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Abstract. We present the first local approximation schemes for maximum
independent set and minimum vertex cover in unit disk graphs. In the graph
model we assume that each node knows its geographic coordinates in the plane
(location aware nodes). Our algorithms are local in the sense that the status
of each node v (whether or not v is in the computed set) depends only on
the vertices which are a constant number of hops away from v. This constant
is independent of the size of the network. We give upper bounds for the
constant depending on the desired approximation ratio. We show that the
processing time which is necessary in order to compute the status of a single
vertex is bounded by a polynomial in the number of vertices which are at most
a constant number of vertices away from it. Our algorithms give the best
possible approximation ratios for this setting.

The technique which we use to obtain the algorithm for vertex cover can
also be employed for constructing the first global PTAS for this problem in
unit disk graph which does not need the embedding of the graph as part of
the input.

1. Introduction

Locality plays an important role in wireless and ad-hoc-networks. In such net-
works, there is often no global entity to organize the network traffic. So the nodes
have to negotiate their coordination in a distributed manner. As in most cases the
entire network is much too large to be explored by a single node, we are interested
in local algorithms. These are algorithms, in which the status of a node v (e.g.,
whether or not it is in the independent set or vertex cover) depends only on the
nodes which are a constant number of hops away from v. This constant has to be
independent of the size of the overall network. The locality concept is also advanta-
geous for disaster recovery and dynamically changing network. If only parts of the
network are changed or lost, using a local algorithm only fractions of the solution
need to be recomputed and so we do not need to redo the entire calculation.

We model the wireless network with location aware Unit Disk Graphs (UDGs).
This represents the situation where all nodes have an identical transmission range
and know about their geographic position in the plane. Whether communication
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between two nodes is possible depends only on their Euclidean distance. This is
due to the fact that wireless devices naturally have a limited transmission range.
Since positioning devices, like GPS, become more and more common the concept
of location awareness becomes relevant.

In wireless networks, clustering is an important aspect of organizing network
traffic. A maximal independent set can be used for clustering by defining its nodes
to be clusterheads. A cluster consists of the nodes which are adjacent to a single
clusterhead. The latter are responsible for the communication of nodes within their
cluster with other nodes. The maximum independent set and minimum vertex cover
problems are closely related since the inverse set of an independent set is a vertex
cover. However, approximation ratios for the above problems are not preserved by
this operation, so we need to design approximation algorithms for both problems.

1.1. Related Work. Maximum independent set and minimum vertex cover are
both NP-hard in general graphs [6]. For independent set it is even impossible to
approximate the problem in polynomial time with a better factor than |V |1/2−ε,
unless P = NP [7]. (Observe that finding a maximum independent set in a graph
is the same as finding a maximum clique in its complementary graph.) However,
for vertex cover there are several polynomial time approximation algorithms which
achieve an approximation factor of 2, e.g., in [1]. But it is NP-hard to find an
approximation better than 10

√
5 − 21 ≈ 1, 3607 [5], so there can be no PTAS,

unless P = NP .
When restricting the problem to unit disk graphs, both problems are still NP-

hard [3]. But there are constant ratio algorithms known [11] (in the case of vertex
cover with a ratio of 3/2 which is better than in the general case). If the embedding
of the graph is part of the input there are PTASs known due to Hunt III et al. [8].
Note however that finding an embedding for a unit disk graph is NP-hard [2] (since
the recognition of a unit disk graph is NP-hard). Even finding an approximation
for the embedding is NP-hard [9]. For the case that the embedding of the graph is
unknown, Nieberg et al. found a PTAS for the weighted independent set problem
in UDGs [13]. Kuhn et al. proposed a local approximation scheme for independent
set [10] for growth-bounded graphs (this class includes UDGs). However, their
definition of locality is not the same as assumed in this paper. In their algorithm,
whether a vertex v is in the independent set depends on the vertices which are up
to O(log∗ n) hops away from v which is not constant as it depends on the size of
the graph.

1.2. Main Result. We present local approximation algorithms for maximum in-
dependent set and minimum vertex cover with approximation ratios 1− ε and 1 + ε
respectively. They are the first local approximation schemes for these problems in
unit disk graphs. Their technique is very similar to the one of the local dominating
set algorithm presented in [14]. We give upper bounds for the locality distance (the
maximum k such that whether or not a vertex is in the computed set depends only
on the vertices which are at most k hops away from it) depending on the desired
approximation ratio. In order to be able to guarantee the approximation factor
for vertex cover, we prove that the set of all vertices of a unit disk graph forms a
factor 12 approximation for minimum vertex cover (assuming that there is at least
one edge to cover in the graph). The technique used in this proof can be expanded
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to show that in every K1,m–free graph the set of all vertices forms a factor 2m
approximation for vertex cover.

Our technique to derive the PTAS for minimum vertex cover has applications in
other settings as well. We explain how it can be used to construct the first global
PTAS for vertex cover in unit disk graph which does not need the embedding of
the graph as part of the input.

1.3. Organization of the Paper. The remainder of this paper is organized as
follows: In Section 2 we introduce some basic concepts and definitions including
a tiling of the plane in hexagons which our algorithms are using. Our 1 − ε ap-
proximation algorithm for independent set is presented in Section 3. After that in
Section 4 we prove our bound for vertex cover and present our 1 + ε approximation
algorithm for this problem. There we also discuss how this technique can be used to
derive a global PTAS for vertex cover which does not rely on the embedding of the
graph. Finally in Section 5 we summarize our results and discuss open problems.

2. Preliminaries

We give some basic definitions and explain a tiling of the plain which our algo-
rithms are using. Then we introduce the concept of 1-separated collections which
will enable us to establish a lower bound for the maximum independent set problem.

2.1. Definitions. An undirected graph G = (V,E) is a unit disk graph if there is
an embedding in the plane for G such that two vertices u and v are connected by
an edge if and only if the Euclidean distance between them is at most 1. The graph
G we consider for our algorithms is a unit disk graph.

A set I ⊆ V is an independent set if for every pair of vertices v, v′ with v ∈ I
and v′ ∈ I it holds that {v, v′} /∈ E. A set V C ⊆ V is called a vertex cover if for
every edge e = {u, v} it holds that either u ∈ V C or v ∈ V C. Equivalently, a set
V C is a vertex cover if and only if V \ V C is an independent set.

Definition 1. For two vertices u and v let d(u, v) be the hop-distance between u
and v, that is the number of edges on a shortest path between these two vertices.

The hop-distance is not necessarily the geometric distance between two vertices.
Denote by Nr(v) = {u ∈ V |d(u, v) ≤ r} the r-neighborhood of a vertex v. For ease
of notation we set N0(v) := {v}, N(v) := N1(v) and for a set V ′ ⊆ V we define
N (V ′) =

⋃
v′∈V ′ N (v′). Note that v ∈ N(v). We define the diameter of a set of

vertices V ′ ⊆ V as diam (V ′) := max
u,v∈V ′

d(u, v).

Denote by the locality distance (or short the locality) of an algorithm the mini-
mum α such that the status of a vertex v (e.g., whether or not v is in an independent
set or vertex cover) depends only on the vertices in Nα(v). In all algorithms pre-
sented in this paper we will prove that α depends only on the desired approximation
factor for the respective problem.

2.2. Tiling of the Plane. This method of tiling the plane is taken from [4] and
[14]. The plane is split into hexagons and a class number is assigned to each
hexagon. The tiling has the following properties:

• Each vertex is in exactly one hexagon.
• Two vertices in the same hexagon are connected by an edge.
• Each hexagon has a class number.
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(a) (b)

Figure 1. (a) A tile divided into 12 hexagons. Having 12
hexagons in one tile achieves a minimum Euclidean distance be-
tween to hexagons of the same class of 2. (b) One hexagon of the
tiling. The bold lines indicate the parts of its border that belong
to this hexagon

• The distance between two vertices in different hexagons with the same class
number is at least a certain constant positiv integer.

• The number of hexagonal classes is bounded by a constant.
We achieve these properties as follows: First we define the constant c to be the
smallest even integer such that (2c+ 1)2<

(
1

1−ε

)c
. We consider a tiling of the

plane with tiles. Each tile consists of hexagons of diameter one that are being
assigned different class numbers (see Figures 1 and 2). Denote by H the set of all
hexagons containing vertices of G (only these hexagons are relevant for us) and by
b the number of hexagons in one tile. Ambiguities caused by vertices at the border
of hexagons are resolved as shown in Figure 1(b): The right borders excluding the
upper and lower apexes belong to a hexagon, the rest of the border does not. We
assume that the tiling starts with the coordinates (0, 0) being in the center of a
tile of class 1. We choose the number of hexagons per tile in such a way that two
hexagons of the same class have an Euclidean distance of at least 2c+ 1. Note that
this implies that two vertices in different hexagons of the same class number are at
least 2c + 1 hops away from each other. Later we will show that we need at most
12c2 + 18c+ 7 hexagons per tile to ensure this, i.e., 12c2 + 18c+ 7 ≤ b. Let class(h)
be the class number of a hexagon h.

2.3. 1-Separated Collections. We present the concept of 1-separated collections.
We use it in order to establish an upper bound for an optimal independent set. Let
G = (V,E) be a unit disk graph.

Definition 2. Let H be an index set and let the sets Sh with h ∈ H be subsets
of V . The sets Sh are called a 1-separated collection if for any two vertices s ∈ Sh
and s′ ∈ Sh′ with h 6= h′ it holds d(s, s′) > 1.
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Figure 2. Several tiles glued together

Let I : P(V )→ P(V ) be an operation returning an independent set of maximum
cardinality for the subset of vertices given as argument to it. Later in the algorithm
we will construct sets Sh and will surround them by sets Th such that Sh ⊆ Th ⊆
N (Sh). Now we establish our upper bound for a maximum independent set for G.

Lemma 1. Let the sets Th, h ∈ H be sets such that V =
⋃
h∈H Th. We have that

|I(V )| ≤
∑
h∈H

|I (Th)|

Proof. Since I (Th) is a maximum independent set for Th it holds that |I(V ) ∩ Th| ≤
|I (Th)|. As V =

⋃
h∈H Th every vertex v ∈ I(V ) is contained in at least one set

Th. So it follows that |I(V )| ≤
∑
h∈H
|I (Th)|. �

So we see that the cardinality of the union
⋃
h∈H I (Th) is an upper bound for

the cardinality of a maximum independent set. The idea is now to construct a 1-
separated collection Sh and a surrounding set Th for each set Sh with Th ⊆ N (Sh).
We want to do it in a way such that |I (Th)| is not much larger than |I (Sh)|. If then⋃
h∈H Th = V we can show that

⋃
h∈H I (Sh) is not much smaller than an optimal

independent set for G.

Lemma 2. Let S =
⋃
h∈H Sh be a 1-separated collection in G and let Th,h ∈ H be

subsets of V with Sh ⊆ Th for all h ∈ H. If there exists an ε > 0 such that

(1− ε) · |I (Th)| ≤ |I (Sh)|

holds for all h ∈ H and if V =
⋃
h∈H Th then the set

⋃
h∈H I (Sh) is a (1 − ε)-

approximation of a maximum independent set in G.
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Proof. Let IOPT be an optimal independent set for G. It holds that∣∣∣∣∣ ⋃
h∈H

I (Sh)

∣∣∣∣∣ =
∑
h∈H

|I (Sh)| ≥ (1− ε) ·
∑
h∈H

|I (Th)| ≥ (1− ε) · IOPT

�

3. Independent Set

We present a local 1 − ε approximation algorithm for maximum independent
set. Its technique is very similar to the one of the local algorithm for minimum
dominating set presented in [14].

3.1. The Algorithm. Before giving the formal algorithm we present the main
structure and provide an intuitive description of the algorithm. For some hexagons
h we construct a set Sh and a set Th with Sh ⊆ Th ⊆ N (Sh). The sets Th contain all
vertices in their respective hexagon h and the vertices in a certain surrounding area.
They are disjoint and have certain properties that ensure the desired approximation
ratio of 1−ε. We call vertices contained in a set Th covered. The construction of the
sets Th is done by iterating over the class numbers of the hexagons. First we cover
hexagons of class 1 by computing sets Th for all hexagons h of class 1. Assume that
all hexagons of class i have already been covered. We proceed to cover all hexagons
of class i+ 1 whose vertices have not been completely covered so far by computing
sets Th for those hexagons. We stop when all vertices in all hexagons have been
covered. Moreover, the number of iterations does not exceed the total number of
classes. Finally we compute for all sets Sh a maximum independent set I (Sh). We
output I :=

⋃
h I (Sh).

Now we present the algorithm in detail. Fix ε > 0 and let b the number of
hexagonal classes. For all h ∈ H we initialize the sets Sh = Th = ∅. If all vertices
of a hexagon have been covered, call this hexagon covered. For i = 1, ..., b do the
following: Consider a hexagon h ∈ H of class i which is not covered. Define the
vertex vh which is closest to the center of h and which is not covered yet to be
the coordinator vertex of h. Ambiguities are resolved by choosing the vertex with
the smallest x-coordinate among vertices with the least distance to the center of h.
Denote by C(i) all vertices which are covered in previous iterations where hexagons
of classes i′ < i were considered. Compute for all r ≤ c the r-neighborhoods
Nr (vh) and compute the maximum independent sets I (Nr (vh)). We determine
the smallest value of r with r ≤ c− 1 such that

(1− ε) ·
∣∣I (Nr+1(vh) \ C(i)

)∣∣ ≤ |I (Nr(vh) \ C(i))| (1)

holds and denote it by r̄. Later we will prove that there is at least one value for r
with r ≤ c− 1 such that Inequality 1 does indeed hold (see Lemma 3). Now mark
all vertices in Th := N r̄+1 (vh) \ C(i) as covered. We define Sh := N r̄ (vh) \ C(i).
In Lemma 4 we will prove that the sets Sh (for various hexagons h) form a 1-
separated collection. We assign all vertices in I (Sh) to the independent set. We do
this procedure for all hexagons of class i which are not covered yet. As two vertices
in different hexagons of the same class number are at least 2c+ 1 hops away from
each other the order in which the hexagons are processed does not matter. We
output I :=

⋃
h∈H I (Sh).

The previous discussion is presented in Algorithm 1.
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Algorithm 1: Local algorithm for finding an independent set in a unit disk
graph
// Algorithm is executed independently by each node v;1

inSet:=false;2

if ∃ hexagon h with v ∈ Sh then3

compute I(Sh);4

if v ∈ I(Sh) then inSet:=true5

end6

if inSet=true then Become part of the independent set I else Do not7

become part of I

3.2. Proof of Correctness. We prove the correctness of Algorithm 1, its approx-
imation factor, its locality and its processing time in Theorem 1.

Theorem 1. Let G be a unit disk graph and let ε > 0. Algorithm 1 has the following
properties:

(1) The computed set I is an independent set for G.
(2) Let IOPT be an optimal independent set. It holds that |I| ≥ (1− ε) · |IOPT |.
(3) Whether or not a vertex v is in I depends only on the vertices at most

O
(

1
ε6

)
hops away from v, i.e. Algorithm 1 is local.

(4) The processing time for a vertex v is bounded by a polynomial in the number
of vertices at most O

(
1
ε6

)
hops away from v.

We will prove the four parts of this theorem in four steps. In each step we
first give some lemmas which are required to understand the proof of the theorem.
It is very similar to the proof given in [14] for the correctness of the minimum
dominating set algorithm presented there.

3.2.1. Correctness. We want to prove that the set I is indeed an independent set
for G. As mentioned above we first prove that it is sufficient to examine values for
r with r ≤ c− 1 while computing I (Nr(v)), employing an argument used in [13].

Lemma 3. Let v be a coordinator vertex. While computing its neighborhood Nr(v)
the values of r that need to be considered to find a value r̄ such that

(1− ε) ·
∣∣I (N r̄+1(v) \ C(i)

)∣∣ ≤ ∣∣I (N r̄(v) \ C(i)
)∣∣ (2)

are bounded from above by c− 1.

Proof. Assume on the contrary that Inequality 2 is false for all r ∈ {0, 1, ..., c− 1},
i.e. for these values of r it holds that∣∣I (Nr+1(v) \ C(i)

)∣∣ > ( 1
1− ε

)
· |I (Nr(v) \ C(i))| .

By Corollary 3 in [12] the number of vertices in a maximum independent set for a
neighborhood N c(v) is bounded by (2c+1)2. It holds that

∣∣I (N0(v)
)∣∣ = |I({v})| =

1. So we have that
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(2c+ 1)2 ≥ |I (N c(v) \ C(i))|

>

(
1

1− ε

)
·
∣∣I (N c−1(v) \ C(i)

)∣∣
>

(
1

1− ε

)2

·
∣∣I (N c−2(v) \ C(i)

)∣∣
> ...

>

(
1

1− ε

)c
·
∣∣I (N0(v) \ C(i)

)∣∣
≥

(
1

1− ε

)c
.

But from the definition of c we know that (2c+ 1)2 <
(

1
1−ε

)c
which is a contra-

diction. So at least for one value of r ∈ {0, 1, ..., c− 1} it holds that
∣∣I (Nr+1(v)

)∣∣ ≤(
1

1−ε

)
· |I (Nr(v))|. �

Lemma 4. The sets Sh, h ∈ H form a 1-separated collection.

Proof. Let S1, S2, ..., Sm be the sets in the order in which they were computed by
the algorithm (as mentioned above, the order in which the hexagons of one class
are being processed does not matter). We prove the claim by induction on k.

We begin with k = 1. As N (S1) = T1 and by construction Sj ∩ T1 = ∅ for all
sets Sj it follows that the distance between S1 and any set Sj is strictly larger than
1.

Now assume the claim is true for all sets Sk with k ≤ i−1. From the construction
of Si it follows that Ti = N (Si)\

⋃j<i
j=1 Tj . By construction it follows that Sj∩Ti = ∅

for all sets Sj with j > i− 1. This completes the proof. �

Proof. (of part 1 of Theorem 1): Each set I (Sh) is an independent set. From
Lemma 4 it follows that the sets Sh form a 1-separated collection. So no two
vertices v ∈ Sh, v′ ∈ Sh′ with h 6= h′ are connected by an edge. So the union⋃
h∈H I (Sh) = I is an independent set. �

3.2.2. Approximation Ratio. We prove that the size of I is by at most a factor 1− ε
smaller than the size of a maximum independent set.

Lemma 5. The sets Th cover all vertices of the graph.

Proof. Assume on the contrary that there is a vertex v which is not covered by any
Th, h ∈ H. Let h be the hexagon to which v belongs and let i be its class number.
At some point in the algorithm, the hexagons of class i were considered. Then
there were vertices in h which were not covered yet (at least v). So the coordinator
vertex of h must have marked a set Th as covered. However, as the hexagons have
a diameter of 1 (and r̄ + 1 ≥ 1) it follows that v is contained in Th and therefore
covered by Th which is a contradiction. �

Proof. (of part 2 of theorem 1): From the construction we can see that for every
pair Sh, Th it holds that (1 − ε) · |I (Th)| ≤ |I (Sh)|. From Lemma 5 it follows
that

⋃
h∈H Th = V . So the conditions of Lemma 2 are satisfied and it holds that

|I| =
∣∣⋃

h∈H I (Sh)
∣∣ ≥ (1− ε) · IOPT �
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3.2.3. Locality. Now we want to prove that Algorithm 1 is local (part 3 of Theorem
1). We prove that whether or not a vertex v belongs to the computed set I depends
only on the vertices at most a constant α hops away from v. This constant depends
only on ε. We give an upper bound for α in terms of ε.

First we introduce two technical lemmas before we can prove part 3 of Theorem
1.

Lemma 6. Algorithm 1 satisfies the following three locality properties:

(1) Let vh be the coordinator vertex of a hexagon h of class k. What vertices are
in Th and Sh depends only on the vertices which are at most 2c · (k− 1) + c
hops away from vh.

(2) Let v′ be any vertex. Whether v′ is contained in a set Th′ or a set Sh′

with class(h′) ≤ k depends only on the vertices which are at most 2c · k
hops away from v′. If v′ is contained in a set Th′ (or Sh′) then what other
vertices are in Th′ (or Sh′ respectively) depends only on the vertices which
are at most 2c · k hops away from v′.

(3) Let v′′ be any vertex in a hexagon h′′ of class k. Whether or not v′′ is
the coordinator vertex of h′′ depends only on the vertices which are at most
1 + 2c · (k − 1) hops away from v′′.

Proof. For ease of notation we introduce the sequences ak, bk and ck. Let ak be
the smallest integer such that what vertices are in Th and Sh depends only on the
vertices which are at most ak hops away from vh. So in order to prove property 1
we want to show that ak ≤ 2c · (k− 1) + c. Let bk be the smallest integer such that
whether v′ is contained in a set Th′ or a set Sh with class(h′) ≤ k depends only on
the vertices which are at most bk hops away from v′ and if v′ is contained in such
a set Th′ (or Sh) then what vertices are in Th′ (or Sh respectively) depends only
on the vertices which are at most bk hops away from v′. For proving property 2
we need to show that bk ≤ 2c · k. Let ck be the smallest integer such that whether
or not v′′ is the coordinator vertex of h′′ depends only on the vertices which are
at most ck hops away from v′′. So for proving property 3 we need to show that
ck ≤ 1 + 2c · (k − 1).

Proof by induction. We begin with k = 1. As we need to explore the vertices at
most c hops away from vh in order to compute Th and Sh, we conclude that a1 ≤ c.

Let v′′ be a vertex in a class 1 hexagon h′′. To find out whether v′′ is the
coordinator vertex of h′′, we need to explore the vertices which are at most 1 hop
away from v′′. So c1 ≤ 1.

Let v′ be a vertex. We want to find out whether there is a hexagon h′ with
class(h′) ≤ 1 such that v′ is contained in the set Th′ or Sh′ . If yes, the coordinator
vertex vh′ of h′ can be at most c hops away from v′. So we need to explore all
vertices which are at most c hops away from v′ to find all vertices in class 1 hexagons
because only they could possibly be coordinator vertices for their hexagon h′ such
that v′ ∈ Th′ or v′ ∈ Sh′ . To find out if any of them is the coordinator vertex of
their respective hexagon h′ we need to explore the area c1 ≤ 1 hop around them.
If one of them is a coordinator vertex, we need to explore the vertices at most
a1 ≤ c from it in order to compute Th′ and Sh′ and to find out whether v′ ∈ Th′ or
v′ ∈ Sh′ . If this is the case, we immediately know the sets Th′ and Sh′ as well. So
we only need to explore the vertices which are at most b1 ≤ c + max (a1, c1) ≤ 2c
hops away from v′ in order to compute this task.
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Assume that the claims in the lemma hold for all k ≤ i − 1. Let vh be the
coordinator vertex of a hexagon h of class i. In order to compute Th and Sh we
need to explore the vertices which are at most c hops away from vh and therefore
need to find out for each vertex in N c(vh) whether it has been covered by a set Th′

with class(h′) < i. So for computing Th and Sh we need to explore the vertices
which are ai ≤ c+ bi−1 hops away from vh.

Let v′′ be a vertex in a hexagon h′′ of class i. To find out whether v′′ is the
coordinator vertex for h′′ we need to explore all other vertices in h′′ and find out if
they have been covered by a set Th′ with class(h′) < i. For this we need to explore
the vertices which are at most ci ≤ 1 + bi−1 hops away from v′′.

Now let v′ be a vertex. We want to find out whether v′ is covered by a set Th′

or Sh′ with class(h′) ≤ i. So first we need to explore all vertices at most c hops
away from v′. This is the set N c(v′). Only vertices in this set can possibly be
coordinator vertices for a hexagon h′ such that Th′ or Sh′ contains v′. To check if
a vertex in N c(v′) is a coordinator vertex, we need to explore all vertices which are
at most ci hops away from it. If a vertex vh′ in N c(v′) is the coordinator vertex for
its hexagon h′, we need to explore the vertices which are at most ai hops away from
vh′ in order to compute Th′ and Sh′ . Then we can check if v′ ∈ Th′ or v′ ∈ Sh′ . If
this is the case, we immediately know the sets Th′ and Sh′ as well. This gives us
bi ≤ c+ max (ai, ci) ≤ c+ max (c+ bi−1, 1 + bi−1) ≤ c+ ai.

So we have shown that a1 ≤ c, b1 ≤ 2c, c1 ≤ 1, ci ≤ 1 + bi−1, bi ≤ c + ai and
ai ≤ c + bi−1. This implies ai ≤ c + bi−1 ≤ c + c + ai−1 ⇒ ai ≤ 2c · (i − 1) + c,
bi ≤ 2c · i and ci ≤ 1 + 2c · (i− 1). �

Lemma 7. Let v be vertex. Whether or not v is in I depends only on the vertices
which are at most 1 + 2c · (b− 1) + c hops away from v.

Proof. First we prove the following claim: Let v be a vertex in a hexagon h with
class(h) = k and let v be contained in a set Th′ . Let Sh′ be the set of the 1-
separated collection which is contained in Th′ . We claim that what vertices (other
than v) are in Th′ and what vertices are in Sh′ depends only on the vertices which
are at most 1 + 2c · (k − 1) + c hops away from v.

Proof of the claim: We use the notation ak, bk and ck as introduced in the proof
of Lemma 6. For computing the set Th′ we need to check whether v is covered
by a set Th′ with class(h′) < class(h). This depends only on the vertices at most
bk−1 ≤ 2c · (k− 1) hops away from v (see Lemma 6). If there is such a set Th′ with
v ∈ Th′ then Th′ , Sh′ and whether v ∈ Sh′ depends only on the vertices which are
at most bk−1 hops away from v′ as well (see Lemma 6).

If there is no set Th′ such that class(h′) < class(h) and v ∈ Th′ the algorithm has
to find out whether there is another vertex v′ 6= v in h that is the coordinator vertex
for h. In order to do this, we need to explore the vertices at most ck ≤ 1+2c ·(k−1)
hops away from v. If there is such a vertex v′ then we need to explore the vertices
which are at most 1 + ak ≤ 1 + 2c · (k − 1) + c hops away from v in order to
compute the sets Th′ and Sh′ (which are then in fact Th and Sh). If not, then v
is the coordinator vertex for h. Then we need to explore the vertices which are
at most ak ≤ 2c · (k − 1) + c hops away from v in order to compute Th′ and Sh′ .
Altogether we conclude that for computing Th′ and Sh′ we need to know only about
the vertices at most 1 + 2c · (k − 1) + c hops away from v. This proves the claim.

When a vertex v computes whether it is in the set I it determines whether it
is included in a set Sh. If this is the case, it computes the maximum independent
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Figure 3. A hexagon with three circles of hexagons around it.
Hexagons with the same number belong to the same circle.

set I (Sh). Then v is part of the independent set if it is contained in I (Sh). So we
need only to explore the the vertices which are at most 1 + 2c · (k − 1) + c hops
away from v. �

Lemma 8. For ensuring a minimum Euclidean distance of d between two hexagons
of the same class number, we need at most 3d2 + 3d + 1 hexagons per tile. So for
a minimum distance of 2c+ 1 we need at most 12c2 + 18c+ 7 hexagons per tile.

Proof. We build a tile according to the following construction: Consider one hexagon
h in the center and several circles of hexagons around it. A circle around a set of
hexagons H is a set of hexagons H ′ placed around H with minimum cardinality
such that no hexagon of H lies at the edge of the resulting set H ∪ H ′. Figure 3
shows a hexagon h with three circles of hexagons around it. Since the length of an
edge of a hexagon is 1/2, adding one circle of hexagons around such a tile increases
the minimum distance between h and the border by at least 1/2. So it is sufficient
to add d

2 ·
1

1/2 = d circles of hexagons around h to ensure a minimum distance of
d/2 between any point in h and the border of the tile.

Claim: Our construction with d circles around h consists of 3d2+3d+1 hexagons,
including h. We show this by proving that each new circle has exactly six hexagons
more than the circle before. Assume a circle of hexagons C1 has |C1| hexagons
and another circle of hexagons C2 is placed around it. We define a bipartite graph
GB = (VB , EB) with one vertex for each hexagon in C1 and C2. Two vertices
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Figure 4. Adding a third circle around h

v, v′ ∈ VB are connected by an edge if and only if their corresponding hexagons
are adjacent to each other. Figure 4 shows this construction for adding the third
circle around h. Then there will be exactly six vertices of degree one (they are
the gray vertices in Figure 4 which have a dashed adjacent edge). Denote these
vertices by V ′B . Then G′′B = (VB \ VB′ , EB) will be one single cycle. This proves

that |C2| = 6 + |C1|. So the number of hexagons will be 1 +
d∑
i=1

6i = 3d2 + 3d+ 1.

This implies that we need 3d2 +3d+1 hexagons to achieve a minimum Euclidean
distance of d/2 between h and the edge of a tile. We assign the class number of the
hexagons in such a way that corresponding hexagons get the same class number in
each tile. So in a tiling with such tiles there will be a minimum Euclidean distance
of d between two hexagons of the same class as h. By symmetry this follows for
the hexagons of the other class numbers as well.

Substituting 2c+1 for d shows that 12c2 +18c+7 hexagons per tile are sufficient
to ensure a minimum Euclidean distance of 2c + 1 between two hexagons of the
same class number. �

Proof. (of part 3 of Theorem 1): We want to show that whether or not a vertex v is
in I depends only on the vertices at most O

(
1
ε6

)
away from v. First we want to show

that there is an ε0 such that for all ε < ε0 it holds that c ≤ 1
ε2 +1 i.e. c ∈ O

(
1
ε2

)
. By

definition c is the smallest even integer such that (2c+ 1)2 <
(

1
1−ε

)c
. We calculate

that
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(2c+ 1)2 <

(
1

1− ε

)c
(3)

⇔ 2 ln(2c+ 1) < c · ln
(

1
1− ε

)
. (4)

From taking derivatives we get that

ln
(

1
1− ε

)
≥ ln(1 + ε) ≥ 1

2
ε (5)

holds for all ε ≤ 1. From Inequalities 5 and 4 we conclude that it is sufficient to
show that there is an ε0 such that

2 ln(2c+ 1) <
1
2
ε · c

holds for all for ε < ε0 ≤ 1. We set c := 1
ε2 and get

2 ln
(

2
ε2

+ 1
)

<
1
2
· 1
ε

⇔ 4 ln
(

2
ε2

+ 1
)

<
1
ε
.

Since ln(2n2 + 1) ∈ o(n) there is an ε0 ≤ 1 such that the above holds for all
ε ≤ ε0. So for ε ≤ ε0 we can find a value for c with c < 1

ε2 + 1. We observe that(
2 1
ε20

+ 1
)

2 <
(

1
1−ε0

) 1
ε20 <

(
1

1−ε

) 1
ε20 for ε > ε0. So for all these values of ε we can

find a value for c such that c < 1
ε20

+ 1. This proves c ∈ O
(

1
ε2

)
.

Denote by α(ε) the locality distance of Algorithm 1 when run with a performance
guarantee of 1 − ε. From Lemma 7 we know that we need to explore the vertices
at most 1 + 2c · (b − 1) + c hops away from v. From the definition of b, the above
lemmas and Lemma 8 we get

α(ε) ≤ 1 + 2c · (b− 1) + c

≤ 1 + 2c · (12c2 + 18c+ 7− 1) + c

= 24c3 + 36c2 + 13c+ 1

∈ O

(
1
ε6

)
.

�

3.2.4. Processing Time. The processing time is the time that a single vertex needs
in order to compute whether or not it is part of the independent set. We measure it
with respect to the number of vertices which are at most α hops away from a vertex
v since these are all vertices that a vertex v needs to explore when computing its
status. We denote this number by nα(v) (i.e. nα(v) = |Nα(v)|). We show that the
processing time is bounded by a polynomial in nα(v).

Proof. (of part 4 of Theorem 1). When executing the algorithm for a single vertex
v, maximum independent sets for the sets Nr(v′) with r ∈ {0, 1, ..., c} and v′ ∈
Nα(v) must be computed. First we show that this can be done in polynomial
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time. By Corollary 3 in [12] the number of vertices in a maximum independent
set for a neighborhood Nr(v′) is bounded by (2r + 1)2. So the computation of
such a set can be done in O

(
nα(v)(2c+1)2

)
, e.g. by enumeration. For each vertex

v′ ∈ Nα(v) we might have to compute maximum independent sets I(Nr(v′)) for
each r ∈ {0, 1, ..., c}. As this dominates the processing time of the algorithm, we find
that it is in O

(
nα(v)(2c+1)2 · nα(v) · c

)
and therefore bounded by nα(v)O(1/ε4). �

4. Vertex Cover

In this section we show how the local 1 − ε approximation algorithm for in-
dependent set presented in Section 3 can be used for locally computing a 1 + ε
approximation of the minimum vertex cover problem. First we show that taking
all vertices of a unit disk graph leads to a 12 approximation for vertex cover (if
the graph contains edges which are to be covered by the vertex cover). Then we
present our algorithm and prove its correctness.

4.1. Factor 12 Upper Bound. We consider a connected unit disk graph with at
least two vertices. We prove an upper bound of 12 for the number of all vertices in
comparison with the number of vertices in a minimum vertex cover.

Theorem 2. Let G = (V,E) be a connected unit disk graph with |V | ≥ 2 and let
V COPT be a minimum vertex cover. It holds that

|V | ≤ 12 · |V COPT |

Proof. We partition the vertices V into two sets V1 and V2 such that V1 ∩ V2 = ∅
and V = V1 ∪ V2. We prove that |V1| ≤ 2 · |VOPT | and |V2| ≤ 10 · |V COPT |. As
|V | = |V1|+ |V2| it follows then that |V | ≤ 12 · |V COPT |.

First we define the set V1. Let M ⊆ E be a maximal matching (i.e. a match-
ing which cannot be extended by adding another edge to M). We define V1 :=
{u, v| {u, v} ∈M}. As M is a matching it follows that |V1| ≤ 2 · |V COPT |.

Now we define V2 := V \ V1. Since M is a maximal matching it follows that V2

does not contain any adjacent vertices. Since G is a unit disk graph and therefore
does not contain a K1,6 it follows that every vertex v ∈ V1 is adjacent to at most
5 vertices in V2. Since |V | ≥ 2 and G is connected it follows that |V1| ≥ 1 and
|V2| ≤ 5 · |V1| ≤ 10 · |V COPT |. So we conclude |V | = |V1| + |V2| ≤ 2 · |V COPT | +
10 · |V COPT | ≤ 12 · |V COPT |. �

Corollary 1. For every K1,m free graph G = (V,E) it holds that

|V | ≤ 2m · |V COPT |

4.2. Local 1 + ε Approximation Algorithm for Minimum Vertex Cover.
Let G = (V,E) be a connected unit disk graph. The main idea of our algorithm is
the following: We compute an approximate solution I for maximum independent
set. Then we define V C := V \ I as our vertex cover.

Let 1 + ε be the desired approximation factor for minimum vertex cover. We
define ε′ := min

(
1
11ε,

1
2

)
. Using Algorithm 1 we locally compute a 1 − ε′ approxi-

mation for maximum independent set (note that 1− ε′ > 0 since ε′ ≤ 1/2). Denote
by I the computed set. We define the vertex cover V C by V C := V \ I. We output
V C. This description is presented in Algorithm 2.
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Algorithm 2: Local algorithm for finding a vertex cover in a unit disk graph
// Algorithm is executed independently by each node v;1

define ε′ := min
(

1
11ε,

1
2

)
;2

Run Algorithm 1 with approximation ratio 1− ε′;3

// Denote by I the computed independent set;4

if v ∈ I then do NOT become part of the vertex cover V C else become part5

of V C
Output: Vertex cover V C

4.3. Proof of Correctness. We prove the correctness of Algorithm 2, its approx-
imation factor, its locality and its processing time in Theorem 3.

Theorem 3. Let G be a unit disk graph and let ε > 0. Algorithm 2 has the following
properties:

(1) The computed set V C is a vertex cover for G.
(2) Let V COPT be an optimal vertex cover. It holds that |V C| ≤ (1 + ε) · |V COPT |.
(3) Whether or not a vertex v is in V C depends only on the vertices at most

O
(

1
ε6

)
hops away from v, i.e. Algorithm 2 is local.

(4) The processing time for a vertex v is bounded by a polynomial in the number
of vertices at most O

(
1
ε6

)
hops away from v.

We will prove the four parts of this theorem in four steps.

4.3.1. Correctness. We prove that the set V C is a vertex cover for G.

Proof. (of part 1 of Theorem 3): The set I is an independent set for G (see Theorem
1). Assume on the contrary that there is an edge e = (u, v) with u /∈ V C and
v /∈ V C. As V C = V \ I it follows that u ∈ I and v ∈ I. This is a contradiction
since I is an independent set. So V C is a vertex cover for G. �

4.3.2. Approximation Ratio. We prove that for an optimal vertex cover V COPT it
holds that |V C| ≤ (1 + ε) · |V COPT |.

Proof. (of part 2 of Theorem 3): Let IOPT be an optimal independent set. First
we discuss the case where G has no edges and therefore consist of a single vertex
v (since we assume that G is connected). In this case the maximum independent
set is {v}. Since 0 < (1− ε′) we have that 0 < (1− ε′) · |IOPT | ≤ |I| and so for the
computed independent set I it holds that I = {v}. So then V \ I = V C = ∅ which
is the optimal vertex cover.

Now assume that |V | ≥ 2. So we can apply Theorem 2 and conclude that |V | ≤
12 · |V COPT |. We know that (1− ε′) · |IOPT | ≤ |I|. From |V | − |IOPT | = |V COPT |
we have |IOPT |

|V COPT | = |V |
|V COPT | − 1. We compute that
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|V C|
|V COPT |

=
|V | − |I|
|V COPT |

=
|V |

|V COPT |
− |I|
|V COPT |

≤ |V |
|V COPT |

− (1− ε′) |IOPT |
|V COPT |

=
|V |

|V COPT |
− (1− ε′)( |V |

|V COPT |
− 1)

= 1 + ε′(
|V |

|V COPT |
− 1)

≤ 1 + ε′(12− 1)
= 1 + 11ε′

≤ 1 + ε

So it follows that |V C| ≤ (1 + ε) · |V COPT |. �

4.3.3. Locality. Now we want to prove that Algorithm 2 is local (part 3 of Theorem
3).

Proof. (of part 3 of Theorem 3): According to Theorem 1 whether or not a vertex
v belongs to I depends only on the vertices which are at most O

(
1
ε′6

)
= O

(
1
ε6

)
hops away from v. Computing the set V C = V \ I does not affect the locality of
our algorithms. So whether a vertex v belongs to V C depends only on the vertex
which are at most O

(
1
ε6

)
hops away from v. �

4.3.4. Processing Time. We prove that the processing time of Algorithm 2 is bounded
by a polynomial. Again, we measure the processing time of a vertex v in nα(v), that
is the number of vertices which are at most αhops away from v, where α denotes
the locality distance of Algorithm 2.

Proof. The processing time of Algorithm 2 is dominated by the processing time
of Algorithm 1. So it is bounded by nα(v)O(1/ε′4) and therefore bounded by
nα(v)O(1/ε4). �

4.4. Global PTAS for Vertex Cover Without Embedding of the Graph.
Combining the PTAS for independent set and the upper bound for vertex cover in
unit disk graphs (the set of all vertices giving a factor 12 approximation) we derived
a PTAS for the vertex cover problem. This technique can be used in every setting
where a PTAS for independent set is known and there is a constant upper bound
for the number of vertices in a graph in comparison with the size of a minimum
vertex cover.

In particular, Nieberg et al. [13] presented a global PTAS for maximum inde-
pendent set in unit disk graphs which does not need the embedding of the graph
as part of the input. Using our result for the upper bound for vertex cover in unit
disk graphs their algorithm can be extended to the first global PTAS for vertex
cover in unit disk graphs which does not rely on the embedding of the graph. This
can be done in the same way as when employing our local PTAS for independent
set in order to obtain our local 1 + ε approximation algorithm for vertex cover: We
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run the algorithm for independent set with an approximation ratio of 1− ε′ (with
ε′ = min

(
1
11ε,

1
2

)
) and output the inverse of the computed independent set. The

proof that this gives an approximation ratio of 1 + ε is the same as in Theorem 3.

5. Conclusion

We presented the first local 1−ε and 1+ε approximation algorithms for maximum
independent set and minimum vertex cover, respectively. Local algorithms cannot
compute optimal solutions for these problems (note that this holds no matter if P =
NP or P 6= NP ). So our algorithms give the best possible approximation ratios
for these problems in our setting. Despite the locality constraint, our algorithms
achieve the same approximation factors which can be guaranteed by the best known
global polynomial time algorithms for the discussed problems.

We estimated the locality distances of our algorithms depending on ε. It is
evident that further improvements are desirable. It remains open to design local
PTASs for the considered problems with lower locality distances. In order to guar-
antee the 1 + ε approximation factor for minimum vertex cover we proved that all
vertices of a unit disk graph form a factor 12 approximation for vertex cover (as-
suming that there are edges in the graph which are supposed to be covered). With
the same method it can be proven for any K1,m-free graph that the set of all ver-
tices forms a factor 2m approximation for vertex cover. It remains open to improve
this bound or to show that it is tight. If the bound for unit disk graphs could be
improved, this would immediately prove a lower locality distance of our local PTAS
for vertex cover. Additionally, due to the design of our algorithms a better locality
distance for minimum independent set would imply an improved locality for vertex
cover as well.

Also of interest would be to generalize the concepts used in our algorithms to
related types of graphs like quasi-Unit Disk Graphs or graphs defined by other
geometric shapes.
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