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Inapproximability of the Perimeter Defense Problem
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Abstract

We model the problem of detecting intruders using a
set of infrared beams by the perimeter defense problem:
given a polygon P , find a minimum set of edges S of
the polygon such that any straight line segment cross-
ing the polygon intersects at least one of the edges in S.
We observe that this problem is equivalent to a new
hiding problem, the Max-Hidden-Edge-Set problem.
We prove the APX-hardness of the Max-Hidden-Edge-
Set problem for polygons without holes and rectilinear
polygons without holes, by providing gap-preserving re-
ductions from the Max-5-Occurrence-2-Sat problem.

1 Introduction

Given a region of interest to be defended, we are in-
terested in detecting the presence of an intruder inside
the region who originated from outside the region. We
model the region of interest by a polygon, and the tra-
jectory of the intruder by a curve intersecting the in-
terior of the polygon. For arbitrary curves, or for line
segments that can terminate inside the polygon, there is
no choice but to defend the entire perimeter of the poly-
gon. Therefore, we consider the case when the path of
the intruder is a straight line segment that crosses the
polygon (intersects the perimeter of the polygon in at
least two distinct edges) and require the intruder to be
detected before exiting the polygon.

Infrared beam sensors are an increasingly popular way
of achieving intruder detection. Such a device consists
of a matched transmitter-receiver pair; the transmitter
emits an infrared beam to a receiver module. Usually
the beam distance can be adjusted. An intruder going
across the beam would interrupt the circuit and be de-
tected. In several applications, it may make sense to
place the beams only on the perimeter of the polygon,
as allowing beams to intersect either the interior or the
exterior of the polygon may lead to false alarms. We are
interested in minimizing the number of infrared beams
to be placed on the perimeter that are required to ensure
that any intruder L whose path crosses the polygon will
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be detected. This implies that the transmitter and re-
ceiver should be placed on adjacent vertices of the poly-
gon, so that the beam is aligned with the edge between
them. Our intruder detection problem can therefore be
modeled as follows:

Definition 1 Minimum-Edge-Perimeter-Defense
(MEPD): Given a polygon P , find a minimum-sized
subset S of edges of P such that any straight line
segment L crossing P intersects at least one edge in S.

It is not difficult to see that this problem can be re-
duced to a hiding problem, i.e. finding a maximum-sized
subset of mutually invisible edges of the polygon 1. In-
deed S is a solution to the perimeter defense problem
if and only if all elements in S are mutually invisible.
In what follows, we focus on the Max-Hidden-Edge-
Set problem:

Definition 2 Max-Hidden-Edge-Set (MHES): Given
a polygon P , find a maximum-sized subset of mutually
invisible edges of the polygon.

Guarding and hiding problems have been studied ex-
tensively in the literature. The Maximum Hidden Set
(MHS) problem introduced in [2] is to find a maximum-
sized set of mutually invisible points in a polygon. In
the Maximum Hidden Vertex Set (MHV S), the points
are constrained to be vertices of the polygon. Hiding
and guarding problems are combined in the Minimum
Hidden Guard Set (MHGS) and the Minimum Hidden
Vertex Guard Set (MHV GS) and Hidden Vertex Guard
Admissibility problems. All these problems were shown
to be NP-complete and lower and upper bounds for their
approximation ratios were given in [2]. The restriction
of the problem instance to a terrain was proved to be
NP-complete in [4].

In [4, 7] it was shown that for polygons with holes
or terrains, the MHS and MHV S problems cannot be
approximated by a polynomial time algorithm with an
approximation ratio of nε for some ε > 0. For polygons
without holes, these problems were shown to be APX-
hard. Recently, Eidenbenz [8] presented an inapprox-
imability result for the MHGS problem. He proved

1Two edges e1 and e2 are invisible from each other iff for every
p1 ∈ e1 and p2 ∈ e2 such that the line connecting p1 and p2

lies entirely within the polygon, at least one of p1 and p2 is an
endpoint of its edge.
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that for input polygons with or without holes or ter-
rains, the MHGS problem is also APX-hard. Notice
that the MHV GS problem is a much harder problem.
It is NP-hard to even determine whether a feasible so-
lution exists [2].

To our knowledge, the complexity of the MHES prob-
lem has not been studied. Since a set of mutually invis-
ible edges in a polygon is an independent set of vertices
in the visibility graph of the edges of the polygon, the
MHES problem can be reduced to the Maximum In-
dependent Set problem, and therefore is approximable
with an O(n(log log n)2/ log3 n) approximation ratio [3].
Not every graph is a visibility graph of a polygon (for
example, K2,3), and therefore, the reduction does not
go through in the other direction.

Our Results

In this paper, we prove that the MHES problem is APX-
hard for polygons without holes. The proof is using a re-
duction from Max-5-Occurrence-2-Sat problem, which
was shown to be APX-hard in [5, 6]. In fact, we show
that the MHES problem is APX-hard even when re-
stricted to rectilinear polygons without holes. It fol-
lows that the MEPD problem is also APX-hard even
for rectilinear polygons without holes. Due to space
limitations, we omit many of the proofs. The interested
reader can find all details in [1].

2 APX-hardness of MHES for an Arbitrary Polygon

In this section, we show that the Max-5-Occurrence-
2-Sat problem is transformable in polynomial time
to MHES by an approximation-preserving (gap-
preserving) reduction [9].

Definition 3 Let Φ be a boolean formula given in con-
junctive normal form, with at most two literals in each
clause and each variable appearing in at most 5 five
clauses. The Max-5-Occurrence-2-Sat problem consists
of finding a truth assignment for the variables of Φ such
that the number of satisfied clauses is maximum.

The goal is to accept an instance of Max-5-
Occurrence-2-Sat as input and in polynomial time to
construct a connected simple polygonal region P such
that the difference in the number of hidden edges ob-
tained by the optimal and approximation algorithms
preserves the gap between the optimal and approxi-
mate results (the number of satisfied clauses) in Max-
5-Occurrence-2-Sat . The construction is similar to the
one proposed in [7]. As shown in Figure 1, the main
body is a convex polygon without holes inside; we refer
to it as the center polygon. For each clause, a clause
pattern is built on the top right of the center polygon,
and for each variable, a variable pattern is built on the

bottom left of the center polygon. Variable patterns
are separated by the cb-edges and form a convex curve
along the center polygon’s bottom. A basic unit in both
types of patterns is a dent: a set of continuous line seg-
ments that form a convex shape. It is clear that at most
one edge from any dent can be included in the MHES .
Now we show how to construct the clause and variable
patterns.

Figure 1: Overview of Construction (Arbitrary Poly-
gon)

Figure 2: Variable Pattern (Arbitrary Polygon)

Clause Patterns: The clause pattern is shown in Fig-
ure 3. Each pattern consists of 15 adjacent edges form-
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Figure 3: Relationship between Clause and Variable
Patterns (Arbitrary Polygon)

ing three dents. Each dent has exactly five edges. With-
out loss of generality, we assume that all clauses contain
two literals. Then for each clause we use the left and
right dents to represent the two literals and the middle
dent to represent the satisfiability of the clause.
Variable Patterns: The variable pattern is shown in Fig-
ure 2. Each variable has a TRUE-leg and a FALSE-leg,
each consisting of three components: L-dents, M -dents
and E-dents. Observe that no two dents in the same
component can see each other. Five L-dents are ar-
ranged along a line, separated by g-edges, and each L-
dent (Li) consists of one t-edge (ti), one b-edge (bi) and
one l-edge (li). Each occurrence of a variable matches a
pair of L-dents, one from the variable’s TRUE-leg and
the other from the variable’s FALSE-leg. Since each
variable appears in at most 5 clauses, we only need five
L-dents for each leg. Opposite to the L-dents are four
adjacent M -dents and six adjacent E-dents. Each M -
dent consists of three edges. We denote the middle edge
for a dent Mi by mi. Finally, six E-dents form a sim-
ple zig-zag line under the M -dents. We pick up every
alternate edge from this collection of dents and denote
the edge chosen from Ei by ei. By choosing the length
and direction of each edge appropriately, each leg of the
variable pattern can be constructed with the following
properties.

P1 For 1 ≤ i ≤ 5, ti, gi, a and d can each see all the
edges in component M and E, and edge gi can see
d and a.

P2 For 1 ≤ i ≤ 5, bi and li see all the edges in com-
ponent M and edge a, but cannot see any edge in
component E or edge d.

P3 For 1 ≤ i ≤ 4, mi can see all the edges in compo-
nent L and g, but no edge in component E.

P4 For 1 ≤ i ≤ 5, if li does not match any occurrence
of a variable, li sees only the M -dent and edge a.

P5 Components M and E are angled so that they can-
not be seen by any clause pattern.

The last step of the construction is to establish the
relationship between the clause and variable patterns.
As shown in Figure 3, we connect them by cones. Each
cone starts at an l-edge and ends at a clause pattern
and the clause pattern’s edges inside the cone are visible
to the l-edge. Consequently, if we add an l-edge (cone’s
bottom) to the hidden edge set, we cannot add any edge
at the top of the cone. Further, the cones are overlapped
in specific ways, as shown in Figure 3.

Next we show the relationship between a satisfying
assignment for a Max-5-Occurrence-2-Sat instance and
a hidden edge set for the corresponding polygon. Let I
be an instance of the Max-5-Occurrence-2-Sat problem
with n variables and m clauses and I ′ be the instance of
the corresponding MHES problem. We assume without
loss of generality that every variable has more than one
occurrence in I (if not, then the unique clause contain-
ing the variable can definitely be satisfied).

Lemma 1 If I has an assignment S that satisfies at
least (1− ε)m clauses, then I ′ has a solution S′ with at
least 21n + 2m + (1− ε)m edges.

Proof. For a variable with a TRUE assignment, we add
all the i-edges and e-edges from its TRUE-leg and all
the m-edges and e-edges from its FALSE-leg (and vice-
versa for a variable with a FALSE assignment). So no
matter what the truth value is, we can add 5 l-edges,
4 m-edges and 12 e-edges. Since there are n variable
patterns, we add 21n edges to S′.

Next we add edges from the clause patterns. We
show that we can always add 3 edges for each satisfied
clause and 2 edges for each unsatisfied clause. Consider
a clause with two literals (xi, xj), see Figure 3 (other
cases,(xi, xj), (xi, xj) and (xi, xj), are shown in [1] ).
We examine all the possible assignments of xi and xj in
S.

Suppose xi and xj are both TRUE. Then, all l-edges
in the TRUE-legs of variable patterns corresponding
to xi and xj have already been added to S′. There-
fore we cannot add any of the edges 1-4 or 12-15 from
the clause pattern to S′, because all these edges are
visible to the l-edges mentioned above. On the other
hand, no l-edge of both variables’ FALSE-legs belongs
to S′, thus any of edges 5-11 can be added to S′. Since
for each dent at most one edge belongs to the hidden
set, we can add edges 5, 11, and any of the edges 6-
10 to S′. A similar analysis can be used for all other
truth value combinations for xi and xj to show each
unsatisfied clause contributes 2 edges and each satisfied
clause contributes 3 edges to S′. Since S satisfies at
least (1− ε)m clauses, we conclude that S’ has at least
21n+2(m−(1−ε)m)+3(1−ε)m = 21n+2m+(1−ε)m
edges. �

The next two lemmas give us the relationship in the
other direction (see proofs in [1] ).
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Lemma 2 Given a solution S′ to the MHES instance
I ′, without decreasing the number of the hidden edges,
we can transform it such that the contribution from each
variable pattern leg to S′ is all its e-edges and either
some subset of its l- or all of its m-edges.

Lemma 3 If the MHES instance I ′ has a solution S′

with at least 21n + 3m − (ε + γ)m edges, then the cor-
responding Max-5-Occurrence-2-Sat instance I has an
assignment S which satisfies at least (1−ε−γ)m clauses.

Now we show the APX-hardness of the MHES prob-
lem. Let I be an instance of the Max-5-Occurrence-
2-Sat problem with n variables and m clauses and I ′

be the instance of the corresponding MHES problem.
We denote the optimal solutions for these problems by
OPT (I) and OPT (I ′) respectively. From Lemma 1 and
Lemma 3 we have:

1. |OPT (I)| ≥ (1 − ε)m → |OPT (I ′)| ≥ 21n + 2m +
(1− ε)m

2. |OPT (I)| < (1 − ε − γ)m → |OPT (I ′)| < 21n +
3m− (ε + γ)m

It is known that Max-5-Occurrence-2-Sat is APX-
hard. Therefore, for an instance I such that either
|OPT (I)| ≥ (1 − ε)m or |OPT (I)| < (1 − ε − γ)m for
some constants ε, γ > 0, it is NP-hard to decide which
case is true. We claim that unless P=NP, no polynomial
time approximation algorithm for MHES can achieve an
approximation ratio better than 21n+2m+(1−ε)m

21n+3m−(ε+γ)m . Sup-
pose to the contrary, that a polynomial time approxi-
mation algorithm denoted by APO has a performance
ratio < 21n+2m+(1−ε)m

21n+3m−(ε+γ)m . Given an instance of Max-5-
Occurrence-2-Sat such that either |OPT (I)| ≥ (1− ε)m
or |OPT (I)| < (1− ε− γ)m for some constants ε, γ > 0,
we apply our reduction to obtain an instance I ′ of
MHES . If |APO(I ′)| ≥ 21n + 3m − (ε + γ)m then
|OPT (I ′)| ≥ 21n+3m− (ε+γ)m, which further means
|OPT (I)| ≥ (1 − ε − γ)m (because of (2) above). Be-
cause I can belong only to one of the two categories, we
know that |OPT (I)| ≥ (1−ε)m. If instead |APO(I ′)| <
21n + 3m− (ε + γ)m, then |OPT (I′)|

|APO(I′)| < 21n+2m+(1−ε)m
21n+3m−(ε+γ)m

implies |OPT (I ′)| < 21n+2m+(1−ε)m
21n+3m−(ε+γ)m |APO(I ′)| < 21n +

2m + (1 − ε)m. Therefore |OPT (I)| < (1 − ε)m which
implies |OPT (I)| < (1− ε− γ)m. Consequently, it will
be possible to decide in polynomial time which category
the instance I belongs to, which contradicts the APX-
hardness of the Max-5-Occurrence-2-Sat problem. We
now calculate the ratio. Using the fact that n < 2m, we
have

21n + 2m + (1− ε)m
21n + 3m− (ε + γ)m

=
1

1− γm
21n+3m−εm

≥ 1
1− γm

42m+3m−εm

≥ 1 + ε′
(1)

Theorem 4 There exists a constant ε > 0 such that
no polynomial time approximation algorithm for the
MHES problem on polygons without holes can have an
approximation ratio of 1 + ε, unless P = NP .

The construction above can be modified to use a rec-
tilinear polygon, which gives the following result (see
proof in [1]).

Theorem 5 MHES is APX-hard even when restricted
to a rectilinear polygon without holes.

Corollary 6 MEPD is APX-hard, even for rectilinear
polygons without holes.

The NP-hardness of MEPD problem follows immedi-
ately from Corollary 6.

3 Discussion

We proved the APX-hardness of the MHES problem for
rectilinear polygons, which implies the APX-hardness
of the MEPD problem. In light of the lower bound of
n1−O(1/(log n)γ) (where γ is a constant) for the approx-
imation ratio for the Maximum Independent Set prob-
lem, it would be interesting to know if a higher lower
bound also applies for our problems. The complexity
of MHES for monotone rectilinear problems remains an
interesting open problem.
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