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Abstract. We present local 1+ε approximation algorithms for the minimum
dominating and the connected dominating set problems in location aware Unit
Disk Graphs (UDGs). Our algorithms are local in the sense that the status of
a vertex v (i.e. whether or not v is part of the set to be computed) depends
only on the vertices which are a constant number of edges (hops) away from v.
This constant is independent of the size of the network. In our graph model
we assume that each vertex knows its geographic coordinates in the plane
(location aware nodes). Our algorithms give the best approximation ratios
known for this setting. Moreover, the processing time that each vertex needs
to determine whether or not it is part of the computed set is bounded by a
polynomial in the number of vertices which are a constant number of hops
away from it.

1. Introduction

Locality is a particularly important issue in wireless ad hoc networks since in
such networks the wireless devices do not have knowledge about the entire network
and it is often not practical or even impossible to explore the whole network com-
pletely. Especially in the case of dynamically changing networks the attempt to
examine the entire system would require too much time. Therefore we are inter-
ested in local algorithms where the status of a node v (whether or not v is in the
dominating set, connected dominating set etc.) depends only on the nodes that are
at most a constant number of edges (hops) away from v. This ensures that when
computing a solution in a network messages do not propagate uncontrollably far.
It is also advantageous for disaster recovery since in this context one does not need
to recompute the entire solution but only the parts that have been affected by the
incident. Also in dynamic networks (especially but not limited to the case of ad hoc
wireless networks) we want that local changes in the graph only affect the solution
locally so that we do not have to recompute the entire solution if only small local
changes occur.

Maintaining Topology Control (i.e., network stability, power conservation, inter-
ference reduction etc.) is an important issue in ad hoc networks. In order to deal
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with this vertices are often organized in clusters where one vertex in each cluster
takes the role of a clusterhead that the other vertices in the cluster are assigned
to. So the clusterheads form a dominating set. They are responsible for the com-
munication of the members of the cluster with other nodes. For being able to send
messages from one cluster to another one wants the clusterheads to form a con-
nected graph which results in a connected dominating set. For efficiency reasons
we want the dominating and connected dominating sets to be as small as possible.

We model the wireless network as a Unit Disk Graph (UDG) consisting of nodes
with identical transmission range in which each node knows about its geographic
coordinates but does not have any other information that distinguishes it from
the other nodes. This models the case of identical wireless devices that have a
constant transmission range and know about their geographic position e.g. from a
GPS receiver or from virtual coordinates assigned by another source. In wireless
and sensor networks each device has a limited transmission range and whether
communication between two nodes is possible depends on their Euclidean distance.
With the advent of GPS devices our assumption regarding positional knowledge in
each node seems to be relevant.

1.1. Related work. For general graphs G = (V,E) with n nodes computing mini-
mum dominating and minimum connected dominating sets is NP-hard. Dominating
set cannot be approximated with a ratio better than c · log |V | for some c > 0 unless
every problem in NP can be solved deterministically in O(npoly logn) [16], but it
can be approximated within a bound of O(log n) [9].

For the restricted case of unit disk graphs the situation is a bit different. Dom-
inating set and connected dominating set remain NP-hard [5]. However, there are
constant ratio approximations known [1, 14] and polynomial time approximation
schemes. The first polynomial time approximation scheme (PTAS) was proposed
by Hunt III et al. [8] and needs the geometric embedding of the graph as part of the
input. Later Nieberg and Hurink [15] found a PTAS that computes an approxima-
tion for the dominating set without the geometric embedding of the graph. This is
an advantage since the recognition of a unit disk graph (given a graph determining
if it is a unit disk graph or not) is NP-hard [2] and therefore finding an embedding
for a given unit disk graph is NP-hard as well. Even finding an approximation for
an embedding of a unit disk graph is NP-hard [10]. For the connected dominating
set problem Cheng et al. proposed a global PTAS [4] that needs the embedding
of the graph as part of the input. Gfeller and Vicari presented a distributed (but
not local) approximation scheme for connected dominating set in growth-bounded
graphs [7] (this includes unit disk graphs) which does not rely on the geometric
embedding of the graph.

When looking for local algorithms, Kuhn et al. [12] proposed local approximation
schemes for maximum independent set and dominating set for growth-bounded-
graphs. This class of graphs includes UDGs. However, in their definition of locality
the status of a vertex v depends on the vertices up to O(log∗ n) hops from v. This
bound depends on the size of the graph and is therefore not constant. In the
graph model they use the fact that each vertex has a unique ID to distinguish itself
from the other vertices. This is the graph model that was mostly discussed in the
literature in terms of algorithms and lower bounds, see e.g. [13, 11].

However, in this paper we assume a different model in which every vertex knows
its coordinates in the plane and can make use of them for computing a dominating
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or a connected dominating set. The first work on such algorithms using this model
was [6]. In this paper, Czyzowicz et al. present a factor 5 approximation for
dominating set and a 7.453 + ε approximation for connected dominating set.

1.2. Main result. Our main results are a local 1 + ε approximation algorithm for
dominating set, a local 3 + ε approximation algorithm for connected dominating
set and a local 1 + ε approximation algorithm for connected dominating set. The
latter is an improved version of the 3 + ε approximation algorithm mentioned be-
fore. In terms of the approximation ratio our algorithms outperform the formerly
known algorithms for our setting and achieve the same performance bounds that
are possible for global polynomial time algorithms assuming P 6= NP . The locality
distance (i.e. the radius of the area that needs to be explored around a vertex) of
our algorithms for connected dominating set is better than the locality distance of
the previously known local algorithm [6] for this problem. However, our dominating
set algorithm needs a much larger locality distance than the algorithm presented in
[6] for the same problem. For each problem we give upper bounds for the respective
locality distance.

The remainder of the paper is organized as follows: in Section 2 we present our
local 1 + ε approximation algorithm for minimum dominating set. In Section 3
we show how this can be extended to a local 3 + ε approximation for connected
dominating set. In Section 4 we present our local 1+ε approximation algorithm for
the minimum connected dominating set problem. Finally in Section 5 we summarize
our algorithms, discuss what parameters would be worthwhile to be improved and
what remains open.

2. Local Algorithm for Dominating Set

In this section we present a local 1 + ε approximation algorithm for minimum
dominating set in unit disk graphs, prove its correctness and give an upper bound
for its locality distance. We show that the latter depends only on ε.

First we introduce some definitions and preliminaries including the concept of
2-separated collections which enables us to guarantee a 1 + ε approximation factor.
This concept is the same as the one presented in [15] for giving that approximation
guarantee. Then we present a tiling of the plane in hexagons with certain properties
which is essentially the same tiling as the one given in [6]. After that we present
our algorithm and prove its correctness.

2.1. Preliminaries. An undirected graph G = (V,E) is a unit disk graph if there
is an embedding in the plane for G such that two vertices u and v are connected
by an edge if and only if the Euclidean distance between them is at most 1. The
graph G we consider for all our algorithms is a connected unit disk graph.

A set D ⊆ V dominates a vertex v if there is a vertex d ∈ D and an edge {v, d}.
The set D is called a dominating set for G if it dominates every vertex in G. A set
D is called a minimum dominating set for G if it is a dominating set and for all
other dominating sets D′ ⊆ V it holds that |D| ≤ |D′|.

Definition 1. For two vertices u and v let d(u, v) be the hop-distance between u
and v, that is the number of edges on a shortest path between these two vertices.

The hop-distance is not necessarily the geometric distance between two vertices.
Denote by Nr(v) = {u ∈ V |d(u, v) ≤ r} the r-neighborhood of a vertex v. For ease
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of notation we set N0(v) := {v}, N(v) := N1(v) and for a set V ′ ⊆ V we define
N (V ′) =

⋃
v′∈V ′ N (v′). Note that v ∈ N(v). We define the diameter of a set of

vertices V ′ ⊆ V as diam (V ′) := max
u,v∈V ′

d(u, v).

Denote by the locality distance (or short the locality) of an algorithm the mini-
mum α such that the status of a vertex v (e.g. whether or not v is in a dominating
or connected dominating set) depends only on the vertices in Nα(v). In all algo-
rithms presented in this paper we will prove that α depends only on the desired
approximation factor for the respective problem.

Now we introduce the concept of a 2-separated collection which will give us a
lower bound for the optimal dominating set.

Definition 2. Let H be an index set and let the sets Sh with h ∈ H be subsets
of V . The sets Sh are called a 2-separated collection if for any two vertices s ∈ Sh
and s′ ∈ Sh′ with h 6= h′ it holds d(s, s′) > 2.

Figure 1. The grey vertices form a 2-separated collection

Figure 1 shows an example for a 2-separated collection.

Definition 3. Let D : P(V ) → P(V ) be an operation returning a dominating set
of minimum cardinality for the subset of vertices given as argument to it.

Note that the set D(V ′) may contain any vertices from V , not only vertices from
V ′. Now we establish our lower bound for the minimum dominating set for G.

Lemma 1. For a 2-separated collection of sets Sh with h ∈ H we have

|D(V )| ≥
∑
h∈H

|D (Sh)|

Proof. In Section 3 in [15] the concept of 2-separated collections is introduced and
this lemma is proved. �

So we see that the cardinality of the union
⋃
h∈H D(Sh) is a lower bound for the

cardinality of the minimum dominating set. The idea is now to surround each set
Sh from the 2-separated collection with a suitable set Th such that |D (Th)| is not
much larger than |D (Sh)|. If then the union D :=

⋃
h∈H D (Th) is a dominating

set for G, we can show that D is not much larger than an optimal dominating set
for G.
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Lemma 2. Let S =
⋃
h∈H Sh be a 2-separated collection in G and let Th,h ∈ H be

subsets of V with Sh ⊂ Th for all h ∈ H. If there exists an ε > 0 such that

|D (Th)| ≤ (1 + ε) · |D (Sh)|
holds for all h ∈ H and if

⋃
h∈H D (Th) forms a dominating set in G, the set⋃

h∈H D (Th) is a (1 + ε)-approximation of a minimum dominating set in G.

Proof. This is proved as Corollary 1 in [15]. �

2.2. Tiling of the plane. The plane is split into hexagons and each hexagon gets
a class number. The tiling has the following properties:

• Each vertex is in exactly one hexagon.
• Every two vertices in a hexagon are connected by an edge.
• Each hexagon has a class number.
• The distance between two vertices in different hexagons with the same class

number is at least a certain constant.
• The number of hexagonal classes is bounded by a constant.

We achieve these properties as follows: First we define the constant c to be the
smallest even integer such that (2c+ 1)2<

(√
1 + ε

)c. We consider a tiling of the
plane with tiles. Each tile consists of hexagons of diameter one that are being
assigned different class numbers (see Figure 2 and Figure 3). Denote by H the set
of all hexagons containing vertices of G (only these hexagons are relevant for us)
and by b the number of hexagons in one tile. Ambiguities caused by vertices at
the border of hexagons are resolved as shown in Figure 2 (b): The right borders
excluding the upper and lower apexes belong to a hexagon, the rest of the border
does not. We assume that the tiling starts with the coordinates (0,0) being in the
center of a tile of class 1. We choose the number of hexagons per tile in such a way
that two hexagons of the same class have an Euclidean distance of at least 2c+ 1.
Note that this implies that two vertices in different hexagons of the same class
number are at least 2c+ 1 hops away from each other. Later we will show that we
need at most 12c2 + 18c+ 7 hexagons per tile to ensure this, i.e. 12c2 + 18c+ 7 ≤ b.
Let class(h) be the class number of a hexagon h.

2.3. The algorithm. Before giving the formal algorithm we present the main con-
cepts and provide an intuitive description of the algorithm. For some hexagons h
we construct a set Th that contains all vertices in h and the vertices in a certain
surrounding area. These sets Th are disjoint and have certain properties that en-
sure the desired approximation ratio of 1 + ε. We call vertices contained in a set Th
covered. The construction of the sets Th is done by iterating over the class numbers
of the hexagons. First we cover hexagons of class 1 by computing sets Th for all
hexagons h of class 1. Assume that all hexagons of class i have already been cov-
ered. We proceed to cover all hexagons of class i+ 1 whose vertices have not been
completely covered so far by computing sets Th for those hexagons. We stop when
all vertices in all hexagons have been covered. Moreover, the number of iterations
does not exceed the total number of classes. Finally we compute for all sets Th the
minimum dominating set D(Th). We output D :=

⋃
hD(Th).

Now we present the algorithm in detail. Fix ε > 0 and let b the number of
hexagonal classes. For all h ∈ H we initialize the set Th := ∅. If all vertices
of a hexagon have been covered, call this hexagon covered. For i = 1, ..., b do
the following: Consider a hexagon h ∈ H of class i which is not covered. Define
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(a) (b)

Figure 2. (a) A tile divided into 12 hexagons. Having 12
hexagons in one tile achieves a minimum Euclidean distance be-
tween to hexagons of the same class of 2. (b) One hexagon of the
tiling. The bold lines indicate the parts of its border that belong
to this hexagon

Figure 3. Several tiles glued together

the vertex vh which is closest to the center of h and which is not covered yet to
be the coordinator vertex of h. Ambiguities are resolved by choosing the vertex
with the smallest x-coordinate among vertices with the least distance to the center
of h. Denote by C(i) all vertices which are covered in previous iterations where
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hexagons of classes i′ < i were considered. Compute for even r ∈ {0, 2, 4, ..., c} the
r-neighborhoods Nr (vh) and compute the minimum dominating sets D (Nr (vh)).
We determine the smallest value of r with r ≤ c− 2 such that∣∣D (Nr+2(vh) \ C(i)

)∣∣ ≤ (1 + ε) · |D (Nr(vh) \ C(i))| (1)

holds and denote it by r̄. Later we will prove that there is at least one value for
r with r ≤ c − 2 such that Inequality 1 does indeed hold (see Lemma 3). Now
mark all vertices in Th := N r̄+2 (vh) \ C(i) as covered. In the sequel we will use
the notation Sh := N r̄ (vh) \ C(i) and we will prove in Lemma 5 that the sets Sh
(for various hexagons h) form a 2-separated collection. We assign all vertices in
D (Th) to the dominating set. We do this procedure for hexagons of class i which
are not covered yet. As two vertices in different hexagons of the same class number
are at least 2c+ 1 hops away from each other the order in which the hexagons are
processed does not matter. We output D :=

⋃
h∈H D (Th).

The previous discussion is presented in Algorithm 1.

Algorithm 1: Local algorithm for finding a dominating set in a unit disk
graph
// Algorithm is executed independently by each node v;1

dominator:=false;2

Find all vertices in N(v);3

forall v′ ∈ N(v) do4

find the hexagon h′ such that v′ ∈ Th′ ;5

compute D(Th′);6

if v ∈ D(Th′) then7

dominator:=true8

end9

end10

if dominator=true then Become part of the dominating set D else Do not11

become part of D

2.4. Proof of correctness. We prove the correctness of Algorithm 1, its approx-
imation factor, its locality and its processing time in Theorem 1.

Theorem 1. Let G be a unit disk graph and let ε > 0. Algorithm 1 has the following
properties:

(1) The computed set D is a dominating set for G.
(2) Let DOPT be an optimal dominating set. It holds that |D| ≤ (1+ε)·|DOPT |.
(3) Whether or not a vertex v is in D depends only on the vertices at most

O
(

1
ε6

)
hops away from v, i.e. Algorithm 1 is local.

(4) The processing time for a vertex v is bounded by a polynomial in the number
of vertices at most O

(
1
ε6

)
hops away from v.

We will prove the four parts of this theorem in four steps. In each step we first
give some lemmas which are required to understand the proof of the theorem.
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2.4.1. Correctness. We want to prove that the set D is indeed a dominating set for
G. As mentioned above we first prove that it is sufficient to examine values for r
with r ≤ c−2 while computing the D (Nr(v)), employing an argument used in [15].

Lemma 3. Let v be a coordinator vertex. While computing its neighborhood Nr(v)
the values of r that need to be considered to find a value r̄ such that∣∣D (N r̄+2(v) \ C(i)

)∣∣ ≤ (1 + ε) ·
∣∣D (N r̄(v) \ C(i)

)∣∣ (2)

are bounded by c− 2.

Proof. Assume on the contrary that Inequality 2 is false for all r ∈ {0, 2, ..., c− 2},
i.e. for these values of r it holds that∣∣D (Nr+2(v) \ C(i)

)∣∣ > (1 + ε) · |D (Nr(v) \ C(i))|
By Corollary 3 in [15] the number of vertices in a minimum dominating set for
a neighborhood N c(v) is bounded by (2c + 1)2. It holds that

∣∣D (N0(v)
)∣∣ =

|D({v})| = 1. So we have that

(2c+ 1)2 ≥ |D (N c(v) \ C(i))|
> (1 + ε) ·

∣∣D (N c−2(v) \ C(i)
)∣∣

> (1 + ε)2 ·
∣∣D (N c−4(v) \ C(i)

)∣∣
> ...

> (1 + ε)
c
2 ·
∣∣D (N0(v) \ C(i)

)∣∣
≥

(√
1 + ε

)c
But from the definition of c we know that (2c + 1)2 <

(√
1 + ε

)c which is
a contradiction. So at least for one value of r ∈ {0, 2, ..., c− 2} it holds that∣∣D (Nr+2(v)

)∣∣ ≤ (1 + ε) · |D (Nr(v))|. �

Lemma 4. The sets Th cover all vertices of the graph.

Proof. Assume on the contrary that there is a vertex v which is not covered by any
Th, h ∈ H. Let h be the hexagon to which v belongs and let i be its class number.
At some point in the algorithm, the hexagons of class i were considered. Then
there were vertices in h which were not covered yet (at least v). So the coordinator
vertex of h must have marked a set Th as covered. However, as the hexagons have
a diameter of 1 (and r̄ + 2 ≥ 1) it follows that v is contained in Th and therefore
covered by Th which is a contradiction. �

Proof. (of part 1 of Theorem 1): Let v ∈ V be a vertex. By Lemma 12, v is
covered by a set Th. Then the set D (Th) dominates v. As Algorithm 1 outputs
D =

⋃
hD (Th), it holds that D(Th) ⊆ D and therefore D dominates v. �

2.4.2. Approximation ratio. We prove that the size of D is only a factor 1+ε greater
than the size of a minimum dominating set.

Lemma 5. The subsets Sh, h ∈ H form a 2-separated collection.

Proof. The claim follows from Lemma 3 in [15]. �

Proof. (of part 2 of theorem 1): From the construction we can see that for every
pair Sh, Th it holds that |D (Th)| ≤ (1 + ε) · |D (Sh)|. So the conditions of Lemma
2 are satisfied. �
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Figure 4. A hexagon h with three circles of hexagons around it.
Hexagons with the same number belong to the same circle.

2.4.3. Locality. Now we want to prove that Algorithm 1 is local (part 3 of Theorem
1). We prove that whether or not a vertex v belongs to the computed set D depends
only on the vertices at most a constant α hops away from v. This constant depends
only on ε. We give an upper bound for α in terms of ε.

First we study our tiling of the plane and prove an upper bound for the number
of hexagons per tile. Then we present two technical lemmas before we can prove
part 3 of Theorem 1.

Lemma 6. For ensuring a minimum Euclidean distance of d between two hexagons
of the same class number, we need at most 3d2 + 3d + 1 hexagons per tile. So for
a minimum distance of 2c+ 1 we need at most 12c2 + 18c+ 7 hexagons per tile.

Proof. We build a tile according to the following construction: Consider one hexagon
h in the center and several circles of hexagons around it. A circle around a set of
hexagons H is a set of hexagons H ′ placed around H with minimum cardinality
such that no hexagon of H lies at the edge of the resulting set H ∪ H ′. Figure 4
shows a hexagon h with three circles of hexagons around it. Since the length of an
edge of a hexagon is 1/2, adding one circle of hexagons around such a tile increases
the minimum distance between h and the border by at least 1/2. So it is sufficient
to add d

2 ·
1

1/2 = d circles of hexagons around h to ensure a minimum distance of
d/2 between any point in h and the border of the tile.
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Figure 5. Adding a third circle around h

Claim: Our construction with d circles around h consists of 3d2+3d+1 hexagons,
including h. We show this by proving that each new circle has exactly six hexagons
more than the circle before. Assume a circle of hexagons C1 has |C1| hexagons
and another circle of hexagons C2 is placed around it. We define a bipartite graph
GB = (VB , EB) with one vertex for each hexagon in C1 and C2. Two vertices
v, v′ ∈ VB are connected by an edge if and only if their corresponding hexagons
are adjacent to each other. Figure 5 shows this construction for adding the third
circle around h. Then there will be exactly six vertices of degree one (they are
the grey vertices in Figure 5 which have a dashed adjacent edge). Denote these
vertices by V ′B . Then G′′B = (VB \ VB′ , EB) will be one single cycle. This proves

that |C2| = 6 + |C1|. So the number of hexagons will be 1 +
d∑
i=1

6i = 3d2 + 3d+ 1.

This implies that we need 3d2 +3d+1 hexagons to achieve a minimum Euclidean
distance of d/2 between h and the edge of a tile. We assign the class number of the
hexagons in such a way that corresponding hexagons get the same class number in
each tile. So in a tiling with such tiles there will be a minimum Euclidean distance
of d between two hexagons of the same class as h. By symmetry this follows for
the hexagons of the other class numbers as well.

Substituting 2c+1 for d shows that 12c2 +18c+7 hexagons per tile are sufficient
to ensure a minimum Euclidean distance of 2c + 1 between two hexagons of the
same class number. �
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Lemma 7. We show three locality related properties of our algorithm:
(1) Let vh be the coordinator vertex of a hexagon h of class k. What vertices

are in Th depends only on the vertices which are at most 2c · (k − 1) + c
hops away from vh.

(2) Let v′ be any vertex. Whether v′ is contained in a set Th′ with class(h′) ≤ k
depends only on the vertices which are at most 2c · k hops away from v′. If
v′ is contained in such a set Th′ then what vertices are in Th′ depends only
on the vertices which are at most bk hops away from v′.

(3) Let v′′ be any vertex in a hexagon h′′ of class k. Whether or not v′′ is
the coordinator vertex of h′′ depends only on the vertices which are at most
1 + 2c · (k − 1) hops away from v′′.

Proof. For ease of notation we introduce the sequences ak, bk and ck. Let ak be
the smallest integer such that what vertices are in Th depends only on the vertices
which are at most ak hops away from vh. So in order to prove property 1 we want
to show that ak ≤ 2c · (k− 1) + c. Let bk be the smallest integer such that whether
v′ is contained in a set Th′ with class(h′) ≤ k depends only on the vertices which
are at most bk hops away from v′ and if v′ is contained in such a set Th′ then what
vertices are in Th′ depends only on the vertices which are at most bk hops away from
v′. For proving property 2 we need to show that bk ≤ 2c · k. Let ck be the smallest
integer such that whether or not v′′ is the coordinator vertex of h′′ depends only
on the vertices which are at most ck hops away from v′′. So for proving property 3
we need to show that ck ≤ 1 + 2c · (k − 1).

Proof by induction. We begin with k = 1. As we need to explore the vertices at
most c hops away from vh in order to compute Th, we conclude that a1 ≤ c.

Let v′′ be a vertex in a class 1 hexagon h′′. To find out whether v′′ is the
coordinator vertex of h′′, we need to explore the vertices which are at most 1 hop
away from v′′. So c1 ≤ 1.

Let v′ be a vertex. We want to find out whether there is a hexagon h′ with
class(h′) ≤ 1 such that v′ is contained in the set Th′ . If yes, the coordinator vertex
vh′ of h′ can be at most c hops away from v′. So we need to explore all vertices
which are at most c hops away from v′ to find all vertices in class 1 hexagons
because only they could possibly be coordinator vertices for their hexagon h′ such
that v′ ∈ Th′ . To find out if any of them is the coordinator vertex of their respective
hexagon h′ we need to explore the area c1 ≤ 1 hop around them. If one of them is a
coordinator vertex, we need to explore the vertices at most a1 ≤ c from it in order
to compute Th′ and to find out whether v′ ∈ Th′ . If this is the case, we immediately
know the set Th′ as well. So we only need to explore the vertices which are at most
b1 ≤ c+ max (a1, c1) ≤ 2c hops away from v′ in order to compute this task.

Assume that the claims in the lemma hold for all k ≤ i − 1. Let vh be the
coordinator vertex of a hexagon h of class i. In order to compute Th we need to
explore the vertices which are at most c hops away from vh and therefore need
to find out for each vertex in N c(vh) whether it has been covered by a set Th′

with class(h′) < i. So for computing Th we need to explore the vertices which are
ai ≤ c+ bi−1 hops away from vh.

Let v′′ be a vertex in a hexagon h′′ of class i. To find out whether v′′ is the
coordinator vertex for h′′ we need to explore all other vertices in h′′ and find out if
they have been covered by a set Th′ with class(h′) < i. For this we need to explore
the vertices which are at most ci ≤ 1 + bi−1 hops away from v′′.
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Let now v′ be a vertex. We want to find out whether v′ is covered by a set Th′

with class(h′) ≤ i. So first we need to explore all vertices at most c hops away from
v′. This is the set N c(v′). Only vertices in this set can possibly be coordinator
vertices for a hexagon h′ such that Th′ contains v′. To check if a vertex in N c(v′) is
a coordinator vertex, we need to explore all vertices which are at most ci hops away
from it. If a vertex vh′ inN c(v′) is the coordinator vertex for its hexagon h′, we need
to explore the vertices which are at most ai hops away from vh′ in order to compute
Th′ . Then we can check if v′ ∈ Th′ . If this is the case, we immediately know the set
Th′ as well. This gives us bi ≤ c+max (ai, ci) ≤ c+max (c+ bi−1, 1 + bi−1) ≤ c+ai.

So we have shown that a1 ≤ c, b1 ≤ 2c, c1 ≤ 1, ci ≤ 1 + bi−1, bi ≤ c + ai and
ai ≤ c + bi−1. This implies ai ≤ c + bi−1 ≤ c + c + ai−1 ⇒ ai ≤ 2c · (i − 1) + c,
bi ≤ 2c · i and ci ≤ 1 + 2c · (i− 1). �

Lemma 8. Let v be vertex. Whether or not v is in D depends only on the vertices
which are at most 2 + 2c · (b− 1) + c hops away from v.

Proof. Before we prove the lemma we show the following claim: Let v′ be a vertex
in a hexagon h with class(h) = k and let v′ be contained in a set Th′ . We claim
that what vertices (other than v′) are in Th′ depends only on the vertices which are
at most 1 + 2c · (k − 1) + c hops away from v′.

Proof of the claim: We use the notation ak, bk and ck as introduced in the proof
of Lemma 7. For computing the set Th′ we need to check whether v′ is covered
by a set Th′ with class(h′) < class(h). This depends only on the vertices at most
bk−1 ≤ 2c · (k− 1) hops away from v′ (see Lemma 7). If there is such a set Th′ with
v′ ∈ Th′ then Th′ depends only on the vertices which are at most bk−1 hops away
from v′ as well (see Lemma 7).

If there is no set Th′ such that class(h′) < class(h) and v′ ∈ Th′ the algorithm has
to find out whether there is another vertex v′′ 6= v′ in h that is the coordinator vertex
for h. In order to do this, we need to explore the vertices at most ck ≤ 1+2c ·(k−1)
hops away from v′. If there is such a vertex v′′ then we need to explore the vertices
which are at most 1+ak ≤ 1+2c ·(k−1)+c hops away from v′ in order to compute
the set Th′ . If not, then v′ is the coordinator vertex for h. Then we need to explore
the vertices which are at most ak ≤ 2c · (k − 1) + c hops away from v′ in order to
compute Th′ . Altogether we conclude that for computing Th′ we need to know only
about the vertices at most 1 + 2c · (k − 1) + c hops away from v′. This proves the
claim.

Now we prove the lemma. When a vertex v computes whether it is in D it does
the following: For each v′ ∈ N(v) it computes the set Th that covers v′. Then v is
part of the dominating set if and only if it is part of any of the D (Th). So we only
need to explore the the vertices which are at most 2 + 2c · (k − 1) + c hops away
from v. �

Proof. (of part 3 of Theorem 1): We want to show that whether or not a vertex v
is in D depends only on the vertices at most O

(
1
ε6

)
away from v.

First we want to show that there is an ε0 such that for all ε < ε0 it holds that
c ≤ 1

ε2 + 2 i.e. c ∈ O
(

1
ε2

)
. By definition c is the smallest even integer such that

(2c+ 1)2 <
(√

1 + ε
)
c. We calculate that
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(2c+ 1)2 <
(√

1 + ε
)
c (3)

⇔ 4 ln(2c+ 1) < c · ln(1 + ε) (4)

From taking derivatives we get that

ln(1 + ε) ≥ 1
2
ε (5)

holds for all ε ≤ 1. From Inequalities 5 and 4 we conclude that it is sufficient to
show that there is an ε0 such that

4 ln(2c+ 1) <
1
2
ε · c

holds for all for ε < ε0 ≤ 1. We set c := 1
ε2 and get

4 ln
(

2
ε2

+ 1
)

<
1
2
· 1
ε

⇔ 8 ln
(

2
ε2

+ 1
)

<
1
ε

Since ln(2n2 + 1) ∈ o(n) there is an ε0 ≤ 1 such that the above holds for all ε ≤ ε0.
So for ε ≤ ε0 we can find a value for c with c < 1

ε2 + 2 (remember that c has to

be an even integer). We observe that
(

2 1
ε20

+ 1
)

2 <
(√

1 + ε0
) 1
ε20 <

(√
1 + ε

) 1
ε20 for

ε > ε0. So for all these values of ε we can find a value for c such that c < 1
ε20

+ 2.
This proves c ∈ O

(
1
ε2

)
.

Denote by α(ε) the locality distance of Algorithm 1 when run with a performance
guarantee of 1 + ε. From Lemma 8 we know that we need to explore the vertices at
most 2 + 2c · (b− 1) + c hops away from v. From the definition of b and the above
lemmas we get

α(ε) ≤ 2 + 2c · (b− 1) + c

≤ 2 + 2c · (12c2 + 18c+ 7− 1) + c

= 24c3 + 36c2 + 13c+ 2

∈ O

(
1
ε6

)
�

Table 1 displays trade-offs between approximation ratios and locality distances
which are attained by our algorithm. It shows that for a 5 approximation we need
to explore the vertices which are at most 10,089 hops away from a given vertex v.
In comparison, the local 5 approximation algorithm presented in [6] only needs the
information of the vertices which are at most 11 hops away from a given vertex.

2.4.4. Processing time. The processing time is the time that a single vertex needs in
order to compute whether or not it is part of the dominating set. As our algorithm
is local it is not very suitable to quantify the processing time in comparison to the
total number of vertices in G. Instead we measure it with respect to the number of
vertices which are at most α hops away from a vertex v since these are all vertices
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Dominating Set
Approximation Upper Bound for Locality Distance of

Ratio Algorithm 1 Algorithm in [6]
1.5 8, 056, 511 -
2 273, 264 -
3 46, 814 -
4 20, 531 -
5 10, 089 11

Table 1. Locality distances in hops of Dominating Set algorithms
for several approximation factors. The second column shows the
upper bounds of the locality distance of our algorithm. The third
column shows an upper bound for the locality of the local 5 ap-
proximation algorithm presented in [6].

that a vertex v needs to explore when computing its status. We denote this number
by nα(v) (i.e. nα(v) = |Nα(v)|). We show that the processing time is bounded by
a polynomial in nα(v).

Proof. (of part 4 of Theorem 1). In the algorithm, minimum dominating sets for
the sets Nr(v′) with r ∈ {0, 1, ..., c} and v′ ∈ Nα(v) must be computed. First we
show that this can be done in polynomial time. By Corollary 3 in [15] the number
of vertices in a minimum dominating set for a neighborhood Nr(v′) is bounded
by (2r + 1)2. So the computation of such a set can be done in O

(
nα(v)(2c+1)2

)
,

e.g. by enumeration. For each vertex v′ ∈ Nα(v) we might have to compute
minimum dominating sets D(Nr(v′)) for each r ∈ {0, 2, ..., c}. As this dominates
the processing time of the algorithm, we find that it is in O

(
nα(v)(2c+1)2 · nα(v) · c

)
and therefore bounded by nα(v)O(1/ε4). �

3. Local 3 + ε Approximation for Connected Dominating Set

In this section we present a local 3 + ε approximation algorithm for connected
dominating set in unit disk graphs, prove its correctness and give an upper bound
for its locality distance. We prove that its locality distance depends only on ε.

We use our local 1 + ε algorithm for dominating set as stated in Section 2 as a
subroutine, compute a dominating set with a certain size guarantee and add vertices
(we refer to them as bridges) in order to turn it into a connected dominating set.
For the latter we use the same technique as used in [6] but employ a slightly different
analysis. This leads to a 3 + ε approximation for connected dominating set.

3.1. Algorithm. Before we go into details we give an overview of the algorithm.
Let G = (V,E) be a connected unit disk graph and let 3 + ε the desired approxima-
tion factor. First we define a certain constant ε̄ and compute a 1 + ε̄ approximation
for minimum dominating set using the local algorithm stated in Section 2. The
computed set D dominates the graph but might have several connected compo-
nents. We consider a similar tiling of the plane as used in Section 2 and choose one
vertex of each hexagon h to be the head vertex. As long as D is not connected there
is a head vertex v̄h such that the restriction of D to a certain neighborhood of v̄h
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will be disconnected. We add vertices to D until its restriction to the neighborhood
of each head vertex is connected. This leads to a 3 + ε approximation of minimum
connected dominating set.

Now we present the algorithm in detail. We fix an integer d to be the smallest
integer such that d > 6

ε + 3 and define ε̄ := (d−3)
(d−1) ·

(3+ε)
3 − 1 (note that ε̄ > 0⇔ d >

6
ε + 3). First we locally

compute a dominating set with size at most (1 + ε̄) · |DOPT | (with DOPT being
an optimal dominating set for G) by using the local algorithm stated in Section 2.
Denote the computed dominating set by D. Now consider a tiling of the plane that
ensures a minimum Euclidean distance of d+ 2 between two different hexagons of
the same class (this implies a minimum hop-distance of d+2 between two vertices in
different hexagons of the same class). Denote by b the number of different hexagonal
classes needed for such a tiling. We will prove that b ≤ 3d2 + 15d + 19. Denote
by H the set of all hexagons that contain vertices of G (only these hexagons are
relevant for us). In each hexagon h we declare the vertex that is closest to the
center of h to be the head vertex v̄h (note that this is not the same definition as for
the coordinator vertex for a hexagon in Section 2). Ambiguities here are resolved
by choosing the vertex with the lowest x-coordinate among the vertices with the
same distance to the center. Our algorithm runs in b rounds, one for each class
number. Denote by Di the computed set after the ith round and define D0 := D.
In each round i, 1 ≤ i ≤ b the head vertex v̄h of each class i hexagon h computes
N := Di−1 ∩Nd(v̄h). If there are two connected components in N which could be
connected by one vertex v ∈ h we assign this vertex v to the computed set. If there
are two connected components in N which could be connected by two adjacent
vertices v ∈ h and v′ ∈ h′ with h′ ∈ H we assign these vertices v and v′ to the
computed set (note that v′ is not necessarily in h). Perform both operations until
they are no longer applicable. As two vertices in different hexagons with the same
class number are at least d + 2 hops away from each other the order in which the
hexagons of one class number are considered does not matter. This will result in a
set CD := Db. We output CD. The previous discussion is presented in Algorithm
2.

Algorithm 2: Algorithm for finding a connected dominating set in a unit disk
graph G = (V,E)

// The algorithm is executed independently in each vertex v1

dominator:=false;2

Compute whether v is in D using Algorithm 1;3

if v ∈ D then dominator:=true;4

Find out which vertices in N2(v) are head vertices;5

for i:=1 to b do6

if there is a head vertex of class i in N2(v) that assigns v to Di then7

dominator:=true8

end9

end10

if dominator=true then Become part of the connected dominating set CD11

else Do not become part of CD
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This is essentially the same algorithm as Algorithm 2 in [6]1.

3.2. Proof of correctness. We prove the correctness of Algorithm 2, its approx-
imation factor, its locality and its processing time in Theorem 2.

Theorem 2. Let G be a unit disk graph and let ε > 0. Algorithm 2 has the following
properties:

(1) The computed set CD is a connected dominating set for G.
(2) Let CDOPT be an optimal dominating set. It holds that |CD| ≤ (3 + ε) · |CDOPT |.
(3) Whether or not a vertex v is in CD depends only on the vertices at most

O
(

1
ε6

)
hops away from v, i.e. Algorithm 2 is local.

(4) The processing time for a vertex v ∈ V is bounded by a polynomial in the
number of vertices at most O

(
1
ε6

)
hops away from v.

We will prove the four parts of this theorem in four steps.

3.2.1. Correctness. We want to prove that the computed set CD is a connected
dominating set for G. For the proof we need a technical lemma about dominating
sets.

Lemma 9. Let D be a dominating set for G. Then there is a family of sets
B = {B1, B2, ..., Bm} such that for all Bi ∈ B it holds that 1 ≤ |Bi| ≤ 2 and D∪Bi
has at least one connected component less than D and that D∪

⋃m
i=1Bi is connected.

Proof. Define a graph GB = (VB , EB) with

VB := {C ⊆ V |C is a connected component in D}
EB := {E ⊆ V ||E| ≤ 2 and E connects two connected components in D}

SinceG is connected andD is a dominating set forG, it follows thatGB is connected
and therefore EB defines the set B.

�

Proof. (of part 1 of Theorem 2): For the correctness of the first part of the algorithm
(computation of D) see Theorem 1. Since by construction D ⊆ CD and D is a
dominating set, it remains to show that CD is connected.

Assume on the contrary that there are at least two connected components in
CD. As D is a dominating set, there is a set B = {B1, B2, ..., Bm} such that for
all Bi ∈ B it holds that 1 ≤ |Bi| ≤ 2 and the union D ∪ Bi has one connected
component less than D and that D ∪

⋃m
i=1Bi is connected (see Lemma 9).

In other words, each Bi connects two connected components in D. As CD is not
connected and we never delete a vertex from the computed set, it follows that D
is not connected and for the set B stated above above it holds that B 6= ∅. As CD
is not connected there must be at least one such set Bi ∈ B such that Bi * CD.
Suppose |Bi| = 2, let Bi = {u, v} and w.l.o.g. let v ∈ Bi \ CD. Assume v is
in the hexagon h of class c with the coordinator vertex vh. But then in round c
the algorithm would have found two connected components in Nd(vh)∩Dc−1 that
could be connected by adding u and v. This is a contradiction. The case where
|Bi| = 1 is proved similarly. �

1However, the algorithm that is presented in [6] has two phases, one in which only single-vertex
bridges are added and one where only two-vertex bridges are added. In order to get a smaller
locality distance for our algorithm we only have one phase. This might in practice result in bigger
connected dominating sets, but does not affect the performance guarantee that we can give.
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3.2.2. Approximation ratio. We want to show that Algorithm 2 achieves an approx-
imation ratio of 3 + ε. A proof using similar techniques was given in [6].

Proof. (of part 2 of Theorem 2) We can view CD as obtained fromD by sequentially
adding vertices (or pairs of vertices):

(1) the vertices are added in order according to the class number of the hexagon
whose head vertex assigned them to CD,

(2) the vertices assigned to CD by the same head vertex are added in the order
they were considered by the algorithm, and

(3) the order of the vertices added by different head vertices in hexagons of the
same class number does not matter

Consequently, we have a sequence D = S0, S1, ..., Sr = CD. For each Si we can
define V Gi as the graph obtained by applying the Local Minimal Spanning Tree
construction of Chávez et al. [3] to the UDG of Si with choosing d as the locality
distance for the Local Minimal Spanning Tree (this is denoted by k in [3]). This
construction ensures that each spanner V Gi is planar. Since different hexagons of
the same class have an Euclidean distance of at least d and each head vertex vh
explores the vertices which are at most d hops away from it and connects connected
components in Di ∩ Nd(vh), it follows that each face of V Gi is of size at least 2d
(we denote by the size of a face the number of adjacent edges to it where edges in
the interior of a face are counted twice). We will denote by V G the graph obtained
by considering the final Sr.

We say that an addition of a node (or a pair of nodes) to obtain Si from Si−1

is idle, if the number of connected components in V Gi is equal to the number of
components in V Gi−1. Let us denote by V0 the size of D. Let NI1 and NI2 be
the numbers of additions of single nodes and pairs of nodes, respectively, which
are not idle. Similarly, let I1 and I2 be the number of idle single and double-node
additions, respectively. Let V denote the number of nodes of V G (i.e. V = |CD|),
E denote the number of edges and F the number of faces. From Euler’s formula
we have that

F + V = E + 2 (6)

Therefore, from the way CD was constructed, we have

V = V0 +NI1 + I1 + 2(NI2 + I2) (7)

Note that our algorithm adds a vertex (or pair of vertices) only when they connect
at least two connected components (when looking up to a distance d). Therefore,
only two or three edges are added to V Gi−1 in order to get V Gi (depending on
whether a single vertex bridge or a two-vertex bridge has been added). Combining
this observation with the definition of idle additions, we have

E ≥ V − 1 + I1 + I2 (8)

As initially there were at most V0 components and at the end V G is connected,
from the definition of NI1 and NI2 we have

NI1 +NI2 ≤ V0 − 1

As each face is of size at least 2d and the sum of face sizes is exactly 2E we get

dF ≤ E (9)
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Substituting for F into Euler’s formula 6 according to the above Inequality 9 we
get E/d+ V ≥ E + 2 and therefore V − 2 ≥ E(1− 1/d). After substituting for E
according to Inequality 8 and using some calculus we get

V

d− 1
− 1 ≥ I1 + I2

Altogether we get

V ≤ V0 + 2(NI1 +NI2) + 2(I1 + I2)

≤ V0 + 2(V0 − 1) + 2
(

V

d− 1
− 1
)

Denote by DOPT an optimal dominating set and by CDOPT an optimal con-
nected dominating set for G. As V0 ≤ (1 + ε̄) · |DOPT | ≤ (1 + ε̄) · |CDOPT | and
ε̄ := (d−3)

(d−1) ·
(3+ε)

3 − 1 we get

V ≤ (d− 1)
(d− 3)

(3V0 − 4)

≤ (d− 1)
(d− 3)

3 ((1 + ε̄) |CDOPT |)

=
(d− 1)
(d− 3)

(3 + 3ε̄)|CDOPT |

= (3 + ε) · |CDOPT |

�

3.2.3. Locality. We denote by β the locality distance of Algorithm 2. We give an
upper bound for β and prove that it depends only on the desired approximation
ratio 1 + ε.

Lemma 10. Let v be a vertex. The assignment of v to the computed set by the head
vertex of a class k hexagon depends only on v testing whether or not the vertices at
most dk := k(2 + d) hops away from it are in D.

Proof. Proof by induction. Let k = 1. Whether v was added by the head vertex
vh of a class 1 hexagon h depends only on the vertices at most d from vh. The
distance between v and vh is a most 2. This gives us d1 = 2 + d.

Assume the claim is true for all k ≤ i−1. Whether v was added by a head vertex
vh of a class i hexagon h depends on the vertices at most d from vh and whether
they were added by a head vertex of a class i− 1 hexagon. As vh is at most 2 from
v we get di = di−1 + 2 + d.

Altogether we get dk = k(2 + d). �

Proof. (of part 3 of Theorem 2): We denote by β(ε) the locality distance of Algo-
rithm 2 when run with a performance guarantee of 1 + ε and by α(ε̄) the locality
distance of Algorithm 1 when it is run with a performance guarantee of 1 + ε̄ (see
Section 2). As d is the smallest integer such that d > 6

ε + 3 we get that d ≤ 6
ε + 4.

The constant b defines the numbers of different class numbers which are needed in
order to ensure a minimum Euclidean distance of d+2 between two hexagons of the
same class. From Lemma 6 we know that b ≤ 3(d+2)2+3(d+2)+1 = 3d2+15d+19.
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Now we want to show that 1
ε̄ ∈ O

(
1
ε

)
. We observe that 6

ε + 3 < d < 6
ε + 4. So it

follows that

ε̄ =
(d− 3)
(d− 1)

· (3 + ε)
3

− 1

≥
( 6
ε + 3− 3)

( 6
ε + 4− 1)

· (3 + ε)
3

− 1

≥
6
ε

( 6
ε + 3)

· (3 + ε)
3

− 1

=
27ε

18 + 9ε

≥ 3
2
ε

⇒ 1
ε̄
∈ O

(
1
ε

)
Using Lemma 10 we conclude that it is sufficient to explore the vertices that are at
most b · (2 + d) + α(ε̄) from a given vertex v. This gives an upper bound for β(ε).
We calculate

β(ε) ≤ b · (2 + d) + α(ε̄)

≤ (3(d+ 2)2 + 3(d+ 2) + 1) · (2 + d) + α(
(d− 3)
(d− 1)

· (3 + ε)
3

− 1)

≤ (3(
6
ε

+ 4 + 2)2 + (
6
ε

+ 4 + 2) + 1) · (2 +
6
ε

+ 4) + α(
(d− 3)
(d− 1)

· (3 + ε)
3

− 1)

∈ O

(
1
ε6

)
�

Table 2 in Section 4 displays trade-offs between approximation ratios and locality
distances which are attained by our algorithm and the algorithm presented in [6].

3.2.4. Processing time. Recall that β is the locality distance of Algorithm 2. We
want to prove that the time Algorithm 2 needs to compute whether a vertex v is
in CD is bounded by a polynomial in the number of vertices which are at most β
hops away from v. We denote this number by nβ(v) (i.e. nβ(v) =

∣∣Nβ(v)
∣∣). The

vertices in Nβ(v) are all vertices that v explores when computing whether or not
it is part of CD.

Proof. For some vertices in Nβ(v) we need to compute whether they are in D. This
can be done in nβ(v)O(1/ε̄4) processing time. For each class i ∈ {1, ..., b} we need to
compute the d-neighborhood of head vertices of class i and find out whether adding
one or two vertices with one of them being in a hexagon of class i could connect two
connected components. This can be done in O(nβ(v)). As b ∈ O

(
d2
)
⊆ O

(
1
ε2

)
and

1
ε̄ ∈ O

(
1
ε

)
(see the proof of part 3 of Theorem 2) our processing time is bounded

by nβ(v)O(1/ε4).
�
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4. Local 1 + ε approximation for connected dominating set

In Section 3 we presented a local 3 + ε approximation algorithm for Connected
Dominating Set. In this section we will generalize its methodology and design a
local 1 + ε approximation algorithm for connected dominating set.

4.1. The algorithm. Let G = (V,E) be a connected unit disk graph. First we
recapitulate Algorithm 2 and explain how we will generalize it. Then we present
our 1 + ε approximation algorithm in detail.

4.1.1. Main concept. Let us first recall the main steps in Algorithm 2. We first
computed a dominating set D for G with a certain performance ratio (compared
to an optimal dominating set) using Algorithm 1. We used a 2-separated collection
for establishing a lower bound for the performance ratio of D. Each connected
component in D had obviously at least one vertex. We connected these components
by adding bridges of vertices to the computed set.

Before we outline the new algorithm we introduce the concept of a 2k-separated
collection which generalizes the concept of a 2-separated collection as presented in
Section 2.

Definition 4. Let H be an index set and let sets Sh with h ∈ H be subsets of V .
The sets Sh are called a 2k-separated collection if for any two vertices s ∈ Sh and
s′ ∈ Sh′ with h 6= h′ it holds d(s, s′) > 2k.

So for k = 1 a 2k-separated collection is the same as a 2-separated collection as
defined in Section 2.

In the new algorithm we first compute a dominating set D for G with some
properties that achieves a certain performance ratio compared to an optimal con-
nected dominating set. For establishing a lower bound for the performance ratio
of D we will define sets which will form a 2k-separated collection. Similarly to the
computation of D in Algorithm 1 we will compute disjoint set Th for some hexagons
h such that each vertex is contained in exactly one set Th. In contrast to Algorithm
1 we will ensure that each connected component in D has at least k vertices (we
will define the constant k later). Analogously to Algorithm 2 we will connect these
components by adding bridges of vertices.

4.1.2. Description of the algorithm. Now we present the algorithm in detail. Let
1 + ε be the desired approximation factor. We fix d to be the smallest integer
such that d ≤ 3

√
1 + ε and fix k to be the smallest integer such that (1 + 2

k ) ≤
3
√

1 + ε. We define ε̄ := 3
√

1 + ε − 1 and c to be the smallest integer such that
(2c+ 1)2<

(
k
√

1 + ε̄
)c/2 with c ≡ 0 mod 2k. We tile the plane with tiles as described

in Section 2 such that two hexagons of the same class have a minimum Euclidean
distance of 2c+1. Denote by b the number of different class numbers. As proven in
Lemma 6 the constant b is bounded by 12c2 + 18c+ 7. For all h ∈ H we initialize
the set Th := ∅.

First we check whether diam(G) < k+2. If this is the case we explore the entire
graph G, compute a minimum connected dominating set for G and stop. From now
on assume that diam(G) ≥ k + 2 (later we will exploit the fact that this implies
that a minimum connected dominating set for G has at least k vertices).

With the definitions of the constants as above (including the definition of k)
we start a loop with one iteration for each class number. For i = 1, ..., b do the
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following: Denote by C(i) all vertices that are contained in sets Th with class(h) < i
and call these vertices covered. If all vertices in a hexagon have been covered, call
this hexagon covered. Consider a hexagon h of class i that is not covered yet.
Define the vertex vh which is closest to the center of h and not covered to be the
coordinator vertex of h. Ambiguities are resolved by choosing the vertex with the
smallest x-coordinate among vertices with the least distance to the center of h. For
a set V ′ ⊆ V denote by Dk(V ′) a dominating set for V ′ in Nk(V ′) of minimum
cardinality such that each connected component in Dk(V ′) has at least k vertices
(note that D1(V ′) = D(V ′)). Consider for all integers r with r ≡ 0 mod 2k and
0 ≤ r ≤ c the r-neighborhoods Nr (vh) and compute the sets Dk (Nr (vh)). Find a
value for r with r ≤ c− 2k such that∣∣Dk

(
Nr+2k (vh) \ C(i)

)∣∣ ≤ (1 + ε̄) · |Dk (Nr (vh) \ C(i))| (10)

Denote by r̄ the smallest value for r such that Inequality 10 holds. We will prove
later in Lemma 11 that there is always a value for r that satisfies this. Mark all
vertices in Th := Nr+2k (vh) \ C(i) as covered and define Sh := Nr (vh) \ C(i). In
the analysis we will prove that the sets Sh form a 2k-separated collection for G (see
Lemma 13). Do this for all hexagons of class i that are not covered yet. As two
vertices in different hexagons of the same class number are at least 2c+1 hops away
from each other the order in which the hexagons are processed does not matter.
We define D :=

⋃
hDk (Th).

Then we connect all connected components in D using the local algorithm for
connecting a dominating set as it is given in Section 3. We employ it with the
constant d defined as above. Note that in the original algorithm in Section 3 it was
defined differently. Also note that for this subroutine another hexagonal tiling of
the plane will be employed, namely a tiling in which two hexagons of the same class
have an Euclidean distance of at least d+ 2. Denote the resulting set by CD. We
will prove that |CD| ≤ (1 + ε) |CDOPT | with CDOPT being an optimal connected
dominating set.

The previous discussion is presented in Algorithm 3.

4.2. Proof of correctness. We prove the correctness of Algorithm 3, its approx-
imation factor, its locality and the processing time in Theorem 3.

Theorem 3. Let G = (V,E) be a unit disk graph and let ε > 0. Algorithm 3 has
the following properties:

(1) The computed set CD is a connected dominating set for G.
(2) Let CDOPT be an optimal dominating set. It holds that |CD| ≤ (1 + ε)|CDOPT |.
(3) Whether or not a vertex v is in CD depends only on the vertices which are

at most O
(

1
ε9

)
hops away from v, i.e. Algorithm 3 is local.

(4) The processing time for a vertex v is bounded by a polynomial in the number
of vertices which are at most O

(
1
ε9

)
hops away from v.

We will prove the four parts of this theorem in four steps. In each step we first
give some lemmas which are required to understand the proof of the theorem.

4.2.1. Correctness. We want to prove that the computed set CD is indeed a con-
nected dominating set for G. As mentioned above we first prove that it is sufficient
to examine values for r with r ≤ c− 2k while computing the sets Dk (Nr(v)). This
is very similar to Lemma 3.
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Algorithm 3: Algorithm for finding a connected dominating set in a unit disk
graph G = (V,E)

// Algorithm is executed independently by each node v;1

if diam(G) < k + 2 then2

Explore entire graph G;3

Compute minimum connected dominating set directly;4

Stop;5

end6

// From here on we assume diam(G) ≥ k + 27

dominator:=false;8

Find all vertices in Nk(v);9

forall v′ ∈ Nk(v) do10

find the hexagon h′ such that v′ ∈ Th′ ;11

compute Dk(Th′);12

if v ∈ Dk(Th′) then dominator:=true13

end14

Find out which vertices in N2(v) are head vertices;15

for i:=1 to b do16

if there is a head vertex of class i in N2(v) that assigns v to Di then17

dominator:=true18

end19

end20

if dominator=true then Become part of the dominating set CD else Do not21

become part of CD

Lemma 11. Let v be a coordinator vertex of a class i hexagon. While computing
its neighborhood Nr(v) the values of r that need to be considered to find a value r̄
such that ∣∣Dk

(
N r̄+2k(v) \ C(i)

)∣∣ ≤ (1 + ε̄) ·
∣∣Dk

(
N r̄(v) \ C(i)

)∣∣ (11)

are bounded by c− 2k.

Proof. Assume on the contrary that Inequality 11 is false for all r ∈ {0, 2k, 4k, ..., c− 2k},
i.e. for these values of r it holds that

∣∣Dk

(
Nr+2k(v) \ C(i)

)∣∣ > (1 + ε̄) · |Dk (Nr(v) \ C(i))| .

By Corollary 3 in [15] the number of vertices in a minimum dominating set for a
neighborhood N c(v) is bounded by (2c+ 1)2. So the number of vertices needed for
a dominating set for a neighborhood N c(v) such that each connected component
has at least k vertices is bounded by k · (2c+ 1)2.
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It always holds that
∣∣Dk

(
N0(v) \ C(i)

)∣∣ = |Dk({v})| = k. So we have that

k · (2c+ 1)2 ≥ |Dk (N c(v) \ C(i))|
> (1 + ε̄) ·

∣∣Dk

(
N c−2k(v) \ C(i)

)∣∣
> (1 + ε̄)2 ·

∣∣Dk

(
N c−4k(v) \ C(i)

)∣∣
> ...

> (1 + ε̄)
c
2k ·

∣∣Dk

(
N0(v) \ C(i)

)∣∣
≥ k ·

(
k
√

1 + ε̄
)c/2

But from the definition of c we know that (2c + 1)2 <
(
k
√

1 + ε̄
)c/2 and therefore

k · (2c+ 1)2 < k ·
(
k
√

1 + ε̄
)c/2 which is a contradiction. So at least for one value of

r ∈ {0, 2k, 4k, ..., c− 2k} it holds that
∣∣Dk

(
Nr+2k(v)

)∣∣ ≤ (1 + ε̄) · |Dk (Nr(v))|. �

Lemma 12. The sets Th cover all vertices of the graph.

Proof. Assume on the contrary that there is a vertex v which is not covered by any
Th, h ∈ H. Let h be the hexagon to which v belongs and let i be its class number.
At some point in the algorithm, the hexagons of class i were considered. Then there
were vertices in h which were not covered yet (at least v). So the coordinator vertex
of h must have marked a set Th as covered. As the hexagons have a diameter of
1 (and r̄ + k ≥ 1) it follows that v is contained in Th and therefore covered by Th
which is a contradiction. �

Proof. (of part 1 of Theorem 3): When diam(G) < k + 2 we compute a connected
dominating set directly and there is nothing to prove. So from now on we assume
that diam(G) ≥ k + 2.

Let v be a vertex. Lemma 12 shows that v is covered by a set Th. Then the set
Dk (Th) dominates v. AsD =

⋃
hDk (Th) it holds thatDk(Th) ⊆ D and thereforeD

dominates v. For the correctness of the subroutine for connecting D to a connected
dominating set we refer to the proof of Theorem 2. �

4.2.2. Approximation ratio. We want to show that Algorithm 3 achieves an ap-
proximation ratio of 1 + ε. First we show that the sets Sh form a 2k-separated
collection. Then we prove that the sets Sh establish a lower bound for an optimal

connected dominating set CDOPT , i.e.
∣∣∣∣ ⋃
h∈H

Sh

∣∣∣∣ ≤ |CDOPT |. After this we prove

that |CDOPT | ≤ (1 + ε̄) · |D| and finally that |CDOPT | ≤ (1 + ε) · |CD|

Lemma 13. The sets Sh form a 2k-separated collection.

Proof. The claim is proven similarly as Lemma 3 in [15] (just with a 2k-separated
collection instead of a 2-separated collection).

Consider the sets Sh in the order in which they were defined by the algorithm
and denote them by S1, S2, ..., Sm (as mentioned in the description of the algorithm
the order in which the sets Sh were defined during one iteration of the loop does not
matter). Define V1 := V and recursively Vi := Vi−1 \ Si. Since V2 = V1 \N2k(S1)
the collection {S1, V2} is a 2k-separated collection in G. By induction, suppose
that {S1, ..., Si−1, Vi} is a 2k-separated collection in G. So every vertex in Vi has
a distance of more than 2k to any other vertex in S1, ..., Si−1. Considering Vi+1 =
Vi \ N2k (Si) we see that the minimum distance between any two vertices v and
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v′ with v ∈ Vi+1 and v′ ∈ Si is at least 2k. Therefore, {S1, ..., Si, Vi+1} is again a
2k-separated collection. �

Now we prove the lower bound which is established by the Sh.

Lemma 14. Assume that diam(G) ≥ k + 2. For a 2k-separated collection of sets
Sh with h ∈ H in G, we have

|CDOPT | ≥
∑
h∈H

|Dk (Sh)|

Proof. Define CDOPT (Sh) := CDOPT ∩Nk (Sh). As the Sh form a 2k-separated
collection it holds thatNk (Sh)∩Nk (Sh′) = ∅ for h 6= h′ and therefore CDOPT (Sh)∩
CDOPT (Sh′) = ∅ for h 6= h′.

Claim: Each connected component in CDOPT (Sh) which dominates at least one
vertex in Sh has at least k vertices.

Proof of the claim: Assume on the contrary there is a connected component
C ⊆ CDOPT (Sh) with |C| < k such that C dominates at least one vertex in Sh.
As C dominates at least one vertex in Sh, it follows that C ∩ N (Sh) 6= ∅. From
|C| < k follows that Nk (Sh) \Nk−1 (Sh) = ∅. So C is “trapped” in Nk−1 (Sh). As
CDOPT is connected it follows that C is the only connected component in CDOPT .
But from diam(G) ≥ k + 2 it follows that CDOPT ≥ k which is a contradiction.
This completes the proof of the claim.

We continue with the proof of the lemma. As Dk (Sh) is the set with minimum
cardinality such that Dk (Sh) dominates Sh and that each connected component in
Dk (Sh) has at least k vertices, it follows that |CDOPT (Sh)| ≥ |Dk (Sh)|. So we
conclude that

|CDOPT | =
∑
h∈H

|CDOPT (Sh)| ≥
∑
h∈H

|Dk(Sh)|

�

Having proved this lemma we can give an upper bound on the size of D.

Lemma 15. The set D satisfies the following upper bound:

|D| ≤ (1 + ε̄) · |CDOPT |

Proof. From the construction of the sets Sh and Th we see that for every pair Sh, Th
it holds that |Dk (Th)| ≤ (1 + ε̄) · |Dk (Sh)|. So we get

|D| = |
⋃
h∈H

Dk(Th)|

≤
∑
h∈H

|Dk(Th)|

≤ (1 + ε̄) ·
∑
h∈H

|Dk(Sh)|

≤ (1 + ε̄) · |CDOPT | (by Lemma 14)

�
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Proof. (of part 2 of Theorem 3): When diam(G) < k + 2 we compute an optimal
connected dominating set directly and there is nothing to prove. So from now on
we assume that diam(G) ≥ k + 2.

We use the same construction of the sets Si and their planar spanners V Gi as in
the proof of the approximation factor in Theorem 2. We also use the same notation
for NI1, NI2, I1, I2, V0, V G and V . Let us recall that in the proof of Theorem 2 it
was shown that I1 + I2 ≤ V

d−1 − 1.
As each connected component in Dk (Th) has at least k vertices, we conclude

that the size of each connected component in D =
⋃
hDk (Th) is at least k. So we

have at most V0/k connected components in D. As V G is connected we get from
the definition of NI1 and NI2

NI1 +NI2 ≤ V0/k − 1

This leads us to

V ≤ V0 + 2 (NI1 +NI2) + 2 (I1 + I2)

≤ V0 + 2 (V0/k − 1) + 2
(

V

d− 1
− 1
)

From the definitions of d, ε̄ and k it follows that
(
d−1
d−3

)
≤ 3
√

1 + ε, (1 + ε̄) = 3
√

1 + ε

and
(
1 + 2

k

)
≤ 3
√

1 + ε. As Lemma 15 shows that V0 ≤ |CDOPT |(1+ ε̄) we conclude
easily that:

V ≤
(
d− 1
d− 3

)
·
(
V0

(
1 +

2
k

)
− 4
)

≤
(
d− 1
d− 3

)
· (1 + ε̄) ·

(
1 +

2
k

)
· |CDOPT |

≤ 3
√

1 + ε · 3
√

1 + ε · 3
√

1 + ε · |CDOPT |
= (1 + ε) · |CDOPT |

�

4.2.3. Locality. We want to prove that Algorithm 3 is local (part 3 of Theorem 3).
We denote by γ its locality and show that it is constant for a fixed ε. We give an
upper bound for γ in terms of ε. Our proof is very similar to the locality proofs in
Theorems 1 and 2.

In Section 2 we presented Lemma 7 which holds for Algorithm 3 exactly as it
does for Algorithm 1 which it was originally stated for. For the sake of completeness
we repeat it here as Lemma 16.

Lemma 16. We show three locality related properties of our algorithm:
(1) Let vh be the coordinator vertex of a hexagon h of class k. What vertices

are in Th depends only on the vertices which are at most 2c · (k − 1) + c
hops away from vh.

(2) Let v′ be any vertex. Whether v′ is contained in a set Th′ with class(h′) ≤ k
depends only on the vertices which are at most 2c · k hops away from v′. If
v′ is contained in such a set Th′ then what vertices are in Th′ depends only
on the vertices which are at most bk hops away from v′.
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(3) Let v′′ be any vertex in a hexagon h′′ of class k. Whether or not v′′ is
the coordinator vertex of h′′ depends only on the vertices which are at most
1 + 2c · (k − 1) hops away from v′′.

Proof. For ease of notation we introduce the sequences ak, bk and ck. Let ak be
the smallest integer such that what vertices are in Th depends only on the vertices
which are at most ak hops away from vh. So in order to prove property 1 we want
to show that ak ≤ 2c · (k− 1) + c. Let bk be the smallest integer such that whether
v′ is contained in a set Th′ with class(h′) ≤ k depends only on the vertices which
are at most bk hops away from v′ and if v′ is contained in such a set Th′ then what
vertices are in Th′ depends only on the vertices which are at most bk hops away from
v′. For proving property 2 we need to show that bk ≤ 2c · k. Let ck be the smallest
integer such that whether or not v′′ is the coordinator vertex of h′′ depends only
on the vertices which are at most ck hops away from v′′. So for proving property 3
we need to show that ck ≤ 1 + 2c · (k − 1).

Proof by induction. We begin with k = 1. As we need to explore the vertices at
most c hops away from vh in order to compute Th, we conclude that a1 ≤ c.

Let v′′ be a vertex in a class 1 hexagon h′′. To find out whether v′′ is the
coordinator vertex of h′′, we need to explore the vertices which are at most 1 hop
away from v′′. So c1 ≤ 1.

Let v′ be a vertex. We want to find out whether there is a hexagon h′ with
class(h′) ≤ 1 such that v′ is contained in the set Th′ . If yes, the coordinator vertex
vh′ of h′ can be at most c hops away from v′. So we need to explore all vertices
which are at most c hops away from v′ to find all vertices (in class 1 hexagons)
which could possibly be coordinator vertices for their hexagon h′ such that v′ ∈ Th′

and class(h′) ≤ 1. To find out if any of them is the coordinator vertex of their
respective hexagon h′ we need to explore the vertices which are at most c1 ≤ 1
hops away from them. If one of them is a coordinator vertex, we need to explore
the vertices at most a1 ≤ c from it in order to compute Th′ and to find out whether
v′ ∈ Th′ . If this is the case, we immediately know the set Th′ as well. So we only
need to explore the vertices which are at most b1 ≤ c+max (a1, c1) ≤ 2c hops away
from v′ in order to compute this task.

Assume that the claims in the lemma hold for all k ≤ i − 1. Let vh be the
coordinator vertex of a hexagon h of class i. In order to compute Th we need to
explore the vertices which are at most c hops away from vh and therefore need
to find out for each vertex in N c(vh) whether it has been covered by a set Th′

with class(h′) < i. So for computing Th we need to explore the vertices which are
ai ≤ c+ bi−1 hops away from vh.

Let v′′ be a vertex in a hexagon h′′ of class i. To find out whether v′′ is the
coordinator vertex for h′′ we need to explore all other vertices in h′′ and find out if
they have been covered by a set Th′ with class(h′) < i. For this we need to explore
the vertices which are at most ci ≤ 1 + bi−1 hops away from v′′.

Let now v′ be a vertex. We want to find out whether v′ is covered by a set Th′

with class(h′) ≤ i. So first we need to explore all vertices at most c hops away from
v′. This is the set N c(v′). Only vertices in this set can possibly be coordinator
vertices for a hexagon h′ such that Th′ contains v′. To check if a vertex in N c(v′) is
a coordinator vertex, we need to explore all vertices which are at most ci hops away
from it. If a vertex vh′ inN c(v′) is the coordinator vertex for its hexagon h′, we need
to explore the vertices which are at most ai hops away from vh′ in order to compute
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Th′ . Then we can check if v′ ∈ Th′ . If this is the case, we immediately know the set
Th′ as well. This gives us bi ≤ c+max (ai, ci) ≤ c+max (c+ bi−1, 1 + bi−1) ≤ c+ai.

So we have shown that a1 ≤ c, b1 ≤ 2c, c1 ≤ 1, ci ≤ 1 + bi−1, bi ≤ c + ai and
ai ≤ c + bi−1. This implies ai ≤ c + bi−1 ≤ c + c + ai−1 ⇒ ai ≤ 2c · (i − 1) + c,
bi ≤ 2c · i and ci ≤ 1 + 2c · (i− 1). �

Lemma 17. Let v be a vertex. Whether v ∈ CD depends only on the vertices
which are at most k + 1 + 2c · (b+ 1) + c+ b · (2 + d) hops away from v.

Proof. Let v′ be a vertex. Exactly as in the proof of Lemma 8 we claim that what
vertices (other than v′) are in Th′ depends only on the vertices which are at most
1 + 2c · (k − 1) + c hops away from v′.

Proof of the claim: We use the notation ak, bk and ck as introduced in the proof
of Lemma 16. For computing the set Th′ we need to check whether v′ is covered
by a set Th′ with class(h′) < class(h). This depends only on the vertices at most
bk−1 ≤ 2c · (k − 1) hops away from v′ (see Lemma 16). If there is such a set Th′

with v′ ∈ Th′ then Th′ depends only on the vertices which are at most bk−1 hops
away from v′ as well (see Lemma 16).

If there is no set Th′ such that class(h′) < class(h) and v′ ∈ Th′ the algorithm has
to find out whether there is another vertex v′′ 6= v′ in h that is the coordinator vertex
for h. In order to do this, we need to explore the vertices at most ck ≤ 1+2c ·(k−1)
hops away from v′. If there is such a vertex v′′ then we need to explore the vertices
which are at most 1+ak ≤ 1+2c ·(k−1)+c hops away from v′ in order to compute
the set Th′ . If not, then v′ is the coordinator vertex for h. Then we need to explore
the vertices which are at most ak ≤ 2c · (k − 1) + c hops away from v′ in order to
compute Th′ . Altogether we conclude that for computing Th′ we need to know only
about the vertices at most 1 + 2c · (k − 1) + c hops away from v′. This proves the
claim.

When the vertex v computes whether it is in D it does the following: For each
v′ ∈ Nk(v) it computes the set Th that covers v′. Then v is part of the dominating
set if and only if it is part of any of the Dk (Th). So if v is in D depends only on
the vertices which are at most 1 + k + 2c · (k − 1) + c hops away from v.

Now we consider phase 2 where the different connected components are linked
by bridges. If v is assigned to CD in phase 2 depends only if the vertices at most
b(2 + d) from v are in D (see Lemma 10).

So whether v is in CD depends on the vertices which are at most k + 1 + 2c ·
(b− 1) + c+ b · (2 + d) hops away from v. �

Proof. (of part 3 of Theorem 3): We want to show that whether or not a vertex
v is in D depends only on the vertices at most O

(
1
ε9

)
away from v. We need the

following properties of the constants that we defined:
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d ∈ O

(
1
ε

)
1
ε̄
∈ O

(
1
ε

)
k ∈ O

(
1
ε

)
c ∈ O

(
1
ε3

)
b ∈ O

(
c2
)

After having proved this we will substitute the derived upper bounds in the term
presented in Lemma 17 and prove part 3 of Theorem 3.

First we want to show that d ∈ O
(

1
ε

)
. We calculate that

3
√

1 + ε ≥ d− 1
d− 3

⇔ 3
√

1 + ε · (d− 3) ≥ d− 1

⇔ d ·
(

3
√

1 + ε− 1
)
≥ 3 · 3

√
1 + ε− 1

⇔ d ≥ 3 · 3
√

1 + ε− 1
3
√

1 + ε− 1

and get that

d ≥ 3 · 3
√

1 + ε− 1
3
√

1 + ε− 1

≥ 3 +
2
ε

It follows that d ≤ 4 + 2
ε and therefore d ∈ O

(
1
ε

)
. Now we want to show that

1
ε̄ ∈ O

(
1
ε

)
. For ε ≤ 1 it holds that

1 + ε̄ ≤ 3
√

1 + ε

⇔ (1 + ε̄)3 ≤ 1 + ε

⇔ 1 + 3ε̄+ 3ε̄2 + ε̄3 ≤ 1 + ε

⇔ 3ε̄+ 3ε̄2 + ε̄3 ≤ ε

⇒ ε̄ ≥ ε

7

and therefore 1
ε̄ ∈ O

(
1
ε

)
.

Next we show that k ∈ O
(

1
ε

)
. Recall that k is defined as the smallest integer

such that
(
1 + 2

k

)
≤ 3
√

1 + ε. Since this leads to the same calculation as above we
substitute 2

k for ε̄ and get
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ε

7
≤ 2

k
(12)

⇔ k ≤ 14
ε

(13)

⇒ k ∈ O

(
1
ε

)
(14)

Now we want to show that there is an ε0 such that for all ε < ε0 it holds that
c ≤ 1

ε3 + k i.e. c ∈ O
(

1
ε3

)
. By definition c is the smallest integer such that

(2c+ 1)2 <
(
k
√

1 + ε
)c and c ≡ 0 mod k. We calculate that

(2c+ 1)2 <
(
k
√

1 + ε
)c/2

(15)
⇔ 4k ln(2c+ 1) < c · ln(1 + ε) (16)

From taking derivatives we get that

ln(1 + ε) ≥ 1
2
ε (17)

holds for all ε ≤ 1. From Inequalities 13, 16 and 17 and we conclude that it is
sufficient to show that there is an ε0 such that

4
(

14
ε

)
ln(2c+ 1) <

1
2
ε · c

holds for all for ε < ε0 ≤ 1. We set c := 1
ε3 and get

56 · 1
ε
· ln
(

2
ε3

+ 1
)

<
1
2
· 1
ε2

⇔ 112 · ln
(

2
ε3

+ 1
)

<
1
ε

Since ln(2n3 + 1) ∈ o(n) there is an ε0 ≤ 1 such that the above holds for all ε ≤ ε0.
So for ε ≤ ε0 we can find a value for c with c < 1

ε3 + k < 1
ε3 + 14

ε (remember that c
has to be an integer such that c ≡ 0 mod k). Denote by k0 the value of k calculated

for ε0. We observe that
(

2 1
ε20

+ 1
)

2 <
(
k0
√

1 + ε0
) 1
ε30 <

(
k
√

1 + ε
) 1
ε30 for ε > ε0. So

for all these values of ε we can find a value for c such that c < 1
ε30

+ 14
ε0
. This proves

c ∈ O
(

1
ε3

)
. The claim b ∈ O

(
c2
)
follows from Lemma 6.

Denote by γ(ε) the locality distance of Algorithm 3 when run with a performance
guarantee of 1 + ε.

For checking whether diam(G) < k+2 we only need to explore the vertices which
are at most k+ 2 hops away from a given vertex v: If Nk+2(v) 6= Nk+1(v) we know
for sure that diam(G) ≥ k+ 2 and if Nk+2(v) = Nk+1(v) we know that Nk+2(v) =
Nk+2(v) = V and we can check whether diam(G) < k+2 based on this information.
So when diam(G) < k + 2 then γ(ε) is at most k + 2 and therefore bounded by
O
(

1
ε

)
⊆ O

(
1
ε9

)
. From now on assume that diam(G) ≥ k + 2. From Lemma 17 we

know that we need to explore the vertices at most k+ 1 + 2c · (b− 1) + c+ b · (2 +d)
hops away from a given vertex v. From the definition of b and the above lemmas
we get
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Connected Dominating Set
Approximation Upper Bound for Locality Distance of

Ratio Algorithm 3 Algorithm 2 Algorithm in [6]
1.1 8.47805 · 1014 - -
1.2 9.95049 · 1012 - -
1.5 2.65059 · 1010 - -
2 3.42895 · 108 - -
3 5.75726 · 106 - -

3.5 1.21160 · 106 9.32608 · 106 -
4 3.72278 · 105 8.06049 · 106 -
5 9.3987 · 104 8.0745 · 104 -
6 1.5859 · 104 1.6150 · 104 -

7.5 1.0938 · 104 8.155 · 103 2.03759 · 108

10 1.002 · 103 4.604 · 103 5.702 · 103

Table 2. Locality distances of Connected Dominating Set Al-
gorithms for several approximation factors. The second column
shows upper bounds for the 1+ε approximation algorithm and the
third column the bounds for the 3 + ε approximation algorithm
presented in this paper. The fourth column shows upper bounds
for the locality of the local 7.453 + ε algorithm for connected dom-
inating set presented in [6].

γ(ε) ≤ k + 1 + 2c · (b− 1) + c+ b · (2 + d)
≤ k + 1 + 2c ·

(
12c2 + 18c+ 7− 1

)
+ c+

(
12c2 + 18c+ 7

)
· (2 + d)

∈ O

(
1
ε9

)
�

Table 2 displays trade-offs between approximation ratios and locality distances
which are attained by the algorithms for connected dominating set presented in
this paper and the algorithm presented in [6].

4.2.4. Processing time. Recall that γ is the locality distance of Algorithm 3. Similar
to Algorithms 1 and 2 we measure the runtime of Algorithm 3 when run by a vertex
v in the number of vertices in Nγ(v). Denote this number by nγ(v). We want to
prove that the time Algorithm 3 needs to compute whether v is in CD is bounded
by a polynomial in nγ(v). The vertices in Nγ(v) are all vertices that v needs to
explore when computing whether or not it is part of CD.

Proof. (of part 4 of Theorem 3): First we examine the case where diam(G) < k+2.
By Corollary 3 in [15] the number of vertices in a minimum dominating set for a
neighborhood Nr(v) of a vertex v is bounded by (2r + 1)2 and therefore the size
of a minimum connected dominating set for Nr(v) is bounded by 3 · (2r + 1)2.
So the processing time to find a minimum connected dominating set for G is in
O
(
nγ(v)3·(2k+3)2

)
and therefore bounded by nγ(v)O(1/ε2).
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Now assume that diam(G) ≥ k + 2. In the first part of the algorithm where
the set D is computed the sets Dk (Nr(v′)) for r ∈ {0, 2k, 4k, ..., c} and v′ ∈ Nγ(v)
need to be determined. First we show that this can be done in polynomial time.
By Corollary 3 in [15] the number of vertices in a minimum dominating set for a
neighborhood Nr(v′) is bounded by (2r+1)2. It follows that the number of vertices
in Dk (Nr(v′)) is bounded by k · (2r + 1)2. So the computation of such a set can
be done in O

(
nγ(v)k·(2c+1)2

)
, e.g. by enumeration. For each vertex v′ ∈ Nγ(v) we

might have to compute the sets Dk (Nr(v′)) for each r ∈ {0, 2k, 4k, ..., c}. So the
processing time for computing D is in O

(
nγ(v)k·(2c+1)2 · nγ(v) · c

)
and therefore

bounded by nγ(v)O(1/ε7).
Now consider the the second part of the algorithm where we connect the con-

nected components in D to the set CD. For each class i ∈ {1, ..., b} we need to
compute the d-neighborhood of head vertices of class i and find out whether adding
one or two vertices with one of them being in a hexagon of class i could connect
two connected components. For one head vertex this can be done in O(nγ(v)) and
therefore the runtime of the second part of our algorithm is bounded by O(nγ(v)2).
So our overall processing time is bounded by nγ(v)O(1/ε7). �

5. Conclusion

In this paper we designed local approximation algorithms for dominating and
connected dominating set in the setting of location aware nodes. We presented a
local 1 + ε algorithm for dominating set, a local 3 + ε algorithm for connected dom-
inating set and improved the latter to a local 1 + ε algorithm. Our algorithms give
better performance ratios than the formerly known local algorithms with constant
locality distances [6]. Our approximation ratios are optimal since no local algo-
rithm based on location aware nodes can compute an optimal solution for every
given graph (note that this does not depend on whether P 6= NP or P = NP ). If
P 6= NP then for the problems which we addressed our local algorithms achieve
exactly the same approximation ratios as global polynomial time algorithms.

We estimated the locality distances of our algorithms and it is evident that
further improvements would be desirable. In particular an interesting question to
study would be how much they can be improved for a given 1 + ε approximation
factor. Also of interest are lower bounds for the possible approximation ratio for
a given locality distance. From that we could conclude how far we are away from
the best possible local approximation for a given locality distance. Another open
question is how much of the geometric information of a node is really needed to be
able to obtain the above results.
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