
Communication in Random Geometric Radio
Networks with Positively Correlated Random

Faults

Evangelos Kranakis1, Michel Paquette1, and Andrzej Pelc2

1 School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6,
Canada. kranakis@scs.carleton.ca, michel.paquette@polymtl.ca
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Abstract. We study the feasibility and time of communication in ran-
dom geometric radio networks, where nodes fail randomly with positive
correlation. We consider a set of radio stations with the same commu-
nication range, distributed in a random uniform way on a unit square
region. In order to capture fault dependencies, we introduce the ranged
spot model in which damaging events, called spots, occur randomly and
independently on the region, causing faults in all nodes located within
distance s from them. Node faults within distance 2s become dependent
in this model and are positively correlated. We investigate the impact
of the spot arrival rate on the feasibility and the time of communication
in the fault-free part of the network. We provide an algorithm which
broadcasts correctly with probability 1 − ε in faulty random geometric
radio networks of diameter D in time O(D + log 1/ε).
Keywords: Fault-tolerance, dependent faults, broadcast, crash faults,
random, geometric radio network.

1 Introduction

Wireless networks have received much attention in recent years because of ap-
plications where wired networks are impractical or impossible to deploy. These
networks are now so common that the idea of large scale wireless networks has
become natural. However, as they grow in size, complexity, and area, wireless
networks become increasingly vulnerable to component failures and damaging
environmental phenomena. Nodes of a network may fail and the communication
medium may become too noisy to support correct message transmissions. These
failures often result in delaying, blocking, or even distorting transmitted mes-
sages. Hence, it becomes important that the desired tasks may be accomplished
efficiently in spite of these faults, usually without knowing their location ahead
of time. Networks with this property are called fault-tolerant.

An important type of wireless network is obtained from a set of stations in the
plane where each station u has communication range ru. The resulting network
is modeled as a directed graph in which stations are nodes and a directed edge



from u to v exists if v is at distance at most ru from u. Such networks are called
geometric radio networks (GRN).

One of the most important communication tasks is broadcasting. In this pro-
cess, a source node attempts to transmit a message to all other nodes of the
network. This process is successful if, upon termination, all functional nodes,
connected to the source by a fault-free path, have received the source message.
Although the question of fault-tolerant broadcasting has been widely studied for
faulty point-to-point networks, few results are known about this process in geo-
metric radio networks. To the best of our knowledge, all existing analytic results
examine the general problem of broadcasting in networks where the number of
faults is bounded above (cf., e.g., [8]), or faults are distributed randomly and
independently (cf., e.g., [9, 14]). Hence, the present paper is the first to address
the problem of broadcasting in GRNs in the presence of positively correlated
faults.

1.1 Model and Problem Definitions

We seek to model a network composed of mobile stations moving under the
Random Waypoint mobility model [7] inside an open region, e.g., a train station
or a plaza. Under this mobility model, mobile stations alternately move and
pause for random amounts of time, choosing a direction, distance and speed at
random at every movement phase. Here, we assume that the mobile stations move
at low, pedestrian-like speeds, making the network appear static for the short
duration of communication processes; the distance and directions are chosen
in some uniform way. We further assume that neither the boundaries of the
open region nor the other mobile stations have any effect on the mobile station
movements. Hence, any snapshot of the graph is a set of stations distributed on
a plane by a Poisson process. Due to the short duration of the communication
processes, we consider that the faults are permanent. The proposed static model
also applies to networks of sensors spread randomly in hostile environments
where individual placement and replacement of units is not possible.

We focus attention on a unit square region of the plane. Node locations occur
with Poisson arrival rate n. We fix a parameter r, called the communication
range. Any two nodes at Euclidean distance at most r from one another can
communicate directly. We now define the ranged spot fault model. Damaging
phenomena, called spots, occur on the plane with Poisson arrival rate λ. Some
examples of damaging phenomena are lightning strikes (and other electrostatic
discharges), electromagnetic pulses and explosions. We fix a parameter s > 0,
called the spot range. Each spot causes permanent crash faults in all nodes
within distance s of it, i.e., inside the disk of radius s centered at it, which we
call the spot disk. For a fixed spot i, we denote the corresponding spot disk by Di.
Faulty nodes can neither send nor receive messages for the entire communication
process. More formally, consider the undirected fault-free graph G(V, E), where
V is the random set of nodes occurring on the unit square with Poisson arrival
rate n, and E is the set of all node pairs {u, v} for which the Euclidean distance
is at most r. Let S be the set of spots which occur on the unit square with



Poisson arrival rate λ. Let F be the set of faulty nodes, i.e., all the nodes in
V whose location is within distance s from at least one spot in S. We consider
the graph G[V ′] induced on G by the set V ′ = V \ F of all functional nodes.
To remind the reader how it is built, throughout this paper, we will denote the
graph G[V ′] by U(n, r, λ, s).

As usual in wireless network algorithms, communication in U(n, r, λ, s) is
assumed synchronous; nodes have synchronized clocks and the communication
process is executed in fixed time steps, called rounds. All communication is
done using the same base frequency, modulation and encoding, hence using a
single channel. In each round, each node either sends a message or listens to
the channel. In the first case, we say that the node is a sender, otherwise, it
is a receiver. In a fixed round t, a node v receives a message if and only if it
is a receiver and precisely one of its neighbors is a sender. If no neighbor of
v is a sender, then there is no message on the channel which v can receive. If
more than one neighbor of v sends a message, we say that a collision occurs
at v and v can only perceive noise on the channel. Nodes do not have collision
detection abilities, i.e., they cannot distinguish collision noise from background
noise (which is apparent when no messages are heard).

We say that an event occurs in the graph with high probability (w.h.p.) if
its probability converges to 1 as the node arrival rate n grows to infinity. We
say that an event occurs on the graph with constant (positive) probability if its
probability p is bounded away from 0 and from 1 as n grows to infinity, i.e.,
if there exist positive constants ε1, ε2 such that 0 < ε1 < p < ε2 < 1 for all
n. Specifically, we say that a graph is connected w.h.p. when the event that
it is connected occurs w.h.p. On the other hand, we say that a graph is not
connected w.h.p. when the event that it is disconnected occurs at least with
constant probability.

In this paper, we study the question of feasibility and efficiency of commu-
nication in the fault-free graph U(n, r, λ, s).

1.2 Our Results

We first give answers to the question for which parameters s = s(n) and λ =
λ(n, s) there exist any fault-free nodes in the unit square, i.e., when the fault-free
graph U(n, r, λ, s) is non-empty, w.h.p. For s ∈ o(1), we find a threshold function
l(n, s) and constants L1, L2 such that, for λ ≥ L1 · l(n, s) fault-free nodes do not
exist, w.h.p., while for λ ≤ L2 · l(n, s) they do exist w.h.p. For s ∈ Ω(1), we show
that, for λ ∈ ω(1/s2) fault-free nodes do not exist, w.h.p., and for λ ∈ o(1/s2)
they do exist, w.h.p.

We then give answers to the question for which parameters s = s(n), r = r(n)
and λ = λ(n, s, r), the fault-free graph U(n, r, λ, s) is connected, w.h.p. Connec-
tivity is equivalent to feasibility of communication in our setting. We restrict
attention to the case of small spot range, more precisely, we work under the
assumption s ∈ o(r). In the case r ∈ o(1), we find a threshold function c(n, s, r)
and constants C1, C2 such that, for λ ≥ C1 ·c(n, s, r) the graph U(n, r, λ, s) is not
connected w.h.p., and for λ ≤ C2 · c(n, s, r) it is connected, w.h.p. Then, in the



case r ∈ Ω(1), and for λ ∈ o(1/s2), we show that for the values of λ for which the
graph U(n, r, λ, s) contains at least one node w.h.p., it is also connected w.h.p.

Finally, under the additional restriction on spot range, when s ∈ o(1/
√

n),
we show an algorithm which accomplishes broadcast with probability at least
1− ε in time O(D + log 1/ε) in the graph U(n, r, λ, s) of diameter D.

Due to lack of space, the proofs of several lemmas and theorems are omitted.

1.3 Related Work

The fundamental questions of network reliability have received much attention
in the context of point-to-point networks, under the assumption that compo-
nents fail randomly and independently (cf., e.g. [1–3, 11] and the survey [12]).
On the other hand, empirical work has shown that positive correlation of faults
is a more reasonable assumption for networks [6, 15, 16]. In particular, in [16],
the authors provide empirical evidence that data packets losses are spatially cor-
related in networks. Moreover, in [6], the authors simulate failures in a sensor
network using a model similar to that of the present paper; according to these au-
thors, the environment provides many spatially correlated phenomena resulting
in such fault patterns. More recently, in [10], a gap was demonstrated between
the fault-tolerance of networks when faults occur independently as opposed to
when they occur with positive correlation. To the best of our knowledge, this
was the first paper to provide analytic results concerning network fault-tolerant
communication in the presence of positively correlated faults.

In contrast, few results are known about fault-tolerant communication in ge-
ometric radio networks. To the best of our knowledge, all existing analytic results
examine the problem of broadcasting in networks where, either the number of
faults is bounded above (cf., e.g., [8]), or faults occur randomly and indepen-
dently (cf., e.g., [9, 14]). In particular, in [14], the authors consider the problem
of connectivity of a square grid of n sensors with communication range r on a
unit square when faults occur at the nodes randomly and independently with
probability 1−p. They show that if pr2 ≈ log n

n , then the functional nodes are all
part of a connected component w.h.p. In [8], the authors consider the problem
of broadcasting in a fault-free connected component of a radio network whose
nodes are located at grid points of square grids and can communicate within a
square of size r. For an upper bound t on the number of faulty nodes, in worst-
case location, the authors propose a Θ(D+t)-time oblivious broadcast algorithm
and a Θ(D + log(min(r, t)))-time adaptive broadcast algorithm, both operating
on a connected fault-free component of diameter D.

The question of communication in networks of unknown topology has been
widely studied in recent years. In fact, in [4], the authors state that broadcast-
ing algorithms which function in unknown GRNs also function in the resulting
fault-free connected components of faulty GRNs. A basic performance evalua-
tion criterion of broadcasting algorithms is the time necessary for the algorithm
to terminate; in synchronous networks, this time is measured as the number
of communication rounds. For networks whose fault-free part has a diameter
D, Ω(D) is a trivial lower bound on broadcast time, but optimal running time



is a function of the information available to the algorithms (cf., e.g., [5]). For
instance, in [5], an algorithm was obtained which accomplishes broadcast in
arbitrary GRNs in time O(D) under the assumption that nodes have a large
amount of knowledge about the network, i.e. given that all nodes have a knowl-
edge radius larger than R, the largest communication radius. The authors also
show that algorithms broadcasting in time O(D + log n) are asymptotically op-
timal, for unknown GRNs when nodes can communicate spontaneously (before
receiving the source message) and either can detect collisions or have knowledge
of node locations at some positive distance δ, arbitrarily small. In the present
paper, we assume that nodes communicate spontaneously, but know nothing of
the network, other than their own location, and cannot detect collisions. Under
these assumptions, we show an O(D + log 1/ε)-time algorithm which correctly
broadcasts in the random graph U(n, r, λ, s) with probability at least 1− ε.

2 Liveness of the Graph

In this section, we show bounds on the spot arrival rate λ for which functional
nodes exist in the unit square, i.e., the graph U(n, r, λ, s) contains at least one
node, w.h.p. We say that the graph U(n, r, λ, s) is alive if it contains at least one
node; otherwise, we say that it is dead.

Theorem 1. For s ∈ o(1), there exist two positive constants, L1 and L2, such
that if the spot arrival rate λ ≥ L1 ln(min{n,1/s2})

s2 , then the graph U(n, r, λ, s) is

dead, w.h.p., and if λ ≤ L2 ln(min{n,1/s2})
s2 , then U(n, r, λ, s) is alive, w.h.p.

Theorem 2. For s ∈ Ω(1), the graph U(n, r, λ, s) is dead w.h.p. if λ ∈ ω(1/s2)
and alive w.h.p. if λ ∈ o(1/s2).

Remark 1. For s ∈ o(1/
√

n) and λ = ln(cn)
πs2 , where c is a positive constant, the

graph U(n, r, λ, s) is dead with constant probability.

3 Connectivity of U(n, r, λ, s)

In the preceding section, we gave a threshold for the spot arrival rate for which
the graph U(n, r, λ, s) is non-empty w.h.p. We now answer the next natural
question: for which spot arrival rate is the graph U(n, r, λ, s) connected w.h.p.?

It has been shown, in [13], that for any real number c, if r ≥
√

ln n+c
πn , then

the probability that the graph U(n, r, λ, s), with λ = 0, is connected is at least
e−e−c

, as n → ∞. If we substitute e−c = f(n), assume that f(n) ∈ o(1) and
recall that e−f(n) = 1− f(n) + f(n)2/2− . . . ≥ 1− f(n), then we see that if

r ≥
√

ln n + ln 1/f(n)
πn



then
Pr[U(n, r, 0, s) is connected] ≥ 1− f(n).

Hence, it is natural to investigate the connectivity of the graph U(n, r, λ, s)
under the assumption r2 ≥ ln n+ln 1/f(n)

πn , for some f(n) ∈ o(1), when we know
that connectivity is guaranteed w.h.p. without faults. In what follows we make
this assumption.

The main results of this section are Theorems 3 and 4. In Theorem 3, for
spot range s of lower order of magnitude than the communication range r and
for r ∈ o(1), we show a threshold for the spot arrival rate λ below which the
graph U(n, r, λ, s) is connected w.h.p. and above which it is not. For the case
r ∈ Ω(1), the separation is different: in Theorem 4, we show thresholds for the
spot arrival rate λ below which the graph U(n, r, λ, s) is connected w.h.p. and
above which it is dead w.h.p.

Theorem 3. For s ∈ o(r) and r ∈ o(1), there exist two positive constants, C1

and C2, such that if spots appear with arrival rate λ ≥ C1 ln
(

r2 min{n,1/s2}
ln(1/r2)

)
/s2,

then the graph U(n, r, λ, s) is not connected w.h.p., and if the spot arrival rate
λ ≤ C2 ln

(
r2 min{n,1/s2}

ln(1/r2)

)
/s2, then the graph U(n, r, λ, s) is connected, w.h.p.

Theorem 3 will follow from Lemmas 2, 3, 4, and 5.

Theorem 4. For s ∈ o(r) and r ∈ Ω(1),

1. if s ∈ o(1), then there exist two positive constants, C3 and C4, such that
(a) for λ ≤ C3 ln(min{n, 1/s2})/s2, U(n, r, λ, s) is connected, w.h.p.,
(b) for λ ≥ C4 ln(min{n, 1/s2})/s2, the graph U(n, r, λ, s) is dead w.h.p.,

2. if s ∈ Ω(1), then
(a) for λ ∈ o(1/s2), the graph U(n, r, λ, s) is connected, w.h.p.
(b) for λ ∈ ω(1/s2), the graph U(n, r, λ, s) is dead w.h.p.,

Theorem 4 will follow from Theorems 1 and 2 and from Lemmas 6 and 7.

3.1 Non-Connectivity Results

In this section, we show conditions on spot arrival rate implying, w.h.p., non-
connectivity of the graph U(n, r, λ, s) by the existence of two functional nodes
which cannot communicate with one another in the unit square.

Denote by Pleft and Pright the two rectangular halves of the unit square.
Partition Pleft and Pright respectively into meshes of r× r squares. Group these
squares in matrices of 5×5 squares, called blocks; let Bleft and Bright be the sets
of these blocks. For each block b, denote by cb the central square in this block
and by pb the union of 8 squares adjacent to cb. Let aliveb be the event that cb

contains at least one functional node. Let surroundb be the event that pb contains
no functional node. Let isolationb be the intersection of events surroundb and
aliveb. If isolationb occurs, and there is at least one functional node outside
b, then nodes in cb have no functional path to this external functional node,



and then, the graph U(n, r, λ, s) is disconnected. In particular, we show non-
connectivity w.h.p. by proving that events isolationb1 and isolationb2 , b1 ∈ Bleft

and b2 ∈ Bright, occur w.h.p. Note that, for distinct blocks b1 and b2, events
surroundb1 and surroundb2 are independent.

We first examine non-connectivity in the case when r ∈ o(1) and s ∈ o(1/
√

n),
in Lemma 2. Non-connectivity for r ∈ o(1) and for larger values of s ∈ o(r) will
be addressed in Lemma 3. The case s ∈ Ω(1) is treated in the next section.
We show that for these values of r, the graph is connected w.h.p. for those spot
arrival rates for which it is alive w.h.p.

Let Fv be the event that a fixed node v is faulty, i.e., that there exists at
least one spot within distance s of it. Then, for spot arrival rate λ we have

Pr[Fv] = 1− e−λπs2
.

While distant faults are independent, the presence of a faulty node within dis-
tance 2s from a fixed node v implies that there is a spot which might be close
enough to v to make it faulty, i.e., the occurrence of a fault at a node can
never decrease the probability of a fault on another node. This is why faults are
positively correlated. Hence, the following fact applies to the events Fv.

Fact 1 For any set Z of nodes,

Pr[
⋂
v∈Z

Fv] ≥
∏
v∈Z

Pr[Fv].

A set S of nodes whose elements have a distance greater than 2s from one
another is called sparse. Such a set has the property that the events Fv, for
v ∈ S, are independent. The following lemma states that there exist large sparse
sets, w.h.p.

Lemma 1. A square A with area |A| contains a sparse set S of size at least
k|A|min{n, 1/s2}, for some positive constant k, w.h.p., if |A|min{n, 1/s2} → ∞
as n →∞.

Lemma 2. Fix any constants α > 8 and β > 1. For s ∈ o(1/
√

n) and r ∈ o(1),
the graph U(n, r, λ, s) is not connected w.h.p. when λ = β ln

(
αnr2

ln(1/r2)

)
/πs2.

Proof. Consider f(n) ∈ ω(1) and the set Λ of spot arrival rates of the form
λ = ln

(
αr2n

ln(1/(r2f(n)))

)
/(πs2). Consider two subsets of Λ: Λ1 consisting of these

λ of the form λ = ln(g(n)r2n)/(πs2), with g(n) ∈ O(1) and Λ2 consisting of
these λ of the same form with g(n) ∈ Ω(1). In each case, we show that there
exists at least one occurrence of the event isolationb in each set Bleft and Bright

and thus, that the graph U(n, r, λ, s) is disconnected.
Case 1: λ = ln(g(n)r2n)/(πs2), with g(n) ∈ O(1)
Fix a block b and consider the event aliveb. Consider the subsquare c′b ⊂ cb

whose points are at distance greater than 2s from pb, i.e. for which the contained
nodes become faulty independently from nodes in pb. For s/r → 0 as n → ∞,



|c′b| > 0.9r2, for large n. From Lemma 1, since 0.9nr2 > 0.9 log n ∈ ω(1), it
follows that, w.h.p., there is a sparse set of nodes Sb, in c′b, of size at least knr2,
for some positive constant k. Events Fv, v ∈ Sb, occur independently. Let A
be the event that the above lower bound on the size of the sparse set Sb holds.
Assume A. Then,

Pr[aliveb] = 1− Pr[∀v ∈ cb Fv] ≥ 1− Pr[∀v ∈ c′b Fv]

≥ 1− Pr[∀v ∈ Sb Fv] ≥ 1− (Pr[Fv])knr2
= 1− (1− e−λπs2

)knr2

= 1− (1− e− ln(g(n)r2n))knr2

= 1− (1− 1/g(n)r2n)knr2
≥ c′ ∈ Θ(1)

since g(n) ∈ O(1). Since Pr[A] → 1 for large n, this implies that the probability
of event aliveb is at least a positive constant c. Let Aleft be the set of all blocks
b in Bleft for which the event aliveb occurs. Since the probability of the event
aliveb is a constant, the expected size of the set Aleft is a constant fraction of
|Bleft|. The number of blocks in Bleft is |Bleft| = 1/50r2. For r ∈ o(1), |Bleft|
grows to infinity as n →∞ and thus, under the preceding assumptions, we use
Chernoff bounds to show that |Aleft| ≥ (0.9)c/(50r2) w.h.p. Assume this bound
on |Aleft| and let k/r2 = (0.9)c/(50r2) for the remainder of the proof.

Fix a block b and consider the event surroundb. Using Chernoff Bounds
adapted to Poisson distributions, we can show that, w.h.p., at most αnr2 nodes
are in pb; let E be the event that this bound holds. Assume E. Then, we have,
by Fact 1,

Pr[surroundb] = Pr[
⋂

v∈pb

Fv] ≥
∏
v∈pb

Pr[Fv] ≥ (1− e−λπs2
)αnr2

and since Pr[E] → 1 for large n, we have Pr[surroundb] ≥ (0.9)(1−e−λπs2
)αnr2

,
for large n. Then, the probability that there exists a block b ∈ Bleft for which
event isolationb occurs is

Pr[∃b ∈ Bleft isolationb] = Pr[∃b ∈ Aleft surroundb]
= 1− Pr[∀b ∈ Aleft¬surroundb]

= 1− (Pr[¬surroundb])|Aleft|

≥ 1−

(
1− (0.9)

(
1− ln(1/(r2f(n)))

αr2n

)αr2n
)k/r2

= 1− (1− (0.9)r2f(n))k/r2
→ 1 as n →∞.

The same calculations apply to the second half of the unit square, thus showing
the occurrence of at least 2 events isolationb w.h.p. This concludes the argument
in the first case.
Case 2: λ = ln(g(n)r2n)/(πs2), with g(n) ∈ Ω(1)
Consider again the event surroundb. For λ = ln(g(n)r2n)/(πs2), with g(n) ∈



Ω(1), the same argument as in case 1 implies

Pr[surroundb] ≥ (0.9)(1− e−λπs2
)αnr2

= (0.9)(1− 1/(g(n)r2n))αnr2

≥ c′ ∈ Θ(1).

Let Sleft be the set of all blocks in Bleft for which the event surroundb occurs.
Since the probability of surroundb is constant, the expected size of the set Sleft

is a constant fraction of |Bleft|. The number of blocks in Bleft is |Bleft| = 1/50r2.
For r ∈ o(1), |Bleft| grows to infinity as n → ∞ and thus, under the preceding
assumptions, we use Chernoff bounds to show that |Sleft| ≥ (0.9)c′/(50r2) w.h.p.
Assume this bound on |Sleft| and let k/r2 = (0.9)c′/(50r2) for the remainder of
the proof.

From Remark 1, if the spot arrival rate is λ = ln(nh(n))/(πs2), h(n) ∈
Ω(1), we find a positive constant probability that the graph U(n, r, λ, s) is dead.
Hence, consider the subset of spot arrival rates of the form λ = ln(nh(n))/(πs2),
h(n) ∈ o(1). Then, for these values of λ, the probability that there exists a block
b ∈ Bleft for which event isolationb occurs is

Pr[∃b ∈ Bleft isolationb] = Pr[∃b ∈ Sleft aliveb] = 1− Pr[∀b ∈ Sleft¬aliveb]

= 1− (Pr[¬aliveb])|Sleft|

≥ 1− (1− (1− (1− e−λπs2
)k′nr2

))k/r2

= 1− ((1− e− ln(nh(n)))k′nr2
)k/r2

= 1− (1− 1/(nh(n)))k′kn → 1 as n →∞.

The same calculations apply to the second half of the unit square, thus showing
the occurrence of at least 2 events isolationb w.h.p. This concludes the argument
in the second case.

To conclude the proof, fix the function f(n) = 1/r. Since r ∈ o(1), we
have f(n) ∈ ω(1). Hence the corresponding λ̃ = ln

(
αr2n

ln(1/(r2f(n)))

)
/(πs2) =

ln
(

αr2n
ln(1/r)

)
/(πs2) is in Λ. We show that λ̃ < β ln

(
αr2n

ln(1/r2)

)
/(πs2), for any

constant β > 1. Indeed,

λ̃ = ln
(

αr2n

ln(1/r)

)
/(πs2) = ln

(
αr2n

0.5 ln(1/r2)

)
/(πs2)

=
(

ln
(

αr2n

ln(1/r2)

)
+ ln 2

)
/(πs2) ≤ β ln

(
αr2n

ln(1/r2)

)
/(πs2).

It follows that all λ = β ln
(

αr2n
ln(1/r2)

)
/(πs2), for any constant β > 1, are also in

Λ which proves the lemma. Note that, under the assumption s ∈ o(1/
√

n)), we
have min{n, 1/s2} = n.

The proof of Lemma 3 differs from the proof of Lemma 2 only in the use of
a partition to obtain the probability of the event surroundb.



Lemma 3. Fix any constant β > 1. For s ∈ o(r) and r ∈ o(1), the graph
U(n, r, λ, s) is disconnected w.h.p. when λ = 4β ln

(
8r2/s2

ln(1/r2)

)
/πs2.

The preceding lemmas concern only the case when r ∈ o(1). As stated in
Theorem 4, for r ∈ Ω(1), thresholds on spot arrival rate separate the case of
connected U(n, r, λ, s) from the case when it is dead. Hence, we do not provide
any non-connectivity result for r ∈ Ω(1) and defer this case to the next section.

3.2 Connectivity Results

In this section, we show conditions on spot arrival rate guaranteeing connectivity
of the graph U(n, r, λ, s) w.h.p. We show connectivity of U(n, r, λ, s) by proving
the existence of a fault-free node in each square of a sufficiently fine partition
of the unit square w.h.p. This implies the existence of a fault-free path between
any pair of nodes of the graph U(n, r, λ, s) and hence this graph is connected.

Partition the unit square into a mesh of r/
√

5× r/
√

5 squares, called blocks.
Let B be the set of all blocks. The distance between any two points in blocks
which are adjacent by an edge (edge-adjacent) is at most r. Hence, functional
nodes in adjacent blocks can communicate with each other.

Partition each block b ∈ B into a mesh of 3s × 3s squares called tiles. Let
Tb be the set of all these r2/(45s2) tiles for the block b. For a fixed tile t ∈ Tb,
let freet be the event that it contains no spot. Under the event freet, the
central s × s square ct ⊂ t is at distance greater than s from all spots. Let at

be the event that ct contains at least one node. Since node arrivals and spot
arrivals are independent, the events freet and at are independent. Moreover, for
all t 6= s ∈ Tb, the events at, as (freet, frees) are independent since they are
respectively the result of arrivals inside non-overlapping tiles t and s.

Consider the event aliveb that a fixed block b contains at least one functional
node. The event aliveb is implied by the existence of a tile t ∈ Tb where both
the events freet and at occur. Let alive′b = {∃t ∈ Tb s.t. freet ∩ at} be this
sub-event of aliveb. Hence, the probability of event aliveb that a fixed block b
contains at least one functional node is

Pr[aliveb] ≥ Pr[alive′b] = Pr[∃t ∈ Tb freet ∩ at] = 1− Pr[∀t ∈ Tb ¬freet ∪ ¬at]
= 1− (Pr[¬freet ∪ ¬at])|Tb| = 1− (1− Pr[freet ∩ at])|Tb|

= 1− (1− Pr[freet] Pr[at])|Tb| = 1− (1− e−λ9s2
(1− e−ns2

))r2/(45s2).

Let connect be the event that each block b in B contains at least one functional
node. We have Pr[connect] ≥ Pr[∀b ∈ B alive′b]. The next two lemmas are easily
derived from the above estimates.

Lemma 4. For s ∈ o(1/
√

n) and any constant α < 1, the graph U(n, r, λ, s) is
connected, w.h.p., when the spot arrival rate is λ = α ln

(
nr2

45 ln(1/r2)

)
/9s2.

Lemma 5. For s ∈ Ω(1/
√

n) ∩ o(r) and any constant α < 1, U(n, r, λ, s) is
connected, w.h.p., when the spot arrival rate is λ = α ln

(
r2/s2

45 ln(1/r2)

)
/9s2.



For large values of r, we show connectivity for the same range of λ for which
we have shown the graph U(n, r, λ, s) to be alive w.h.p.

Lemma 6. For r ∈ Ω(1) and s ∈ o(1), the graph U(n, r, λ, s) is connected,
w.h.p., when the spot arrival rate is λ = α ln(min{n,1/s2})

πs2 , for any constant α < 1.

For r ∈ Ω(1) and s ∈ Ω(1) ∩ o(r), we observe that if r ∈ Θ(1), then the
condition s ∈ o(r) is impossible. Hence, necessarily, r ∈ ω(1). Since the unit
square has a diameter of

√
2, if it is alive, then it is also connected for r ∈ ω(1)

and sufficiently large n. Hence Lemma 7 follows from Theorem 2.

Lemma 7. For r ∈ ω(1) and s ∈ Ω(1)∩o(r), the graph U(n, r, λ, s) is connected,
w.h.p., when the spot arrival rate is λ ∈ o(1/s2).

4 Broadcasting Algorithm

We propose a deterministic algorithm which completes broadcast with prob-
ability 1 − ε in time O(D + log 1/ε), in the fault-free graph U(n, r, λ, s) for
s ∈ o(1/

√
n). The algorithm consists of two parts: a preprocessing part called

spokesman election, and a message transmission part. In the spokesman election
part a unique node, called the spokesman, is selected in each square of a partition
defined below. Only the spokesman of a square relays messages in the following
part.

Partition the unit square into a mesh of r/
√

5 × r/
√

5 squares called boxes
and let S be the set of these boxes. Group the boxes in 5 × 5 matrices, called
blocks and let B be the set of all these blocks. For all blocks, label its boxes 1
through 25, row by row. Further partition each box into a mesh of 1/

√
n×1/

√
n

squares, called tiles. Let Ti be the set of all tiles in a box i. For all boxes, label
the tiles 1 through t = r2n/5, row by row.
Algorithm A∗

Spokesman Election Part
Nodes know their location and hence, they can compute the labels i, j of their
box, and tile, respectively. Nodes label themselves (i, j) accordingly.

In parallel for all blocks, the algorithm executes rounds i = 1, 2, . . . , 25. In a
round i, the algorithm sequentially goes through steps j = 1, 2, . . . , t. In a round
i, at step j, all nodes with label (i, j) (in box i and tile j) transmit their label
and the list of labels heard from adjacent boxes. At any given step j′, when only
one node transmits its label (i, j′), the message is heard by all other nodes in
the box i and all edge-adjacent boxes; The first node whose message is heard
is chosen as the spokesman for box i by all other nodes in the box i (the node
itself does not know it yet) and in edge-adjacent boxes. In subsequent steps in
round i, nodes in the box i containing this node (i, j′) are silent. The node (i, j′)
will learn that it is the spokesman for the box i when, in an edge adjacent box,
a unique node transmits its own label and the list of labels heard from adjacent
boxes. Since all boxes, except box 25, are edge-adjacent to a box with a larger
label, by the end of round 25, if a spokesman is chosen for each box, then all



spokesmen, with the exception of the spokesman in box 25 are confirmed, i.e.,
they know that they are spokesmen. Hence, after round 25, a single transmission
from the spokesman in box 24 is sufficient to confirm the spokesman of box 25.
This transmission is done in parallel by all spokesmen in boxes labeled 24, right
after the end of round 25.

Hence, the spokesman election part chooses and confirms one spokesman in
every box if there is, in every box, a tile which contains exactly one functional
node.
Message Transmission Part
In the first step of this part, the source transmits its message. Then, in parallel
for all blocks, the algorithm is executed in identical phases ρ = 1, 2, . . .. In phase
ρ, steps j = 1, 2, . . . , 25 are executed sequentially. In a step j, a spokesman of
box j which has received the source message but has not relayed it yet, transmits
the message. This completes the description of algorithm A∗. See Figure 1.

(q, 4)

(b) In each box with the same label,
spokesmen transmit the message in
parallel, for all blocks

(a) the node (q, 4) (in tile 4 of box q)
is elected spokesman in box q

box

block(q, 1) (q, 2) (q, 3)

Fig. 1. Algorithm A∗: (a) Spokesman Election part. (b) Message Transmission part.

Let ε be the tolerated error probability for the algorithm, i.e., we wish to
broadcast with probability at least 1 − ε. Let A be the algorithm A∗ modified
so that the spokesman election part uses only the first ln(2D2/ε)

ln(1/(1−(0.9)e−(c+1)))
tiles

of each box.

Theorem 5. Let c be a positive constant and d = ln(1/(1− (0.9)e−(c+1))). For
s ∈ o(1/

√
n), r2 ≥ 5 ln(5D2/ε)

dn , and λ ≤ c/(πs2), the algorithm A broadcasts a
message in time O(D + log 1/ε), with probability at least 1− ε.

Proof. Consider a tile t. There exists a subsquare a of t of area (1/
√

n − s)2 =
1/n − 2s/

√
n + s2 whose nodes are not affected by spots in other tiles; the

remaining subset a′ of the tile has area 2s/
√

n− s2. Let goodt be the event that
there exists exactly one node in a, no node in a′, and that the node in a is not



within distance s of a spot. We have

Pr[goodt] = e−(1/n−2s/
√

n+s2)n((1/n− 2s/
√

n + s2)n) · e−(2s/
√

n−s2)n · e−λπs2

≥ (1− 2s
√

n + s2n)e−1+(2s
√

n−s2n)−(2s
√

n−s2n)− c
πs2

πs2

≥ 0.9e−(c+1)

for large n. Let spokesmanq be the event that the spokesman election part is
successful in a fixed box q. Since r2 ≥ 5 ln(5D2/ε)

dn , there are at least nr2/5 =
ln(5D2/ε)

d tiles in each box. Hence, the algorithm A can execute its spokesman
election part. Then, we have

Pr[spokesmanq] = 1− (1− Pr[goodt])ln(5D2/ε)/d

≥ 1− (1− 0.9e−(c+1))ln(5D2/ε)/d

= 1−
(

5D2

ε

)ln(1−0.9e−(c+1))/d

= 1−
(

5D2

ε

)− ln(1/(1−0.9e−(c+1)))

ln(1/(1−0.9e−(c+1)))

= 1− ε

5D2
.

There are at most 5D2 boxes.Hence, the event spokesmen that each box contains
one spokesman occurs with probability

Pr[spokesmen] ≥
(
1− ε

5D2

)5D2

≥ 1− ε.

We now show that, assuming the event spokesmen, all functional nodes are
informed and we estimate the total time of the algorithm. Consider the Message
Transmission part. For each phase, 25 time steps are elapsed. We say that a box
with label j is active if the algorithm step is j, i.e., when its spokesman may
transmit. All boxes with the same label are located at distance at least 4r/

√
5

from each other. Only spokesmen in active boxes (with the same label j, at a
step j) transmit. Hence all nodes in boxes adjacent to active boxes will receive
the message correctly at every time step when a spokesman transmits in this
active box (due to large distances between boxes with the same label, there are
no collisions in adjacent boxes). It follows that if a message is received by any
box in a block i at time t, then there exists a positive constant δ such that at
time t+δ all nodes in the block i will know the message. Moreover, at time t+δ,
the nodes in boxes outside the block i, but adjacent to the boxes in block i also
have received the message. Consider two nodes in different blocks i and j such
that there is a sequence of edge-adjacent blocks of length k − 1 between them.
If all nodes in block i have received the message by time t, it follows from the
above that, at the time t + kδ, the message will also be received by all nodes
in block j. Since the unit square is partitioned in rows and columns of

√
5/(5r)

blocks, there is a sequence of, at most, 2
√

5/(5r) blocks between any two blocks
i and j, so that consecutive blocks are edge-adjacent. Hence, the total broadcast
time is at most 2δ

√
5/(5r). Since the diameter of the graph is at least 1/r, the



message transmission part is completed in time O(D). The spokesman election
part of the algorithm terminates in O(log(5D2/ε)) = O(1+ log D+log 1/ε) time
steps. Hence, the total execution time of the algorithm is O(D + log 1/ε), and
the algorithm is correct with probability at least 1− ε.
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References

1. D. Bienstock. Broadcasting with random faults. Discr. Appl. Math, 20:1–7, 1988.
2. B. S. Chlebus, K. Diks, and A. Pelc. Sparse networks supporting efficient reliable

broadcasting. Nordic Journal of Computing, 1:332–345, 1994.
3. B. S. Chlebus, K. Diks, and A. Pelc. Reliable broadcasting in hypercubes with

random link and node failures. Comb., Prob. and Computing, 5:337–350, 1996.
4. A. E.F. Clementi, A. Monti, and R. Silvestri. Round robin is optimal for fault-

tolerant broadcasting on wireless networks. J. Par. Distrib. Comp., 64:89–96, 2004.
5. A. Dessmark and A. Pelc. Broadcasting in geometric radio networks. Journal of

Discrete Algorithms, 5:187–201, 2007.
6. D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-resilient, energy-

efficient multipath routing in wireless sensor networks. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(4):11–25, 2001.

7. D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad Hoc Wireless
Networks, chapter 5, pages 153–181. Kluwer Academic Publishers, 1996.

8. E. Kranakis, D. Krizanc, and A. Pelc. Fault-tolerant broadcasting in radio net-
works. Journal of Algorithms, 39:47–67, 2001.

9. E. Kranakis, D. Krizanc, and J. Urrutia. Coverage and connectivity in networks
with directional sensors. In Proc. Euro-Par 2004, pages 917–924, 2004.

10. E. Kranakis, M. Paquette, and A. Pelc. Communication in networks with random
dependent faults. In Proc. 32nd Int. Symp. MFCS, pages 418–429, 2007.

11. M. Paquette and A. Pelc. Fast broadcasting with byzantine faults. International
Journal of Foundations of Computer Science, 17(6):1423–1439, 2006.

12. A. Pelc. Fault-tolerant broadcasting and gossiping in communication networks.
Networks, 28(6):143–156, 1996.

13. M. D. Penrose. On k-connectivity for a geometric random graph. Random Struct.
Alg., 15:145–164, 1999.

14. S. Shakkottai, R. Srikant, and N. Shroff. Unreliable sensor grids: Coverage, connec-
tivity and diameter. In INFOCOM 2003. Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications Societies, volume 2, pages 1073–1083.

15. M. Thottan and C. Ji. Using network fault predictions to enable IP traffic man-
agement. J. Network Syst. Manage, 9(3):327–346, 2001.

16. M. Yajnik, J. Kurose, and D. Towsley. Packet loss correlation in the MBone
multicast network. In Proceedings of IEEE Global Internet, pages 94–99, 1996.


