Now, fix a node x in Sj . Fix a subset S ⊆ Γ(u)∩Si of functional

nodes, with size 16
(
1−

√
3/(8(1− ε′))

)
(1 − ε′) ln n. Denote by PSx the event that there

exists a link between the node x and any node from S. This event occurs unless x has no link
to some node in S. Hence,

Pr[PSx|A] = 1− (1− 1/18 ln n)16
“
1−
√

3/(8(1−ε′))
”
(1−ε′) ln n

≥ 1− e
−16

“
1−
√

3/(8(1−ε′))
”
(1−ε′) ln n/(18 ln n)

≥
(

1− e
−8

“
1−
√

3/(8(1−ε′))
”
(1−ε′)/9

)
≥ 1/4

for some small ε′.
Let Xj be the random variable which counts the number of functional nodes j ∈ Sj which

are adjacent to some node in S. We have that E[Xj ] ≥ (1/4) ·288(1− ε′) ln2 n, assuming that
A holds. Let B be the event that Xj ≥ 72(1−ε′′) ln2 n, for some small ε′′ > ε′. Since all events
PSx, for fixed S and varying x, are independent, we use a Chernoff bound to show that, if
event A occurs, event B occurs with probability 1− 1/nk′ log n, for some positive constant k′.

Assume event A ∩ B. Fix a functional node k in Sk. Fix a subset S′ ⊆ Sj of functional
nodes, each of which is a neighbor of some element of S, with size 72(1 − ε′′) ln2 n. Denote
by PS′k the event that there exists a link between node k and some node in S′. This event
occurs unless k has no link to any node in S′. Hence,

Pr[PS′k|B ∩A] =
(
1− (1− 1/18 ln n)72(1−ε′′) ln2 n

)
≥ 1− e−72(1−ε′′) ln2 n/(18 ln n)

≥ 1− n−4(1−ε′′).

Consider the event Puijk that there exists a fault-free path of the form uijk from a fixed
node u to a fixed node k. Clearly, Puijk is a subset of the event detailed in the above argument.
Hence,

Pr[Puijk] ≥ Pr[PS′k ∩B ∩A]
= Pr[A] Pr[B|A] Pr[PS′k|B ∩A]

≥
(
1− n−3

) (
1− 1/nk′ log n

)(
1− n−4(1−ε′′)

)
≥

(
1− n−3+ε′′′

)
,

for some 0 < ε′′′ < 0.1.
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There are at most n functional nodes in RBTT , each with at most O(log2 n) functional
nodes in supernodes at distance 3. Hence, there are at most O(n log2 n) functional node pairs
in supernodes at distance 3. It follows that all node pairs in supernodes at distance 3 are
connected with probability at least 1− n−1.9.

Combining the previous lemmas, we are now ready to prove Theorem 1.
Proof. of Theorem 1 The RBTT contains O(n/ log2 n) supernodes connected in a binary-
tree structure of diameter D ∈ O(log n). It follows from the construction that the maximum
degree of the RBTT is O(log n), with high probability. By Lemma 4, all functional node
pairs in supernodes at distance 3 are connected by at least one fault-free path of length 3
with probability greater than 1 − 1/n1.9. Therefore, all functional nodes in the subgraph
RBTT ′ composed of the root supernode S1 and of all supernodes at distances multiple of 3
from S1 are connected with this probability. Clearly, functional nodes not in RBTT ′ are in
supernodes adjacent to supernodes in RBTT ′. Thus, by Lemma 3, all these functional nodes
are also connected to at least one functional node in RBTT ′ with probability exceeding
1 − 1/n13. Hence, with probability exceeding 1 − 1/n1.8, the fault-free part of RBTT is
connected.

We now investigate the diameter of the fault-free part of RBTT . From the above argu-
ment, we observe that 1) nodes in supernodes at distances multiple of 3 are connected with
high probability by a path of length equal to the distance of the supernodes; 2) functional
nodes in all other supernodes are connected with high probability by a path of length at most
2 longer than the distance of the supernodes. This leads to the conclusion that the diameter
of the fault-free part of RBTT is also in O(log n), with high probability.

2.2 Lower Bounds

We have shown that it is possible to build a logarithmic-degree graph which supports com-
munication with high probability in spite of spot probabilities p ≤ 1/c log n, for some positive
constant c. The natural question then is whether it is possible to build arbitrarily large
networks which can support communication with high probability despite larger spot proba-
bilities. In what follows, we show that for constant spot probabilities, most networks do not
have this property. More formally, we demonstrate Theorem 2.

Theorem 2 For any constant spot probability p > 0, there exist constants c1 and c2 such
that: if all degrees in a graph are at most c1 log n then the fault-free part of the graph is
disconnected with high probability; if all degrees in a graph are at least c2 log n then the graph
has all nodes faulty with high probability. In either case, highly reliable communication is not
possible.

In order to prove Theorem 2, we need several lemmas. First, we describe an event which
implies that a small fault-free part of the graph is surrounded by faulty nodes, and bound its
probability. We then define the size of a set of nodes for which these events are independent
in the graph. With these lemmas, we bound the degree of graphs for which the fault-free part
is not connected, with high probability. We then bound the degree of graphs such that all
nodes are faulty, with high probability.

A node u is said to be insular if it is not faulty and all its neighbors who have neighbors
at distance 2 from u are faulty. Denote by Iu the event that u is insular.

Lemma 5 In a graph of maximum degree ∆, Pr[Iu] ≥ (1− p)∆+1p∆, for spot probability p.
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Proof. An equivalent definition of event Iu is as follows: No node in Γ≤1(u) is a spot
and, for each node i ∈ Γ(u), either there exists a node g ∈ Γ(i) ∩ Γ2(u) which is a spot,
or Γ(i) ∩ Γ2(u) = ∅. In order to obtain a lower bound on the probability of event Iu, we
now describe the construction of an elementary event ϕu ⊆ Iu: Sequentially, for each node
i ∈ Γ(u), mark one unmarked neighbor node which is not in Γ≤1(u) and label it mi. If no
such node exists, then mark nothing. Denote byM the set of nodes marked by this process.
Clearly, |M| ≤ |Γ(u)| ≤ ∆. The event ϕu occurs if all nodes inM are spots and all nodes in
Γ≤1(u) are not.

By definition, if all nodes in M are spots, then each node i ∈ Γ(u) for which there exists
a node mi ∈M, is faulty. Still by definition, all nodes i ∈ Γ(u) for which there is no mi ∈M
are adjacent to a mu ∈ M, i 6= u or have no neighbor at distance 2 from u. Therefore, if all
marked nodes are spots and all nodes in Γ≤1(u) are not spots, the event Iu is implied. See
Figure 2.

u

a

b

c

e = mb

d

Figure 2: Building an elementary event ϕu: for node a, no node is marked because its
neighbors are in Γ≤1(u); for node b, node e is marked and labeled mb; for node c no node is
marked because its neighbor outside Γ≤1(u), e, is already marked and labeled mb. If mb is a
spot and u, a, b, c are not spots, then u is insular.

It follows from the preceding discussion that

Pr[Iu] ≥ Pr[ϕu] = (1− p)|Γ≤1(u)|p|M|

≥ (1− p)∆+1p∆.

Lemma 6 For all n-node graphs with maximum degree bounded above by ∆, there exist more
than n/∆2h+1 nodes ci with disjoint h-hop neighborhoods Γ≤h(ci).

Proof. Take any graph whose maximum degree is bounded above by some ∆. Algorithm 1
constructs a sequence {c0, c1, . . .} of nodes with disjoint h-hop neighborhoods Γ≤h(ci).

We now prove by induction that the sequence {c0, c1, . . .} satisfies the statement of the
lemma. For the sequence {c0}, this is trivial. By inductive hypothesis, assume {c0, c1, . . . , ci}
has been constructed such that there is no pair cj 6= ck with intersecting sets Γ≤h(cj) and
Γ≤h(ck). Since, by construction, all nodes less than 2h+1 hops away from any node cj , j ≤ i,
are marked and ci+1 is chosen from the unmarked node set, it is at least 2h+1 hops away from

11



Algorithm 1 Construction
1: i← 0
2: c0 ← pick a node v ∈ V
3: mark nodes in Γ≤2h(c0)
4: repeat
5: i← i + 1
6: ci ← pick an unmarked node adjacent to a marked node
7: mark nodes in Γ≤2h(ci)
8: until all v ∈ V are marked

any cj , j < i + 1. Furthermore, for any two nodes u, v with distance at least 2h + 1, Γ≤h(u)
and Γ≤h(v) are disjoint. Therefore, the inductive hypothesis holds for {c0, c1, . . . , ci+1}.

Finally, for a graph whose maximum degree is at most ∆, less than ∆2h+1 nodes can
be marked at every step of the construction. Therefore, the above construction defines a
sequence C of more than n

∆2h+1 nodes.

We now prove a bound on the degree of networks whose fault-free part is disconnected
with high probability; thus they cannot support communication with high probability.

Lemma 7 For any constant c1 < 1
log(1/(p(1−p))) , any graph with maximum degree lower than

c1 log n has the fault-free part disconnected, with high probability, if spot probability p is a
positive constant.

Proof. In Lemma 5, we bound the probability of event Iu, that a fixed node u is insular.
With an upper bound c1 log n on the degree of the nodes,

Pr[Iu] ≥ (1− p)c1 log n+1pc1 log n

≥ (1− p)nc1 log(1−p)nc1 log p

≥ 1− p

nc1 log(1/(p(1−p)))
.

Let S be a set of nodes in the graph for which the events Iu are independent. Since event Iu

occurs if spots are located at distance 2 from u, the occurrence of this event is independent
for nodes whose neighborhoods of radius at most 2 are disjoint. Furthermore, since all nodes
have degree at most c1 log n, by Lemma 6, we have |S| ≥ n/(c1 log n)5. Thus,

Pr[∃u ∈ V Iu] = 1− Pr[∀u ∈ V ¬Iu]
≥ 1− Pr[¬Iu]|S|

≥ 1−
(

1− 1− p

nc1 log(1/p(1−p))

)n/(c1 log n)5

≥ 1− e
−

„
(1−p)n1−c1 log(1/p(1−p))

(c1 log n)5

«

and, for c1 < 1
log(1/(p(1−p))) , this event occurs with high probability.

We now fix an insular node u ∈ S and show that, in the set S, there is at least one other
node v which is fault-free. Nodes u and v are clearly not connected by a fault-free path. Let

12



I(u) be the set of nodes connected to node u by a fault-free path, including node u. Let FFv

be the event that a node v is fault-free.

Pr[(∃v ∈ V \ I(u)) FFv] = 1− Pr[(∀v ∈ V \ I(u)) ¬FFv]
≥ 1− Pr[¬FFv]|S|−1

≥ 1−
(
1− (1− p)c1 log n+1

)(1−ε)n/(c1 log n)5

= 1−
(

1− (1− p)
nc1 log 1/(1−p)

)(1−ε)n/(c1 log n)5

≥ 1− e
−

„
(1−p)(1−ε)n1−c1 log(1/(1−p))

(c1 log n)5

«

and, for c1 < 1
log(1/(p(1−p))) , this event occurs with high probability. It follows that the fault-

free part of the graph is disconnected with high probability.

Lemma 8 For any constant c2 > 1
log(1/(1−p)) , any graph with minimum degree at least c2 log n

has all nodes faulty with high probability, if spot probability p is a positive constant.

Proof. Consider a node u with at least c2 log n neighbors. Let Fu denote the event that u is
faulty. Fu does not occur if none of u and its neighbors is a spot. Let FV denote the event
that all nodes in the graph are faulty. It follows that we can bound the probability of this
event as

Pr[FV ] = Pr[∀u ∈ V Fu]
= 1− Pr[∃u ∈ V ¬Fu]

≥ 1−
∑
∀u∈V

Pr[¬Fu]

= 1− n · (1− p)c2 log n+1

= 1− n · (1− p) · nc2 log(1−p)

= 1− (1− p)
nc2 log(1/(1−p))−1

.

Take c2 > 1
log(1/(1−p)) , then we have c2 log(1/(1− p))− 1 > 0 and Pr[FV ] converges to 1 as n

grows.

Lemmas 7 and 8, imply Theorem 2.
The preceding theorem leads to the conclusion that high probability communication is not

possible, for a large class of graphs, when spot probability is a positive constant. However,
the bounds c1 log n and c2 log n do not coincide. Since c1 < 1

log(1/(p(1−p))) and c2 > 1
log(1/(1−p)) ,

we have c1 < c2 for all positive values of p. It remains open whether or not there exists an
arbitrarily large graph which supports reliable communication despite constant spot proba-
bilities.

We will now attempt to provide insight into the question of what happens when node
degrees lie between these bounds. For example, when p = 1/2, we have c1 < 1/2 and
c2 > 1. Thus, with degree log n, the important case of the n-node hypercube is not covered
by Theorem 2. We will investigate this case in the following section.

13



2.3 Communication in the Hypercube

The hypercube Hk of dimension k is a 2k-node graph with the set of nodes with identifiers
from {0, 1}k and the set of links between nodes whose identifiers have a Hamming distance of
1. Hence the n-node hypercube Hk has dimension log n. This section is dedicated to proving
Theorem 3.

Theorem 3 The n-node hypercube Hk does not support high probability communication for
any constant spot probability 0 < p ≤ 1.

We first show that for constant 0 < p < 1/2, the fault-free part of the graph is disconnected
with high probability. We then show that for 1/2 < p ≤ 1, the graph has all nodes faulty
with high probability, and that for p = 1/2, the graph has all nodes faulty with constant
probability. This will prove Theorem 3.

In order to prove that the fault-free part of the hypercube is disconnected for constant
0 < p < 1/2, we first show that there exists at least one pair of functional nodes with some
minimum constant distance in the hypercube. We will then show that there exists no fault-free
path of sufficient length to connect this pair of nodes.

Lemma 9 Assume constant spot probability 0 < p < 1/2. For any constant c the n-node
hypercube Hk contains at least one pair of fault-free nodes at distance at least c, with high
probability.

Proof. Consider event FFu that a node u is fault-free. FFu occurs if and only if there is
no spot on nodes in Γ≤1(u). Furthermore, if two nodes u and v are at distance at least 3,
then FFu and FFv are independent. On the hypercube, a result by Hamming implies that
there exists a set S3 of nodes at distance at least 3 from each other with size |S3| ∈ Ω(2k

k ).
(Hamming codes are subsets of {0, 1}L of size Ω(2L

L ) such that any two words have Hamming
distance at least 3.) It follows from the preceding discussion that

Pr[(∃u ∈ V ) FFu] = 1− Pr[∀u ∈ V ¬FFu]
≥ 1− (1− Pr[FFu])|S3|

≥ 1−
(
1− (1− p)k+1

) 2k

k

= 1−
(
1− (1− p)(1− p)log n

) n
log n

= 1−
(

1− (1− p)
nlog 1/(1−p)

) n
log n

.

For p < 1/2, log 1/(1− p) < 1 and therefore, we have at least one functional node with high
probability.

Pick one functional node u and, w.l.o.g., label the nodes of Hk such that u has the label 0k.
Pick a positive integer c and consider the subset of nodes with labels 1c{0, 1}k−c. These nodes
induce a sub-hypercube H ′

k−c of Hk with nodes at distance at least c from 0k. Hamming’s
result applied on H ′

k−c shows a set of nodes S ′3 at distance at least 3 from each other with
size |S ′3| ∈ Ω(2k−c

k−c ) ∈ Ω( n
log n). The above probabilistic argument applied to H ′

k−c proves the
lemma.
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Lemma 10 The fault-free part of the n-node hypercube Hk is disconnected with high proba-
bility, for constant spot probability 0 < p < 1

2 .

Proof. Pick a constant c > 1/ log(1/(1−p)). Since 0 < p < 1/2, by Lemma 9, there is a pair
(u, v) of functional nodes at distance l ≥ dce, with high probability. For nodes u and v to be
connected, there must exist a fault-free path of length at least l between them.

Consider any path x = x1x2 . . . xl of length l in Hk. For the path x to be fault-free, all
nodes x1, x2, . . . , xl and all their neighbors must be spot-free. In any graph, only nodes at
distance 2 or less can have common neighbors. In Hk, nodes at distance 2 share 2 neighbors;
nodes at distance 1 are mutual neighbors and do not share other neighbors. Thus, for a
path of length l to be fault-free, there must be more than l(k− 3) nodes which are spot-free.
Furthermore, each node in Hk is an endpoint to, at most, logl n paths of length l; there are
at most n logl n paths of length l in Hk. Let Pl be set of all paths of length l. Let Px be the
event that a path x is fault-free. It follows from the preceding discussion that

Pr[(∃x ∈ Pl) Px] ≤
∑
x∈Pl

Pr[Px]

≤ n logl n · (1− p)l(k−3)

=
logl n

(1− p)3l
· n(1− p)l log n

=
logl n

(1− p)3l
· n1−l log(1/(1−p))

→ 0

since l ≥ dce > 1
log(1/(1−p)) .

Since all paths of length greater than l include path segments of length l, these also contain
faulty nodes with high probability. Thus, with high probability, no fault-free path can connect
fault-free nodes u and v and the lemma follows.

It remains to see what occurs in the hypercube when spot probability is p ≥ 1/2.

Lemma 11 The n-node hypercube Hk has all nodes faulty with high probability, for spot
probability p > 1/2, and all nodes faulty with constant probability, for spot probability p = 1/2.

Proof. Consider event FFu that a node u is fault-free. This event is equivalent to u and
Γ(u) being spot-free. For p > 1/2, the event that all nodes in Hk are faulty has probability

Pr[(∀u ∈ V ) ¬FFu] ≥ 1−
∑
u∈V

Pr[FFu]

≥ 1− n(1− p)k+1

≥ 1− n(1− p)nlog(1−p)

≥ 1− 1− p

nlog(1/(1−p))−1
.

Thus, for p = 1/2, log(1/(1− p)) = 1 and all nodes are faulty with constant probability and,
for p > 1/2, log(1/(1− p)) > 1 and all nodes are faulty with high probability.

Lemmas 10 and 11, imply Theorem 3.
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3 Bounded Degree Networks

The RBTT presented in Section 2 remained connected despite relatively high spot probabil-
ities. However, its degree is unbounded. For certain applications, smaller-degree networks
may be preferred as they are easier to implement and give shorter communication time in
the 1-port model. Therefore, it is natural to ask if bounded-degree networks can also support
high-probability communication with comparable spot probabilities.

In this section we construct bounded-degree networks which tolerate inverse polynomial
spot probabilities and which support high-probability communication with optimal time com-
plexity. Furthermore, we prove that bounded-degree networks can tolerate at most inverse
polynomial spot probabilities.

3.1 Upper Bounds

We now study the properties of two networks: the torus and a torus-based tree-like network
that we call the toroidal tree. We show that the torus supports high-probability communica-
tion for spot probability in 1/ω(n1/2). However, the diameter of the torus is quite large, which
prohibits fast communication. Thus we design a tree-like structure based on the torus which
provides the same fault-tolerance properties and supports communication in time O(log n),
even in the 1-port model.

3.1.1 The Torus

In this section, we show an upper bound on the spot probability such that the fault-free part
of the torus remains connected. Denote by Tm×k the m × k torus with m, k ≥ 4. The torus
has the set of nodes {u = (ux, uy) : ux ∈ {0, 1, . . . ,m− 1}, uy ∈ {0, 1, . . . , k − 1}} and the set
of links {(u, v) : |ux − vx| mod m + |uy − vy| mod k = 1}.

Theorem 4 The fault-free part of the n-node torus Tm×k is connected with high probability
for p ∈ 1/ω(n1/2).

To prove Theorem 4, we show that, if spots are far enough from each other, fault-free
node pairs are connected by paths which circumvent all faulty nodes.

Lemma 12 In Tm×k, for each node u, there exists a cycle in the set Γ2(u) ∪ Γ3(u). This
cycle includes all elements of Γ2(u).

Proof. Consider the node with coordinates (x, y). The following cycle around node (x, y)
lies in the set Γ2(u) ∪ Γ3(u):

{(x, y + 2), (x + 1, y + 2), (x + 1, y + 1), (x + 2, y + 1), (x + 2, y), (x + 2, y − 1),
(x + 1, y − 1), (x + 1, y − 2), (x, y − 2), (x− 1, y − 2), (x− 1, y − 1), (x− 2, y − 1),

(x− 2, y), (x− 2, y + 1), (x− 1, y + 1), (x− 1, y + 2), (x, y + 2)}.
See Figure 3. Clearly, all nodes of Γ2((x, y)) are included in this cycle. Since the torus is
regular, the proof generalizes to all nodes of Tm×k.

Lemma 13 The fault-free part of Tm×k is connected if all spots are at distance at least 5
from each other.
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(x, y)

Figure 3: Cycle on Γ2((x, y)) ∪ Γ3((x, y))

Proof. Pick any pair of spots i 6= j. Since dist(i, j) ≥ 5, all nodes u ∈ Γ2(j) are at least
at distance 3 from i and all nodes u ∈ Γ3(j) are at least at distance 2 from i. Hence, for all
spots i, nodes u ∈ Γ2(i) ∪ Γ3(i) are functional. By Lemma 12, for each spot i, there exists a
fault-free cycle Ci included in Γ2(i) ∪ Γ3(i) which includes all nodes in Γ2(i).

Fix a spot i. Pick nodes u, v 6∈ Γ≤1(i), u 6= v. We say that a path between functional
nodes u and v is disconnected by spot i if the path contains at least one faulty node in Γ≤1(i).
Let P(u,v),Γ≤1(i) be the set of paths disconnected by spot i between nodes u and v. We say
that a path between functional nodes u and v circumvents spot i if it contains nodes in Ci
and excludes nodes in Γ≤1(i). Let P(u,v),Ci

be the set of paths between nodes u and v which
circumvent spot i. All paths in P(u,v),Γ≤1(i) have a prefix u . . . a and a suffix b . . . v of elements
not in Γ≤1(i) such that the successor of a and the predecessor of b in the path are both in
Γ≤1(i); elements a and b must be in Γ2(i). Similarly, all elements of P(u,v),Ci

include a prefix
u . . . a and a suffix b . . . v of elements such that a, b are respectively the first and last elements
of Ci ∩ Γ2(i) in the path. Since Ci includes all nodes in Γ2(i), for each path in P(u,v),Γ≤1(i),
there is at least one path in P(u,v),Ci

with matching prefix u . . . a and a suffix b . . . v. Thus,
there exists a function fi : P(u,v),Γ≤1(i) → P(u,v),Ci

which maps all paths disconnected by spot
i to paths which circumvent spot i. See Figure 4.

a) Paths between u and v are discon-
nected by spot i

u

v

b) These paths are mapped to paths
which circumvent the spot i

u

v

Figure 4: Path Mapping
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Since we have shown that there is a fault-free cycle Ci surrounding each spot i, the rea-
soning extends to any number of spots. In fact, since the sets Γ≤1(i) are disjoint for all spots
i, the composition of all functions fi maps all paths disconnected by spots to paths which
circumvent all spots, for all functional pairs of nodes (u, v), i.e. maps all paths which contain
faulty nodes to fault-free paths, for all functional pairs of nodes (u, v). See Figure 5.

c) Composing mapping functions

u

v

Figure 5: Path Mapping

We are now ready to prove Theorem 4.
Proof. of Theorem 4 Let D5 be the event that all spots are at distance at least 5 from each
other. By Lemma 13, the event D5 implies that the fault-free part of the torus is connected.
Moreover, it has more than one element. Alternately, D5 is the event that for all spots i, no
set Γ≤5(i) contains a spot j 6= i. We note that |Γ≤5(i)| ≤ 61.

Let S be the set of spots. Let D5,i be the event that for spot i, the set Γ≤5(i) contains
no spot j 6= i. The event D5 is the intersection of all D5,i, i ∈ S. For a fixed spot i, the
probability of the event D5,i is Pr[D5,i] = (1 − p)|Γ≤5(i)| > 1 − 61p. Let the spot probability
be p ∈ 1/ω(n1/2). Hence p = 1/(n1/2f(n)), where f(n)→∞. Let A be the event that there
are at most 2n1/2 spots. Using Chernoff bounds, with parameter (1+ ε) = 2f(n) we can show
Pr[A] ≥ 1− ((e/(2f(n)))2n1/2

. It follows from the preceding discussion that

Pr[D5] ≥ Pr[A] Pr[D5 | A]

= Pr[A] Pr

[⋂
i∈S

D5,i | A

]

= Pr[A]

(
1− Pr

[⋃
i∈S
¬D5,i | A

])
≥ Pr[A](1− 2n1/2 Pr[¬D5,i])

> Pr[A]
(

1− 2n1/2

(
1−

(
1− 61

n1/2f(n)

)))
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≥

(
1−

(
e

2f(n)

)2n1/2
)(

1− 2 · 61
f(n)

)
→ 1 as n→∞.

3.1.2 The Toroidal Tree

We now design a network which provides the same fault-tolerance as the torus, while also
providing optimal-order communication time for bounded-degree graphs. Since the diameter
of a bounded-degree graph is at least logarithmic, our aim is to construct a network whose
fault-free part has logarithmic diameter. Such a network supports highly reliable communi-
cation in optimal time O(log n), even in the 1-port model. The network construction is based
on two binary trees, T and T ′, connected by a link between their root nodes. Each node
of T, T ′ represents a group of nodes, and groups adjacent in T, T ′ have a subset of nodes in
common. More precisely, for constant k ≥ 4, we define a n-node graph G(n, k). Assume that
the set of nodes can be partitioned exactly as described below; this is easy to modify in the
general case, by adding nodes to a leaf group.

Let the sets T1, T2, . . . , Tx and T ′1 , T ′2 , . . . , T ′x′ be tori with 2k rows {0, 1, . . . 2k − 1} and k
columns {0, 1, . . . k − 1}; |x− x′| ≤ 1. We describe the construction for the tree T ; the same
construction is applied for the tree T ′. Arrange all Ti as the nodes of T , with L + 1 levels
0, 1, 2, . . . , L, placing each Ti on level blog ic of T . Level 0 contains the root of T and levels
L − 1 and L contain the leaves. For every 1 ≤ i ≤ bx/2c, T2i is the left child of Ti in T and
T2i+1 is the right child of Ti in T (T2i+1 exists if x ≥ 2i + 1). For every 1 < i ≤ x, Tbi/2c is
the parent of Ti. Use row 0 of each child torus to connect it to its parent in T . Use row k of
each parent torus to connect it to both its children in T . Use row 0 of both roots in T, T ′ to
connect them together. Connections between tori adjacent in T, T ′ are done by identifying
the respective rows.

It follows from the above description that x + x′ = b(n − 2k2)/((2k − 1)k)c + 1 tori are
located on L = blog(x + x′ + 1)c levels in G(n, k). The graph G(n, k) is called a Toroidal
Tree. It has bounded maximal degree. See Figure 6.

T1

T2 T ′
2T3 T ′

3

T ′
1

Figure 6: The toroidal tree

Lemma 14 The fault-free part of the Toroidal Tree is connected if all spots are at distance
at least 5.
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Proof. Since the toroidal tree is build of k × 2k tori Ti, k ≥ 4, and since faults are at least
at distance 5 from each other, by Lemma 13 the fault-free part of each Ti is connected. Since
k ≥ 4, at least one common node is functional for each pair of adjacent tori. Therefore, the
fault-free part of each adjacent pair of tori is connected and the lemma follows.

Theorem 5 For p ∈ 1/ω(n1/2), the n-node Toroidal Tree supports high probability commu-
nication in time O(log n).

Proof. To prove connectivity of the fault-free part of the graph, we repeat the proof of
Theorem 4, substituting Lemma 13 with Lemma 14. Since in the toroidal tree |Γ≤5(i)| ∈ Θ(1),
connectivity follows.

Since every torus Ti forming the Toroidal Tree has a constant number of nodes, the diam-
eter of its fault-free part is bounded. Since these tori are arranged in a binary tree, it follows
that the diameter of the fault-free part of the Toroidal Tree is O(log n). By construction, the
Toroidal Tree has bounded maximum degree.

3.2 Lower Bounds

In this section, we show that bounded-degree graphs do not support high probability commu-
nication even for relatively small spot probabilities. We first show that the bounds on spot
probability provided in Theorem 4 and Theorem 5 are tight for tori and toroidal trees. We
then show that for general bounded-degree networks, if spot probability is the inverse of some
polynomial, then high probability communication is not supported.

3.2.1 The Torus and Toroidal Tree

We first show a lower bound on spot probability such that the torus does not support high
probability communication. Then, we extend the proof to show a similar lower bound for
the toroidal tree. The following lower bounds match the upper bounds from Theorem 4 and
Theorem 5, thus showing that the results are tight.

Theorem 6 For spot probability p ∈ 1/O(n1/2), the n-node torus Tm×k does not support high
probability communication.

Proof. Let Com denote the event that the fault-free part of the n-node torus Tm×k supports
communication. In order for Com to occur, the fault-free part of the graph must be connected
and have size at least 2. Let Ju be the event that a node u is functional and has 2 spots close
to it, such that all neighbors of node u are faulty (see Figure 7). Clearly, Pr[Ju] ≥ (1− p)p2.
If an event Ju occurs then, either the fault-free part of the graph is disconnected, or the
fault-free part of the graph has size less than 2; events Ju and Com are mutually exclusive.
Furthermore, the events Ju are independent for nodes which are at distance 5 from each other.
There exists a set S of nodes at distance at least 5 from each other, such that |S| = kn, for
some constant k. Let p ≥ c/n1/2, with c a positive constant. It follows that

Pr[Com] ≤ Pr [∀u ∈ V ¬Ju]
≤ Pr [∀u ∈ S ¬Ju]
= (1− Pr[Ju])|S|

≤ (1− (1− p)p2)kn
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u

Figure 7: Two spots disconnect a torus

≤ (1− (1/2)c2/n)kn

≤ e−kc2/2

< 1.

Theorem 7 For spot probability p ∈ 1/O(n1/2), the n-node Toroidal Tree does not support
high probability communication.

Proof. We use the argument from Theorem 6. Inside the set of constant size component tori
forming the Toroidal Tree, there is a set S of linear size with the same property as before.
Thus the result follows.

3.2.2 General Bounded Degree Graphs

We showed in the preceding section that in the case of the torus and the Toroidal Tree,
spot probabilities at most 1/ω(n1/2) can be tolerated if these graphs support high-probability
communication. In the following theorem, we show that a similar phenomenon occurs for all
graphs whose degree is bounded by a constant.

Theorem 8 For spot probability p ∈ 1/O(n1/d), no n-node graph with degree bounded above
by d ∈ Θ(1) supports high probability communication.

Proof. Let p ≥ c/n1/d, with c a positive constant. Consider the event Iu that a node u is
insular, as defined in Section 2. Clearly, a graph is disconnected if the event Iu occurs for some
node u and that there is a functional node v which has no fault-free path which connects it to
the node u. By Lemma 5, a fixed node u is insular with probability Pr[Iu] ≥ (1−p)d+1pd. From
Lemma 6 we know that any bounded degree graph has at least n/d2h+1 nodes with disjoint
h-radius neighborhoods. Since event Iu depends only on the status of nodes at distance 2
from u, the occurrence of these events is independent for nodes u which have radius 2 disjoint
neighborhoods; i.e. for h = 2. It follows that

Pr[∃u ∈ V Iu] = 1− Pr [∀u ∈ V ¬Iu]
≥ 1− Pr [∀u ∈ S ¬Iu]
= 1− (1− Pr[Iu])|S|

≥ 1−
(
1− (1− p)d+1pd

) n
d5
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≥ 1−
(

1− 1
2

(
cn−1/d

)d
) n

d5

= 1−
(

1− 1
2
· c

d

n

) n
d5

> 1− e−
cd

2d5 .

We now fix an insular node u ∈ S and show that, in the set S, there is at least one other
node v which is fault-free. Nodes u and v are clearly not connected by a fault-free path. Let
I(u) be the set of nodes connected to node u by a fault-free path, including node u. Let FFv

be the event that a node v is fault-free. It follows that

Pr[(∃v ∈ V \ I(u)) FFv] = 1− Pr[(∀v ∈ V \ I(u)) ¬FFv]
≥ 1− Pr[(∀v ∈ S \ u) ¬FFv]
= 1− Pr[¬FFv]|S|−1

≥ 1−
(
1− (1− p)d+1

)(1−ε) n
d5

≥ 1−
(

1−
(
1− cn−1/d

)d+1
)(1−ε) n

d5

≥ 1−
(
(d + 1)cn−1/d

)(1−ε) n
d5

→ 1.

Hence the fault-free part of the graph is disconnected with positive constant probability and
the lemma follows.

4 Conclusion

We provided what is, to the best of our knowledge, the first set of analytic results related to
fault-tolerance of networks in the presence of dependent, positively correlated faults. To do
so, we introduced the neighborhood fault model where damaging events, called spots, occur
randomly and independently at nodes of a network with probability p, and cause faults in the
affected node and its neighbors.

We addressed questions regarding the connectivity and diameter of the fault-free part of
networks in this fault model, as these characteristics of the network are responsible for the
feasibility of communication and for its time. Our results show clear differences between the
assumption of independent faults and that of the neighborhood fault model. For example,
while under independent faults with small constant fault probability p > 0 the fault-free part
of the hypercube remains connected with high probability [4], this is not the case under the
neighborhood fault model with any positive constant spot probability. Likewise, the fault-
free part of the torus is connected with high probability for fault probability p ∈ 1/Ω(n1/4)
when faults are independent, but this is not the case for such spot probabilities under the
neighborhood fault model.

It remains open whether or not there exists a network, which, under the neighborhood
fault model, has the fault-free part connected with high probability despite constant spot
probabilities. Our results support the conjecture that this is not the case.
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The neighborhood fault model is the first step in modeling dependent positively correlated
faults in networks. It would be interesting to analyze more precise center-satellite based
models in which independent spots yield faults in nodes with probability decreasing with the
distance of the node from the spot.
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