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ABSTRACT
Distributed on a unit circle are k exits. Two autonomous
mobile robots are placed on the circle. Each robot has a
maximum speed of 1 and the robots can communicate wire-
lessly. The robots have a map of the domain, including exits,
but do not have knowledge of their own initial locations on
the domain, rather they only know their relative distance.
The goal of the evacuation problem is to give an algorithm
for the robots which minimizes the time required for both
robots to reach an exit, in the worst case.

We consider two variations of the problem depending on
whether the two robots have control over their initial dis-
tance. When the initial distance of the robots is part of the
input (i.e. no control), we show that simple algorithms exist
which achieve optimal worst case evacuation times for the
cases where: the robots begin colocated with an arbitrary
distribution of the exits; and when the exits are either colo-
cated or evenly spaced, with arbitrary starting positions of
the robots. We also give upper and lower bounds on the
problem with arbitrary exit distribution and starting posi-
tions of the robots. For the problem where robots can choose
their initial distance (with knowledge of, but not control
over the distribution of exits), we propose a natural fam-
ily of algorithms parameterized by the maximum distance
between any two exits.

Categories and Subject Descriptors
F.2.2 [Computing methodologies]: Analysis of Algori-
thms and Problem Complexity
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1. INTRODUCTION
Search algorithms have a long and extensive history of

study in mathematical and theoretical computer science lit-
erature. Examples of variants of search problems and models
include: probabilistic search [23], game theoretic applica-
tions [4], cops and robbers [10], classical pursuit and evasion
[21], search problems and group testing [1], etc.

The search problem we study in this paper involves the
evacuation of robots from a domain. Whereas the goal of
traditional search problems is to minimize the time required
for searchers to find one or more targets hidden in a domain,
the goal of the problem studied in this paper is to mini-
mize the time required for every searcher to reach a target
(referred to as an exit). We can think of many instances
where this problem is natural, beginning with the problem
of evacuating people from a smoke-filled room. Other poten-
tial problem instances include: cows trying to escape from a
pasture, robots needing to find a charging station, and boats
trying to find safe harbour during a storm. In all these cases,
it is not sufficient for the group of searchers to simply find a
target; they must all reach a target in order to achieve the
goal of the problem.

While searching for exits is a core part of the problem, the
cost of a solution is measured not by the time required for an
exit to be found, but by the time required for both robots to
reach an exit. Therefore, we want to take into consideration
both the time it takes to find an exit, and the additional time
required for evacuation after an exit has been found. This
means we may wish to sacrifice some efficiency in terms of
finding an exit so that the robots are always relatively close
to some exit. Because of the interplay between these two
goals, this paper yields interesting results even though the
domain is rather simple. We believe these results provide
a solid foundation for the investigation of this problem on
more complex domains.
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Figure 1: Example of an evacuation problem with 4 exits.
Robot is represented by •, an exit by 2, and a starting
position by ×.

1.1 Preliminaries
Consider a circle of unit length, i.e. of radius 1/2π. Dis-

tributed on the circle are k exits. Two autonomous mobile
robots are placed on the circle and can move in both direc-
tions along the circle. The goal of the evacuation problem
is to give an algorithm for the robots which minimizes the
time required for both robots to reach any exit, in the worst
case. Note that the robots do not need to reach the same
exit.

We assume that the robots move with unit speed; know
at all times the distances (length of the circular arcs) be-
tween each other in each direction (and are therefore able to
agree on a sense of direction); and are able to communicate
wirelessly. Therefore, when one robot discovers an exit, it
is able to instantaneously alert the other robot to the lo-
cation of the exit. We assume that the robots have a map
of the environment – knowledge of the length of the circle
as well as the relative distance between any two consecutive
exits which we assume are indistinguishable. Similarly, we
assume that robots do not know the exact exit positions on
the circle.

We will use the following notation throughout this paper
(see Figure 1). The shortest arc between the starting posi-
tions of the two robots will be denoted by L. For a placement
of k ≥ 2 exits, we let D denote the length of the longest arc
defined by any two consecutive exits. In other words, when
k = 2, D is not the distance of the two exits, rather its
complement with respect to the disc perimeter (which is 1).

Formally, the problems we study are:

Problem 1. (L given) Two robots are placed at a given
arc distance L on a circle of perimeter length 1 containing k
exits, where the maximum arc length between any two con-
secutive exits is D. Find an algorithm which takes D and L
as input and minimizes the worst case time for the all robots
to evacuate the circle.

Problem 2. (L chosen) Two robots are placed at a cho-
sen arc distance L on a circle of perimeter length 1 contain-
ing k exits, where the maximum arc length between any two
consecutive exits is D. Find an algorithm which takes D as
input, but may choose L, which minimizes the worst case
time for the all robots to evacuate the circle.

1.2 Related Work

Table 1: Results for Problem 1, where D and L are inputs
to the problem (i.e. fixed). All results are optimal (i.e.
optimal cost, Copt = ...) except for where bounds are given.
The upper and lower bounds are parametrized, and should
be interpreted as bounding only the specific instance of the
problem for a given input of D and L. Note that when
D = 1, all exits are colocated.
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Search problems involving mobile agents are well studied
in the literature. In the context of searching in a geometric
domain, the agents are commonly referred to as robots and
are often tasked with coordinating their efforts to perform a
search.

When the map of their environment is unknown to the
robots at the beginning of the search, a common problem
is that of exploring the environment [2, 3, 14, 18]. How-
ever, it is common that the goal of the robots is different,
and exploration is only necessary insofar as it facilitates the
achievement of that goal [20, 22].

When a map of the environment is known to the robots,
problems often involve searching for a target located some-
where in the environment. That target might be stationary,
as in the cow path problem [8, 9] or the plane searching
problem [5, 6]. The target might also be mobile, where the
problems are often presented as search games, commonly
called cops and robbers or pursuit-evasion games [10, 12,
16, 21].

Problems relating to evacuation have been studied in a
centralized setting, with the goal of creating evacuation plans
[7, 15]. Evacuation in a distributed setting, as is the case
in this paper, has been studied on a disc in [13] (and the
follow-up work [19]), which is similar to the lost at sea prob-
lem [17]; and on a line in [11]. In [13] the authors introduced
and studied the evacuation problem of k robots through one
exit located on the perimeter of a disk when the robots have
wireless communication, and when they do not. The major
difference between this work and ours is that we only allow
robots to move on the perimeter of the disk, whereas robots
in [13, 19] can move anywhere on the perimeter or in the in-
terior of the disk. As a result, our model allows us to distin-
guish the cases when the robots do not have a free choice of
their initial arc-distance on the perimeter of the disk (which
we denote by L), as well as when they do. Moreover, under
this topology, the only communication model we are moti-
vated to consider is wireless, since if restricted to face-to-face
communication our problem trivializes. Additionally, where
[13] studies the problem for k robots and one exit, we con-
sider the problem with two robots and k exits.

1.3 Outline and Results of the Paper
In Section 2, we consider the problem for a single exit,

and give an algorithm which achieves an optimal worst case



Table 2: Costs of Algorithm A for Problem 2, where D is
an input to the problem and L is chosen by the algorithm.
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, where L is the initial distance
between the robots.

In Section 3, we explore the problem with k exits. We
begin by showing an optimal algorithm when the robots be-
gin colocated which achieves a worst case evacuation cost
of 3

4
· D, where D is the longest distance between any two

exits. We then give, for the case when the exits are evenly
spaced, an optimal algorithm which achieves a worst case
evacuation cost of 3

4
· 1
k

+ δ
2
, where

δ =

{
L mod 1

k
: L mod 1

k
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2k

1
k
− L mod 1

k
: L mod 1

k
> 1

2k

Finally, in Section 4 we further explore the problem with
k exits, but consider the case with arbitrary D and L. We
begin by giving upper and lower bounds of 3

4
· D + L

2
and

3
4
· D − L

2
, respectively, for Problem 1, when D and L are

inputs. We then finish the section by giving an algorithm
for Problem 2 which takes D as input and chooses L. This
algorithm is able to match the lower bound of Problem 1 for
some values of D and L. We conjecture that our choice of L
is optimal for these values of D, which would imply a lower
bound for these values of D.

The results of this paper for Problem 1 (given L) are sum-
marized in Table 1. The results of this paper for Problem 2
(chosen L) are summarized in Table 2.

2. EVACUATION WITH A SINGLE EXIT
We begin by considering the problem with only one exit.

To further simplify things, we begin this section by consid-
ering the simplest of cases: when there is only one exit, and
where the robots begin colocated.

Lemma 1. The evacuation problem with a single exit and
where the two robots begin colocated (L = 0), can be solved
with an optimal worst case cost of 3

4
.

Proof. We first show that the problem can be solved
with worst case cost 3

4
. Consider the following simple al-

gorithm: The robots begin searching in opposite directions
until one of them finds the exit, at which point it will broad-
cast the location of the exit to the other robot. The other
robot then calculates and moves along the shortest route to
the exit.

We analyse this algorithm as follows: suppose the robots
each move distance x before one of them finds the exit (see
Figure 2). The cost of the algorithm is determined by the
time taken by the second robot to exit, and therefore C =
x+min(2x, 1−2x), or C = min(3x, 1−x). We note that 3x is
monotone increasing and 1− x is monotone decreasing with
respect to x, and therefore the choice of x which maximizes

x

x

Figure 2: Single exit evacuation of colocated robots.

min(3x, 1 − x), and therefore the total cost, will be when
3x = 1 − x, or when x = 1/4. The worst case cost for our
algorithm will therefore be 3/4.

We now show that the algorithm described above is opti-
mal. We define the term unsearched antipodal pair to mean
a pair of antipodal points on the circle, neither of which has
been searched. For any algorithm which solves the problem
described in the lemma, during the execution of its worst
case there is a point in time t where one of the points of the
last remaining unsearched antipodal pair becomes searched
by one of the robots, which we will call rs. The exit is then
“placed” at the point opposite the one just searched. Clearly
the time required for rs to exit is at least t+ 1/2. At time t,
the points searched by both robots are of length at most 2t.
Since no other unsearched antipodal pair exists at time t, it
must be the case that 2t ≥ 1/2. Therefore t ≥ 1/4, which
means that the worst case cost of any algorithm is at least
3/4.

We now consider the general problem with one exit: where
the robots are forced to start at an arbitrary distance L.

Theorem 1. The evacuation problem with a single exit
and where the robots begin at distinct starting points at dis-
tance L ∈

(
0, 1

2

]
, can be solved with an optimal worst case

cost of 3
4

+ L
2

.

Proof. It is easy to show that a worst case cost of 3
4

+ L
2

is feasible. The algorithm achieving this is simply to have
the robots walk towards each other until they meet – which
takes time L/2 – and then to execute the algorithm from
Lemma 1. Therefore the worst case cost is 3

4
+ L

2
.

Note that if there is an unsearched antipodal pair at time
t = 1

4
+ L

2
, the theorem follows using the same arguments

as in the proof of Lemma 1. Hence, assume that there is no
unsearched antipodal pair at time t. Observe also that since
L ≤ 1

2
, t ≤ 1

2
. Since by time t each robot can search only an

area of size at most t, then if at time t a robot is located in
an area searched by the other robot, its antipodal point is
unsearched and so the adversary can place the exit there to
force the evacuation time of 3

4
+ L

2
. Therefore, it is sufficient

to consider the situation depicted in Figure 3, and due to
symmetry, we may assume x ≤ y w.l.o.g.

There are four important points to consider in the seg-
ment searched by each robot after time t = 1

4
+ L

2
: The

starting location of the robot, the position of the robot at
time t, and the two endpoints of the search segment. The
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Figure 3: Two robots starting at distance L (denoted by
the dashed line of the circle) exploring the circle up to time
t = 1

4
+ L

2
. The crosses represent the starting locations of the

robots; the solid points represents the location of each robot
at time t; and the hollow points represent the endpoints of
the segment searched by each robot at time t.

line segments (and, to simplify notation, also their lengths)
between these relevant points of the searched interval are
labelled with the following convention: a2 (respectively b2)
is the segment defined by the starting and current position
of the robot, a1 (resp. b1) is the line segment defined by one
of the endpoints and the boundary of a2, where additionally
a1 belongs to L, and finally, a3 (resp. b3) is the remaining
segment between the other end point and the other bound-
ary of a2, where a3 does not belong to L. Note that none of
a1, a2, a3 (resp. b1, b2, b3) intersect with the possible excep-
tion of their endpoints.

The values of x and y are defined dependant on whether
the segments a2 and b2, respectively, belong to the segment
of length L connecting the starting locations of the robots.
They have value 1 if the corresponding segment belongs to
L, and value 0 otherwise. In this case, x = 0 (since a2 does
not belong to L) and y = 1 (since b2 does). Note that a1
and b1 may overlap, however, as explained above, we may
assume that at time t no robot is within the area explored
by the other robot. Observe also that all the values are
non-negative, but many of them can be zero.

From the fact that the robots travel at unit speed we get

2a1 + a2 + 2a3 ≤
1

4
+
L

2
(1)

2b1 + b2 + 2b3 ≤
1

4
+
L

2
(2)

The definition of x and y yields

yb2 + b1 + a1 + xa2 ≥ L (3)

Summing (1) with (2) and subtracting (3) produces

2b3 + (1− y)b2 + b1 + a1 + (1− x)a2 + 2a3 ≤
1

2
(4)

At time t, if the points opposite to the robots are un-
searched or are being searched (at time t), the adversary
can place the exit at such an opposite point, forcing evacu-
ation time of 3

4
+ L

2
.

Hence, it is sufficient to consider only situations in which

(1− x)a2 + a1 + b1 + b2 + b3 ≥
1

2
(5)

and

(1− y)b2 + b1 + a1 + a2 + a3 ≥
1

2
(6)

hold. Now, it is sufficient to consider two cases

• Case x = 0: Since all the values are non-negative, (4)
contradicts (6)

• Case x = y = 1:

L+
1

2
≥ (1) + (2)

= 2b3 + b2 + 2b1 + 2a1 + a2 + 2a3

≥ b3 + b2 + 2b1 + 2a1 + a2 + a3

= (6) + (5)

≥ 1

which is a contradiction since L ≤ 1
2
.

3. EVACUATION WITH K EXITS
In this section, we study the more general problem with

k exits. We begin by considering the problem when the k
exits are all colocated, and make the following observation:

Observation 1. The evacuation problem with k exits and
where the exits are colocated (D = 1), is equivalent to the
evacuation problem with a single exit.

Therefore, all the results we have shown for a single exit
are also valid for k colocated exits. We now consider the
problem for k exits with an arbitrary D, but where the ro-
bots begin colocated.

Theorem 2. The evacuation problem with k exits, where
the robots begin colocated (L = 0), can be solved with an
optimal worst case cost of 3

4
· D, where D is the longest

distance between exits.

Proof. The solution for this more general problem is
very similar to that for Lemma 1. The algorithm is almost
identical: The robots begin searching in opposite directions
until one of them finds the exit, at which point it will broad-
cast the location of the exit to the other robot. The other
robot then calculates the direction which minimizes the dis-
tance which guarantees finding an exit and moves in that
direction until it exits.

We analyse this algorithm in a similar manner: suppose
the robots each move distance x before one of them finds an
exit (see Figure 4). The second robot can move 2x to evac-
uate through the same exit as the first robot, or it can con-
tinue moving in the same direction, where it will encounter
an exit at time no more thanD−2x (sinceD is the maximum
distance between exits). The cost of the algorithm is deter-
mined by the time taken by the second robot to exit, and
therefore C = x+ min(2x,D − 2x), or C = min(3x,D − x).
We note that 3x is monotone increasing and D−x is mono-
tone decreasing with respect to x, and therefore the choice
of x which maximizes min(3x,D−x), and therefore the total
cost, will be when 3x = D−x, or when x = D/4. The worst
case cost for our algorithm will therefore be 3

4
·D.

We note that the input to the above algorithm is only
the longest distance between exits, and at no time are the
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Figure 4: k-exit evacuation of colocated robots.

robots on any other arc than the one on which they start.
Now suppose that the above algorithm is not optimal. Then
there exists an algorithm A which has cost CA < 3

4
·D for

some D. Now consider a circle of length D with a single exit.
By Lemma 1, the optimal worst case cost for this circle is
3
4
·D. However, if we were to execute algorithm A, we can

achieve a better worst case cost for the circle. This is not
possible, and so algorithm A cannot exist.

Finally, we conclude this section by considering the case
when the exits are all evenly spaced.

Theorem 3. The evacuation problem with k equally spa-
ced exits

(
D = 1

k

)
, and where the robots begin at starting

points at distance L, can be solved with an optimal worst
case cost of 3

4
· 1
k

+ δ
2

, where

δ =

{
L mod 1

k
: L mod 1

k
≤ 1

2k

1
k
− L mod 1

k
: L mod 1

k
> 1

2k

Proof. For the sake of analysis, we assume that the co-
ordinates of the circle are assigned so that the point 0 cor-
responds with one of the exits. We first observe that since
the exits are evenly spaced, when a robot searches a point
p ∈ [0, 1], it is simultaneously searching all points (p + i/k)
mod 1, for i = 1 . . . k. We can visualize this as there being
“virtual” robots at each of these points which behave exactly
as the robot at point p. Consider now what happens if we
take every point of the circle modulus (1/k). We begin by
noting that every exit is now located at 0 mod (1/k). A
robot at point p and its corresponding virtual counterparts
are all located at p mod (1/k). Each arc of the circle is
therefore an exact mirror of the others and we can collapse
the problem to the problem of finding a single exit on a circle
of length 1/k. An example of this, where k = 4, is visual-
ized in Figure 5. The only issue remaining to address is the
initial distance of the robots, L. Since L mod (1/k) can be
larger than 1/2k, we must adjust the initial distance in the
single exit problem to be:

δ =

{
L mod 1

k
: L mod 1

k
≤ 1

2k

1
k
− L mod 1

k
: L mod 1

k
> 1

2k

The theorem follows immediately from Theorem 1.

D = 1
4

L

(a)

D = 1
4

L

(b)

Figure 5: Example transformation to single exit problem for
a 4-exit evacuation with equally spaced exits.

4. K-EXIT EVACUATION WITH ARBITRA-
RY D AND L

In the previous section, we looked at cases where either D
or L (or both) were fixed at a special value. We now examine
the cases for arbitrary values of D and L. We begin by
bounding the worst case cost above and below for Problem 1.
We then propose an algorithm which gives a solution for
Problem 2, for an arbitrary D when the algorithm has a
free choice of L.

Lemma 2. The evacuation problem with k exits, where
the robots begin at distance L, can be solved with a worst
case cost of 3

4
·D+ L

2
and cannot be solved with a worst case

cost better than 3
4
·D − L

2
, where D is the longest distance

between exits.

Proof. Consider the algorithm where the robots walk
towards each other until meeting, and then execute the al-
gorithm from Theorem 2. It takes time L

2
until the robots

are colocated, and at most 3
4
·D to execute the algorithm.

To show the lower bound, assume that there is an al-
gorithm A which achieves a worst case cost better than
3
4
·D− L

2
. We can then construct an algorithm A′ where two

colocated robots first move away from each other until they
are distance L apart. This will take time L/2. The robots
then execute algorithm A. Clearly algorithm A′ has worst
case time strictly better than 3

4
· D, which is impossible,

since 3
4
·D is the optimal worst case time for two colocated

robots.



The upper bound is not surprising, since we know there
are values of D and L for which this is optimal. What about
the lower bound? To this point, every situation we have con-
sidered where the robots begin at distinct starting points has
lead to higher costs than when the robots begin colocated.
Is it possible that there are values of D and L for which we
can find an algorithm which has a lower cost than the algo-
rithm for the same D but when the robots are colocated? In
fact, it is. We conclude this section by developing an algo-
rithm A (stated in Theorem 4) which, for small values of L
and large values of D, gives a worst case cost which is better
than the optimal cost for the same D when the robots begin
colocated.

Definition 1 (Algorithm AL). Let L ∈ [0, 1/2] be a
fixed constant. For any input to the k-exit evacuation prob-
lem with known exit-distances, algorithm AL places the ro-
bots A,B at distance L on the circle and at arbitrary posi-
tions. The two robots move in opposing directions until one
of them, say A finds an exit (and evacuates) at which point
it transmits the information to the second robot. Then robot
B moves to the closest known exit and evacuates.

Lemma 3 (Performance of AL). Let D ∈ [1/2, 1],
which represents the longest distance between exits, be an
input to the k-exit evacuation problem. Then, for every
L ∈ (0, 1−D], the performance of AL is exactly

max
x∈[0,1/2−L/2]

g(x),

where

g(x) :=

{
min{3x+ L,D − L− x} , if x ≥ 1−D

min{3x+ L, 1− L− x} , if x < 1−D

Proof. Since L ∈ (0, 1 − D], we know that not all the
exits can lie in the interval between the starting positions
of the robots, and so the robots will necessarily encounter
at least one exit before they meet. Denote the time when
the first exit is found as x. Moreover, after time 1/2− L/2,
and given that no robot has located an exit until then, the
two robots meet on the ring. Hence, if x denotes the time it
takes until one robot locates the exit, then x ∈ [0, 1/2−L/2].

In order to evaluate the performance of AL we need to
examine two cases (shown in Figure 6).

In the first case (Figure 6a), the exit is located after time
x ≥ 1−D, say by robot A. We know all exits are contained
in an interval of size 1−D. Since both robots have already
travelled distance 1 − D, it is impossible for there to be
any exits in the interval between their starting positions.
Therefore, the second robot knows immediately where the
two closest exits are: The exit through which the first robot
evacuated, at distance 2x+L in the opposite direction; and
an exit at distance D − 2x− L in the same direction. Since
it will choose the best route, the cost in this case is x +
min{2x+ L,D − L− 2x}.

In the second case (Figure 6a), we assume that the exit
is located after time x < 1 − D, say again by robot A. If
robot B continues moving in the same direction, then since
in the worst case the undiscovered exits could be located in
the arc between the initial positions of the two robots, robot
B will find the discovered exit in time 1−2x−L. If robot B
chooses to reverse back, then the undiscovered exits might

x

x

L D

(a) Case when x ≥ 1−D
x

x

L

(b) Case when x < 1−D

Figure 6: k-exit evacuation for algorithm AL.

not be in the arc between the initial positions of the robots,
in which case robot B will find again the discovered exit in
additional time 2x + L. To conclude, if x < D, the cost of
the algorithm in the worst case is x+min{2x+L, 1−L−2x}.

Given that D will be given as input to the new evacuation
problem, an algorithm may adapt its evacuation strategy
accordingly. This is what we propose and explore next.

Theorem 4. Let D ∈ [1/k, 1], the longest distance be-
tween exits, be an input to the k-exit evacuation problem
where L is a free choice. Consider the algorithm A that
simulates AL, where L = L(D) is chosen according to the
following rule

L =


1−D , if 6/7 < D ≤ 1

5D/2− 2 , if 4/5 ≤ D ≤ 6/7

0 , if 1/k ≤ D < 4/5

Then the cost C(D) of algorithm A is

C(D) =


5D/4− 1/2 , if 6/7 < D ≤ 1

1−D/2 , if 4/5 ≤ D ≤ 6/7

3D/4 , if 1/k ≤ D < 4/5

Proof. Note that L = L(D) always satisfies the condi-
tion that L ≤ 1 − D, hence Lemma 3 is applicable for all
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Figure 7: Performance of Algorithm A for k = 2 exits.

values of D ∈ [1/2, 1]. Then, the cost C(D) of algorithm A
can be evaluated by an exhaustive case analysis that depends
on the relative value of D with respect to the critical values
1, 6/7, 4/5, 1/k, and it is depicted in Figure 7 for k = 2 exits.

We begin by observing that when L = 0, the cost of al-
gorithm A is 3D/4 by Theorem 2. We now evaluate the
remaining cases by considering the point in time x after
which the first exit has been found.
Case: x ≥ 1−D

From Lemma 3, we know that the time to evacuate for
robot B is min(3x+ L,D − L− x). We note that 3x+ L is
monotone increasing and D−L− x is monotone decreasing
with respect to x, and therefore the choice of x which max-
imizes min(3x+L,D−L− x), and therefore the total cost,
will be when 3x+ L = D − L− x, or when x = D/4− L/2.
In this case, the cost will therefore be 3

4
·D − L

2
.

Case: x < 1−D
From Lemma 3, we know that the time to evacuate for

robot B is min(3x + L, 1 − L − x). We will focus solely
on the case where the cost is 3x + L (even if this is more
expensive that 1−L−x). We want to choose L to minimize

max
(

3x+ L,
3

4
·D − L

2

)
.

Since 3x+ L is increasing, and 3D/4− L/2 is decreasing
w.r.t. L, this is minimized when

3x+ L =
3

4
·D − L

2
.

Since, x ≤ 1−D, this holds if

3− 3D + L ≤ 3

4
·D − L

2
.

Rearranging, we see that

L ≤ 5

2
·D − 2,

and since L ≥ 0, this only holds if

4

5
≤ D.

Furthermore, we choose L = 5D/2 − 2 to minimize the
cost of the algorithm. Finally we note that L < 1−D, and
so when

1−D ≤ 5

2
·D − 2,

we must set L to a maximum value of L = 1 −D. Rear-
ranging the above, we see that this happens when D > 6/7.
Putting these L values into 3D/4 − L/2 give us the costs
listed in the Theorem.

We conclude this section with a conjecture, which if true
would imply that Algorithm A is optimal for D ≥ 6/7.

Conjecture 1. For D ≥ 1/2, any choice of L such that
L > 1−D is suboptimal for Problem 2.

5. CONCLUSION AND OPEN PROBLEMS
In this paper, we studied the evacuation problem on a

circle for 2 robots and k exits, and showed many optimal
results. It is not immediately intuitive that the worst case
solution costs are independent of the number of exits, but
are dependent on the longest distance between exits.

With regards to future work, we would like to prove our
conjecture. It remains open to further explore the arbitrary
cases of D and L and provide an algorithm for this problem.
It would also be interesting to utilize more knowledge of the
exit distribution to tighten the bounds for values of D and
chosen values of L. It would valuable to better understand
the reason why some values of D allow for choices of L which
beat the algorithms for colocated robots, while some do not.

Study of the problem with more than two robots is a nat-
ural extension to this work. Some results are known for the
case of multiple robots with one exit on a disc (instead of a
circle) [13], and even in this case optimal results do not yet
exist.

The study of the problem on different topologies is com-
pletely open, as is the study of the problem under different
communications models, while another interesting variant of
the problem would be the case where only a subset of the
robots need to be evacuated.
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