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1.1 Introduction

Mobile agents are software entities with the capacity for motion that can act on behalf of
their user with a certain degree of autonomy in order to accomplish a variety of computing
tasks. Today they find applications in numerous computer environments such as operating
system daemons, data mining, web crawlers, monitoring and surveillance, just to mention a
few. Interest in mobile agents has been fueled by two overriding concerns. First, to simplify
the complexities of distributed computing, and second to overcome the limitations of user
interfaces.

1.1.1 What is a mobile agent?

It is not easy to come up with a precise definition of mobile agent. A variety of formula-
tions exist ranging from the naive to the sophisticated. According to Shoham [Sho97], in
software engineering a mobile agent is a software entity which functions continuously and
autonomously in a particular environment, often inhabited by other agents and processes.
According to Bradshaw [Bra97] an agent that inhabits an environment with other agents and
processes is expected to be able to communicate and cooperate with them, and perhaps move
from place to place in doing so. Nwana et al. [NN97] attempt to divide mobile agents in
categories of either simple (cooperative, learning, autonomous) or composite (collaborative,
collaborative learning, interface, smart) behavior.
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An alternative approach is to define mobile agents by associating attributes and identi-
fying properties that agents are supposed to be able to perform. Some of these properties
may include (see Wooldridge [Woo02, Woo99]) reactivity: the ability to selectively sense and
act, autonomy: goal-directedness, proactive and self-starting behavior, collaborative behav-
ior: working in concert with other agents to achieve a common goal, adaptivity: being able
to learn and improve with experience, and mobility: being able to migrate in a self-directed
way from one host platform to another.

In this chapter we examine mobile agents from the perspective of traditional research on
distributed algorithms [Tel99]. We attempt to provide a framework for and a short survey
of the recent research on the theory of mobile agent computing.

1.1.2 Outline of the chapter

An outline of the chapter is as follows. Section 1.2 describes the mobile agent model being
used and the distributed network they operate on. Section 1.3 focuses on the rendezvous
problem and addresses its solvability in the symmetric and asymmetric cases of rendezvous.
Section 1.4 concerns graph exploration. Section 1.5 surveys work on the problem of searching
with uncertainty where agents are given faulty advice from the nodes during the search
process. Section 1.6 is on game-theoretic approaches to search and rendezvous. Section 1.7
focuses on intrusion detection and avoidance by studying the decontamination problem and
black hole search.

1.2 Modeling Mobile Agents in Distributed Networks

1.2.1 Mobile agents

We are interested in modeling a set of software entities that act more or less autonomously
from their originator and have the ability to move from node to node in a distributed network
maintaining some sort of state with the nodes of the network providing some amount of
(possibly longterm) storage and computational support. Either explicitly or implicitly such
a mobile (software) agent has most often been modeled using a finite automaton consisting
of a set of states and a transition function. The transition function takes as input the
agent’s current state as well as possibly the state of the node it resides in and outputs a
new agent state, possible modifications to the current node’s state and a possible move to
another node. In some instances we consider probabilistic automata which have available
a source of randomness that is used as part of their input. Such agents are referred to as
randomized agents.

An important property to consider is whether or not the agents are distinguishable,
i.e., if they have distinct labels or identities. Agents without identities are referred to as
anonymous agents. Anonymous agents are limited to running precisely the same program,
i.e., they are identical finite automata. As the identity is assumed to be part of the starting
state of the automaton, agents with identities have the potential to run different programs.

The knowledge the agent has about the network it is on and about the other agents can
make a difference in the solvability and efficiency of various tasks. For example, knowledge
of the size of the network or its topology or the number of and identities of the other agents
may be used as part of an agent’s program. If available to the agents, this information is
assumed to be part of its starting state. (One could imagine situations where the information
is made available by the nodes of the network and not necessarily encoded in the agent.)

Other properties that may be considered in mobile agent computing include whether or
not the agents have the ability to “clone” themselves, whether or not they have the ability
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to “merge” upon meeting (sometimes referred to as “sticky” agents) or whether or not they
can send self-generated messages. At this point, most of the theoretical research on mobile
agents ignores these properties and they will not be discussed below.

1.2.2 Distributed networks

The model of a distributed network is essentially inherited directly from the theory of
distributed computing [Tel99]. We model the network by a graph whose vertices comprise
the computing nodes and edges correspond to communication links.

The nodes of the network may or may not have distinct identities. In an anonymous
network the nodes have no identities. In particular this means that an agent can not distin-
guish two nodes except perhaps by their degree. The outgoing edges of a node are usually
thought of as distinguishable but an important distinction is made between a globally con-
sistent edge-labeling versus a locally independent edge-labeling. A simple example is the
case of a ring where clockwise and counterclockwise edges are marked consistently around
the ring in one case, and the edges are arbitrarily - say by an adversary - marked 1 and 2
in the other case. If the labeling satisfies certain coding properties it is called a sense of
direction [FMS98]. Sense of direction has turned out to greatly effect the solvability and
efficiency of solution of a number of problems in distributed computing and has been shown
to be important for mobile agent computing as well.

Networks are also classified by how they deal with time. In a synchronous network there
exists a global clock available to all nodes. This global clock is inherited by the agents. In
particular it is usually assumed that in a single step an agent arrives at a node, performs
some calculation, and exits the node and that all agents are performing these tasks “in
sync”. In an asynchronous network such a global clock is not available. The speed with
which an agent computes or moves between nodes, while guaranteed to be finite, is not a
priori determined.

Finally we have to consider the resources provided by the nodes to the agents. All nodes
are assumed to provide enough space to store the agent temporarily and computing power
for it to perform its tasks. (The case of malicious nodes refusing agents or even worse
destroying agents - so-called black holes - is also sometimes considered.) Beyond these basic
services one considers nodes that might provide some form of long-term storage, i.e., state
that is left behind when the agent leaves. In the rendezvous problem the idea of leaving
an indistinguishable mark or token at a node (introduced in [BG01]) has been studied. In
graph exploration a similar notion of a pebble is used[BS94]. More accommodating nodes
might provide a whiteboard for agents to write messages to be left for themselves or for other
agents.

1.3 The Rendezvous Problem

The mobile agent rendezvous problem is concerned with how should mobile agents move
along the vertices of a given network in order to optimize the number of steps required for
all of them to meet at the same node of the network. Requiring such agents to meet in
order to synchronize, share information, divide up duties, etc. would seem to be a natural
fundamental operation useful as a subroutine in more complicated applications such as web-
crawling, meeting scheduling, etc. For example, rendezvous is recognized as an effective
paradigm for realizing the caching of popular information essential to the operation of a
P2P network and thus reducing network traffic [ws].

In this section, we provide a short survey of recent work done on rendezvous within
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the distributed computing paradigm. We note that rendezvous has been studied in other
settings such as robotics [RD01] and operations research [AG03]. This research is extensive
and many of the solutions found can be applied here. But it is often the case that the models
used and the concerns studied are sufficiently different as to require new approaches.

1.3.1 Solvability of rendezvous

Given a particular agent model (e.g., deterministic, anonymous agents with knowledge they
are on a ring of size n) and network model (e.g., anonymous, synchronous with tokens) a
set of k agents distributed arbitrarily over the nodes of the network are said to rendezvous
if after running their programs after some finite time they all occupy the same node of the
network at the same time. It is generally assumed that two agents occupying the same node
can recognize this fact (though in many instances this fact is not required for rendezvous
to occur). As stated, rendezvous is assumed to occur at nodes. In some instances one
considers the possibility of rendezvous on an edge, i.e., if both agents use the same edge (in
opposite directions) at the same time. (For physical robots this makes sense. For software
agents this perhaps is not so realistic but sometimes necessary to allow for the possibility
of rendezvous at all - especially in instances where the network lacks a sense of direction.)

The first question one asks for an instance of rendezvous is whether or not it is solvable.
There are many situations where it is not possible to rendezvous at all. This will depend
upon both the properties of the agents (deterministic or randomized, anonymous or with
identities, knowledge of the size of the network or not, etc.) and the network (synchronous or
asynchronous, anonymous or with identities, tokens available or not, etc.). The solvability
is also a function of the starting positions chosen for the agents. For example, if the
agents start at the same node and can recognize this fact, rendezvous is possible in this
instance. Given a situation where some starting positions are not solvable (i.e., rendezvous
is not possible) but others are, we distinguish between algorithms that are guaranteed to
finish for all starting positions, with successful rendezvous when possible but otherwise
recognizing that rendezvous is impossible, versus algorithms that are only guaranteed to
halt when rendezvous is possible. Algorithms of the former type are said to solve rendezvous
with detection. (The distinction is perhaps analogous to Turing machines deciding versus
accepting a language.)

For solvable instances of rendezvous one is interested in comparing the efficiency of dif-
ferent solutions. Much of the research focuses on the time required to rendezvous. In the
synchronous setting the time is measured via the global clock. (In some situations, it makes
a difference if the agents begin their rendezvous procedure at the same time or there is
possible delay between start times.) In the asynchronous setting we adapt the standard
time measures from the distributed computing model. Also of interest is the size of the
program required by the agents to solve the problem. This is referred to as the memory
requirement of the agents and is considered to be proportional to the base two logarithm
of the number of states required by the finite state machine encoding the agent.

As is often the case, researchers are interested in examining the extremes in order to get
an understanding of the limits a problem imposes. Over time it has become clear that for
rendezvous symmetry (of the agents and the network) plays a central role in determining
its solvability and the efficiency of its solutions. As such we divide our discussion below
into the asymmetric and symmetric cases. For simplicity we restrict ourselves to the case
of just two agents in most of the discussion below.
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1.3.2 Asymmetric rendezvous

Asymmetry in a rendezvous problem may arise from either the network or the agents.

Network asymmetry

A network is asymmetric if it has one or more uniquely distinguishable vertices. A simple
example is the case of a network where all of the nodes have unique identities chosen from
a subset of some totally ordered set such as the integers. In this case, the node labelled
with the smallest identity (for example) is unique and may be used as a meeting point for
a rendezvous algorithm. Uniqueness need not be conferred using node labels. For example,
in a network where there is a unique node of degree one, it may be used as a focal point.

If a “map” of the graph with an agent’s starting position marked on it is available to the
agents then the problem of rendezvous is easily solved by just traversing the path to an
agreed upon unique node. Algorithms that use an agreed upon meeting place are referred
to by Alpern and Gal [AG03] as FOCAL strategies. In the case where the graph is not
available in advance but the agents know that a focal point exists (e.g., they know the
nodes are uniquely labeled and therefore there exists a unique minimum label node) this
strategy reduces to the problem of graph traversal or graph exploration whereby all of
the nodes (sometimes edges) of the graph are to be visited by an agent. This has been
extensively studied and is surveyed in the Section 1.4.

Agent asymmetry

By agent asymmetry one generally means the agents have unique identities that allow them
to act differently depending upon their values. In the simplest scenario of two agents, the
agent with the smaller value could decide to wait at its starting position for the other agent
to find it by exploring the graph as above. Alpern and Gal [AG03] refer to this as the Wait
For Mommy (WFM) strategy and they show it to be optimal under certain conditions.

WFM depends upon the fact that the agents know in advance the identities associated
with the other agents. In some situations this may be an unrealistic assumption. Yu
and Yang [YY96] were the first to consider this problem. Under the assumption that the
algorithm designer may assign the identities to the agents (as well as the existence of distinct
whiteboards for each agent), they show that rendezvous may be achieved deterministically
on a synchronous network in O(nl) steps where n is the size of the network and l is the size
of the identities assigned. The perhaps more interesting case where an adversary assigns
the labels was first considered in [DFP03]. Extensions to this work including showing
rendezvous on an arbitrary graph is possible in time polynomial in n and l and that there
exist graphs requiring Ω(n2) time for rendezvous are described in [KP04, KM06]. The case
of an asynchronous network is considered in [MGK+05] where a (non-polynomial) upper
bound is set for rendezvous in arbitrary graphs (assuming the agents have an upper bound
on the size of the graph). Improvements (in some cases optimal) for the case of the ring
network are discussed in each of the above papers.

1.3.3 Symmetric rendezvous

In the case of symmetric rendezvous, both the (generally synchronous) network and the
agents are assumed to be anonymous. Further one considers classes of networks that in the
worst case contain highly symmetric networks that do not submit to a FOCAL strategy. As
might be expected some mechanism is required to break symmetry in order for rendezvous
to be possible. The use of randomization and of tokens to break symmetry have both been
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studied extensively.

Randomized rendezvous

Many authors have observed that rendezvous may be solved by anonymous agents on an
anonymous network by having the agents perform a random walk. The expected time to
rendezvous is then a (polynomial) function of the (size of the) network and is directly related
to the cover time of the network. (See [MR95] for definitions relating to random walks.)

For example, it is straightforward to show that two agents performing a symmetric ran-
dom walk on ring of size n will rendezvous within expected O(n2) time. This expected time
can be improved by considering the following strategy (for a ring with sense of direction).
Repeat the following until rendezvous is achieved: flip a (fair) coin and walk n/2 steps to
the right if the result is heads, n/2 steps to the left if the result is tails. If the two agents
choose different directions (which they do with probability 1/2) then they will rendezvous
(at least on an edge if not at a node). It is easy to see that expected time until rendezvous
is O(n). Alpern refers to this strategy as Coin Half Tour and studies it in detail in [Alp95a].
Note that the agents are required to count up to n and thus seem to require O(log n) bits
of memory to perform this algorithm (whereas the straightforward random walk requires
only a constant number of states to implement). This can be reduced to O(log log n) bits
and this can be shown to be tight [Mor] for achieving linear expected rendezvous time.

Rendezvous using tokens

The idea of using tokens or marks to break symmetry for rendezvous was first suggested
in [BG01] and expanded upon for the case of the ring in [Saw04]. The first observation to
make is that rendezvous is impossible for deterministic agents with tokens (or whiteboards)
on an even size ring when the agents start at distance n/2 as the agents will remain in
symmetric positions indefinitely. However, this is the only starting position for the agents
for which rendezvous is impossible. This leads one to consider algorithms for rendezvous
with detection where rendezvous is achieved when possible and otherwise the agents detect
they are in an impossible to rendezvous situation. In this case, a simple algorithm suffices
(described here for the oriented case). Each agent marks their starting position with a
token. They then travel once around the ring counting the distances between their tokens.
If the two distances are the same, they halt declaring rendezvous impossible. If they are
different they agree to meet (for example) in the middle of the shorter side.

Again, one observes that the algorithm as stated requires O(log n) bits of memory for each
agent in order to keep track of the distances. Interestingly enough this can be reduced to
O(log log n) bits and this can be shown to be tight for unidirectional algorithms [KKSS03].
If we are allowed two movable tokens (i.e., the indistinguishable marks can be erased and
written with at most two marks total per agent at any time) then rendezvous with detection
becomes possible with an agent with constant size memory [KKM06].

Multi-agent rendezvous, i.e., more than two agents, on the ring is considered in [FKK+04b,
GKKZ06], the second reference establishing optimal memory bounds for the problem. Two
agent rendezvous on the torus is studied in [KKM06] where tradeoffs between memory and
the number of (movable) tokens used are given. Finally [FKK+04a] considers a model in
which tokens may disappear or fail over time.

Rendezvous and leader election

Consider k identical, asynchronous mobile agents on an arbitrary anonymous network of n
nodes. Suppose that all the agents execute the same protocol. Each node has a whiteboard
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where the agents can write to and read from. Leader election refers to the problem of
electing a leader among those agents.

In Barrierre et al. [BFFS03] both the leader election and rendezvous problems are studied
and shown to be equivalent for networks with appropriate sense of direction. For example,
rendezvous and election are unsolvable (i.e., there are no deterministic generic solutions) if
gcd(k, n) > 1, regardless of whether or not the edge-labeling is a sense of direction. On the
other hand, if gcd(k, n) = 1 then the initial placement of the mobile agents in the network
creates topological asymmetries that can be exploited to solve the problems.

1.4 Graph Exploration

The problem

The main components of the graph exploration problem are a connected graph G = (V,E)
with V as its set of nodes and E as its set of links, as well as a unique start node s.
The graph represents a distributed network, the nodes of which are autonomous processing
elements with limited storage while s is the initial position of the mobile agent. The goal of
graph exploration is for the agent (or team of agents) to visit all of the nodes (or possibly
edges) of the graph. Apart from completing the exploration of the graph it is often required
that the agent also draw a map of the graph. The core of graph exploration often involves
the construction of a simpler underlying subgraph (typically some kind of spanner of the
graph, like a tree) that spans the original network G. Some of the important constructions
of such trees involve breadth-first search (BFS), depth-first search (DFS), and minimum
spanning trees (MST). For a detailed discussion of distributed constructions of BFS, DFS
and MST the reader is advised to consult Peleg [Pel00].

The performance of graph exploration algorithms is limited by the static and non-adaptive
nature of the knowledge incorporated in the input data. Mobile agents can take sensory
input from the environment, learn of potential alternatives, analyze information collected,
possibly undertake local action consistent with design requirements and report it to an
authorized source for subsequent investigation and adaptation.

Efficiency measures

There is a variety of efficiency measures that can be considered. Time is important when
dealing with exploration and many of the papers mentioned below measure it by the number
of edge traversals required by the agent in order to complete the task. On the other hand,
they do not impose any restrictions on the memory of the agent, which can be an important
consideration in applications. This of course gives rise to interesting time/memory trade-
offs. In Diks et al. [DFKP04] the problem of minimizing the memory of the agent is studied.

Underlying graph

Exploration and navigation problems for agents in an unknown environment have been
extensively studied in the literature (see the survey Rao et al. [RHSI93]). The underlying
graph can be directed (e.g., in [AH00, BFR+98, BS94, DP99] the agent explores strongly
connected directed graphs and it can move only in the direction from head to tail of an
edge, not vice-versa) or undirected (e.g., in [ABRS95, BRS95, DKK01, PP99] the explored
graph is undirected and the agent can traverse edges in both directions).
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Labeling of the graph

In graph exploration scenarios it can be assumed either that the nodes of the graph have
unique labels recognizable by the agent or that they are anonymous. Exploration in directed
graphs with such labels was investigated in [AH00, DP99]. Exploration of undirected labeled
graphs was studied in [ABRS95, BRS95, DKK01, PP99]. In this case a simple exploration
based on DFS can be completed in time 2e, where e is the number of edges of the underlying
graph. For an unrestricted agent an exploration algorithm working in time e + O(n), with
n being the number of nodes, was proposed in Panaite et al. [PP99]. Restricted agents
were investigated in [ABRS95, BRS95, DKK01]. It was assumed that the agent has either a
restricted tank [ABRS95, BRS95], forcing it to periodically return to the base for refueling,
or that it is tethered, i.e., attached to the base by a rope or cable of restricted length
Duncan et al. [DKK01]. It was proved that exploration and mapping can be done in time
O(e) under both scenarios.

Anonymity

Suppose that a mobile agent has to explore an undirected graph by visiting all its nodes
and traversing all edges, without any a priori knowledge either of the topology of the graph
or of its size. This can be done easily by depth-first search if nodes and edges have unique
labels. In some navigation problems in unknown environments such unique labeling either
may not be available or simply the mobile agents cannot collect such labels because of
limited sensory capabilities. Hence it is important to be able to program the mobile agent
to explore graphs anonymously without unique labeling of nodes or edges. Arbitrary graphs
cannot be explored under such weak assumptions. For example, an algorithm on a cycle of
unknown size without any labels on nodes and without the possibility of putting marks on
them cannot terminate after complete exploration.

Hence, [BFR+98, BS94] allow pebbles which the agent can drop on nodes to recognize
already visited ones, and then remove them and drop in other places. They focus their
attention on the minimum number of pebbles allowing for efficient exploration and mapping
of arbitrary directed n-node graphs. (In the case of undirected graphs, one pebble suffices
for efficient exploration.) In was shown in Bender et al. [BFR+98] that one pebble is enough
if the agent knows an upper bound on the size of the graph, and Θ(log log n) pebbles are
necessary and sufficient otherwise. Also a comparison of the exploration power of one
agent versus two cooperating agents with a constant number of pebbles is investigated in
Bender et al. [BS94] (Recall that a similar comparison for the rendezvous problem in a torus
is investigated in Kranakis et al. [KKM06]).

Anonymous tree exploration

If we do not allow any marks it turns out that the class of graphs that can potentially
be explored has to be restricted to trees, i.e., connected graphs without cycles. Another
important requirement is that the mobile agent be able to distinguish ports at a node,
otherwise it would be impossible to explore even a star tree with three leaves (after visiting
the second leaf the agent cannot distinguish the port leading to the first visited leaf from
that leading to the unvisited one). Hence a natural assumption is that all ports at a node
be locally labeled 1,...,d, where d is the degree of the node, although no coherence between
those local labelings is required.

Exploration algorithms and solutions discussed in the sequel are from Diks et al. [DFKP04]
where additional details can be found. Two exploration methodologies are considered. The
results are summarized in Table 1.1. First, exploration with stop: starting at any node of the
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TABLE 1.1 Upper and lower bounds on the memory of
a mobile agent for various types of exploration in trees on
n nodes and maximum degree d.

Tree Mobile Agent Memory Bounds
Exploration Knowledge Lower Upper

Perpetual ∅ None O(log d)
w/Stopping n ≤ N Ω(log log log n) O(log N)
w/Return ∅ Ω(log n) O(log2 n)

tree, the mobile agent has to traverse all edges and stop at some node. Second, exploration
with return: starting at any node of the tree, the mobile agent has to traverse all edges and
stop at the starting node. In both instances it is of interest to find algorithms for a mobile
agent performing the given task using as little memory as possible. From the point of view
of memory use, the most demanding task of exploration with stop is indeed stopping. This
is confirmed by analyzing perpetual exploration whereby the mobile agent has to traverse
all edges of the tree but is not required to stop. The following simple algorithm will tra-
verse all edges of an n-node tree after at most 2(n − 1) steps and will perform perpetual
exploration using only O(log d) memory bits. The agent leaves the starting node by port 1.
After entering any node of degree d by port i, the agent leaves it by port i + 1 mod d. If in
addition we know an upper bound N on the size n of the tree, we can explore it with stop
using O(log N) bits of memory.

For every agent there exists a tree of maximum degree 3 which this agent cannot explore
with stop. Even more so, it can be shown that a agent which can explore with stop any
n-node tree of maximum degree 3 must have Ω(log log log n) bits of memory. Additional
memory is essentially needed to decide when to stop in an anonymous environment. Ex-
ploration with stopping is even more demanding on memory. For exploration with return,
a lower bound Ω(log n) can be shown on the number of memory bits required for trees of
size n. As for upper bounds, an efficient algorithm for exploration with return is given that
uses only O(log2 n) memory bits for all trees of size n.

1.5 Searching with Uncertainty

Another problem of interest in mobile agent computing is that of searching for an item in
a distributed network in the presence of uncertainty. We assume that a mobile agent in a
network is interested in locating some item (such as a piece of information or the location
of a service) available at one node in the network. It is assumed that each of the nodes of
the network maintains a database indicating the first edge on a shortest path to the items
of interest. Uncertainty arises from the fact that inaccuracies may occur in the database for
reasons such as the movement of items, out-of-date information, etc. The problem is how
to use the inaccurate databases to find the desired item. The item occupies an unknown
location but information about its whereabouts can be obtained by querying the nodes
of the network. The goal of the agent is to find the requested item while traversing the
minimum number of edges. In the sequel we discuss algorithms for searching in a distributed
network under various models for (random) faults and different topologies.

Network and search models

The network has n nodes and is represented as a connected, undirected graph G = (V,E)
with V its set of nodes and E its set of links. The universe of items of interest is denoted by
S. Let Adj(x) be the set of links adjacent to node x in the network. For x ∈ V and v ∈ S
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define Sv(x) to be the set of links adjacent to x which are on a shortest path from x to the
node containing v. Clearly, ∅ ⊂ Sv(x) ⊆ Adj(x), for all x, v. Let 1 ≥ p > 1

2 be constant.
Among the several possible search models (see [KK99]) we consider only two. Under the

single shortest path (SSP) model, we assume that for each item v ∈ S a tree representing
a single shortest path from each node in V to the node containing v has been defined. If
e ∈ Sv(x) is the edge chosen in this shortest path tree then e appears in the entry for v in
the database of x with probability greater than or equal to p. The probability the entry is
some other e′ ∈ Adj(x) \ {e} is less than or equal to 1 − p. Furthermore, for each v and
for each x and x′ these events are independent, i.e., an error occurs in x’s entry for v with
probability at most 1− p independent of errors occurring in the v entry of any other nodes,
where by an error we mean that the node reports an edge other than the shortest path tree
edge when queried about v. Note the “error” may in fact be an edge on a different shortest
path to v and therefore may not be an error at all. The SSP with global information is a sub-
model of the SSP model. Here, some global information about how the shortest path trees
were originally constructed is available to the search algorithm. For example, on a mesh we
may assume that the original databases, before the introduction of errors, were constructed
using the standard row column shortest path trees and this is used in the construction of
the searching algorithm. Under the all shortest paths (ASP) model, the probability that the
entry for v in the routing table of x is some e ∈ Sv(x) is greater than or equal to p and the
probability it is some e ∈ Adj(x) \ Sv(x) is less or equal to 1 − p. Again errors at distinct
nodes (in this case reporting an edge in Adj(x) \ Sv(x)) occur independently.

Note that in both models, no restriction is placed upon what is reported by the database
in the case of an error, i.e., in the worst case the errors may be set by a malicious adversary.
In the ASP model, no restriction is placed on which of the correct edges is reported, i.e.,
again, the answers to queries may be set by a malicious adversary. Finally, we note that
for any geodesic (unique shortest path) network the two models are the same, e.g., trees,
or rings of odd size.

Ring network

For the n node ring we give below a searching algorithm in the SSP or ASP model which
with high probability finds a given item in d + O(log n) steps where d is the distance from
the starting node to the node containing the desired item. Note that for d = ω(log n) this
is optimal to within an additive term.

A searching algorithm on the ring could completely ignore the advice of the databases
and arbitrarily choose a direction (say Left) and move around the ring in that direction
until the item is found. In the worst case, this algorithm requires n− d steps where d ≤ n

2
is the actual distance to the item. Slightly better might be to consult the database of the
initial node and use that direction to search for the item (ignoring all later advice). In this
case, for any item the expected number of steps is pd + (1 − p)(n − d). Better still, take
the majority of the advice of more nodes. This leads directly to the following algorithm
parameterized by k. Search in a given direction for k steps. Maintain a count of the advice
given by the routing tables of the k processors along the way and make a decision based on
the principle of maximum likelihood either to stay the course or reverse direction until the
desired item is found.

1. Let dir be the direction given by the initial node.
2. for j = 1 to k or until item is found do
3. move in direction dir.
4. if majority of processors agree with dir, continue until item is found.

else reverse direction and continue until item is found.
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TABLE 1.2 Expected number of steps.
memoryless limited memory unlimited memory

randomized n− 1 2/p 1/p
deterministic ∞ ∞ 1/p

Thus, the search proceeds for k steps and then the direction is chosen according to the
principle of maximum likelihood. This means that it selects the direction agreed by the
majority of nodes along this path of length k. The probability that this direction is correct
is equal to pk, where

pk =
∑

i≥dk/2e

(
k

i

)
pi(1− p)k−i.

Let d be the distance of the initial node to the node containing the desired item, and let
X the number of steps traversed by the algorithm. It is clear from the algorithm that if the
direction decision made by the algorithm is correct then X = d or X = d + 2k depending
on whether or not the algorithm reversed direction after k steps. Similarly, if the decision
made was incorrect then X = n − d or X = n − d + 2k depending on whether or not the
algorithm reversed direction after k steps. It follows that with probability at least pk the
number of steps traversed by the algorithm does not exceed d + 2k.

Observe that pk = Pr[Sk ≥ k/2] and using Chernoff-Hoeffding bounds (setting µ = kp
and δ = 1− 1

2p ) we derive that

pk = = Pr[Sk ≥ (1− δ)µ] = 1− Pr[Sk < (1− δ)µ] > 1− e−µδ2/2,

where Sk is the sum of k independent and identically distributed random variables X1, . . . , Xk

such that Pr[Xi = 1] = p, for all i. Choosing k ≥ c 2p
(p−1/2)2 lnn, we conclude the probability

that the algorithm requires less than d + 2k steps is ≥ 1− n−c for c > 0.
A similar approach can be followed for the torus network. For additional details the

reader is advised to consult [KK99].

Complete network

Next we consider the case of a complete network on n nodes. (The results of this section are
mainly from Kirousis et al. [KKKS03].) The algorithms considered may use randomization
or be deterministic, may be either memoryless, have limited memory or have unlimited
memory and can execute one of the following operations: (i) query a node of the complete
network about the location of the information node (ii) follow the advice given by a queried
node and (iii) select the next node to visit using some probability distribution function on
the network nodes (that may be, for example, a function of the number of previously seen
nodes or the number of steps up to now). A summary of the expected number of steps for
various types of algorithms is summarized in table 1.2. The algorithm given below, simply
alternates between following the advice of the currently visited node and selecting a random
node as the next node to visit. It only needs to remember if at the last step it followed the
advice or not. Although one bit suffices, the algorithm is stated as if it knew the number
of steps it has taken. Then it simply checks if this number is odd or even. However, one
bit would be sufficient.

Algorithm: Fixed Memory Search
Input : A clique (V,E) with a node designated as the information holder
Aim: Find the node containing the information
1. begin
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2. current = RANDOM(V )
3. l← 1
4. while current(information) 6= true
5. l← l + 1
6. if l mod2 = 0
7. current = current(advice)
8. else
9. current ← RANDOM(V − current)
10. end while
11. end

We will now give a randomized algorithm for locating the information node in a clique
that has unlimited memory. More specifically, the algorithm can store the previously visited
nodes and use this information in order to decide its next move. In this way, the algorithm
avoids visiting again previously visited nodes. Such an algorithm always terminates within
n− 1 steps in the worst case.

Algorithm: Non-oblivious Search
Input : A clique (V,E) with a node designated as the information holder
Aim: Find the node containing the information
1. begin
2. l← 1
3. current = RANDOM(V )
4. M ← {current} // M holds the up to now visited nodes
5. while current(information) 6= true
6. read(current(advice))
7. if current 6∈M
8. M ←M ∪ {current}
9. current = advice
10. end if
11. else
12. current ← RANDOM(V −M)
13. l← l + 1
14. end while
15. end

For additional details the reader is advised to consult Kirousis et al. [KKKS03] and Ka-
poris et al. [KKK+01] For results in a model where the faults occurring worst-case deter-
ministically see Hanusse et al. [HKKK02]

1.6 Game-theoretic Approaches

Search games

In general, search theory deals with the problem of optimizing the time it takes in order to
find a target in a graph. The P2P paradigm demands a fully-distributed and cooperative
network design, whereby nodes collectively form a system without any supervision. In
such networks peers connect in an ad-hoc manner and the location of resources is neither
controlled by the system nor are there any guarantees for the success of a search are offered
to the users. This setup has its advantages as well, including anonymity, resource-sharing,
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self-organization, load balancing and robustness to failures. Therefore in this context search
games might provide a more flexible basis for offering realistic and effective solutions for
searching. There is extensive literature on games and game theory, however for our purposes
it will be sufficient to refer the reader to Osborne et al. [OR94] for a mathematical treatment
and to the specialized but related multi-agent perspective offered by Sandholm [San99].

Search and rendezvous models

As defined by Alpern and Gal [AG03], search games consist of a search space usually rep-
resented by a graph G (with vertex set V and edge set E) a searcher starting from a given
vertex (usually called the origin) of the graph and a hider (mobile or otherwise) choosing
its hiding point independently of the searcher and occupying vertices of the graph. It is
assumed that neither the searcher nor the hider has any a priori knowledge of the movement
or location of the other until they are some critical distance r apart, also called the discovery
radius.

Search problems are defined as two-person, zero-sum games with associated strategies
available to the searcher and receiver, respectively (see, for example, Watson [Wat02] or
Osborne et al. [OR94]). Strategies may be pure or mixed (i.e., probabilistic) and the set of
pure strategies for the searcher (respectively, hider) is denoted by S (respectively, H). A
strategy S ∈ S (respectively, H ∈ H) for the searcher (respectively, hider) is a trajectory
in the graph G such that S(t) (respectively, H(t)) is the point visited by the searcher
(respectively, at which the hider is hiding) at time t. (If the hider is immobile then it
assumed that H(t) := H is a fixed vertex in the given graph.)

The cost of the game is specified by a cost function c : S × H → R : (S, H) → c(S, H)
representing the loss (or effort) by searcher S when using trajectory S while the hider uses
trajectory H. Since the game is zero-sum, c(S, H) also represents the gain of the hider.
Given the sets of available pure strategies S,H, and the cost function c(·, ·) we define the
value, minimax value, and minimax search trajectory as follows

value: v(S) := supH∈H c(S, H)
minimax value: V̂ := infS∈S vc(S)
minimax search trajectory: Ŝ s.t. V̂ = v(Ŝ),

(1.1)

where mention of the cost function c is suppressed in Identities 1.1. A natural cost function
c is the time it takes until the searcher captures the hider (also called capture time) in which
case Vc represents the minimal capture time. Formally, the capture time is defined as

c(S, H) := min
t
{d(S(t),H(t)) ≤ r},

where r is the discovery radius.
In most interesting search games the searcher can do better by using random choices out

of the pure strategies and these choices are called mixed strategies. In this case the capture
time is a random variable and each player cannot guarantee a fixed cost but rather only an
expected cost. Mixed strategies of a searcher and a hider are denoted by s, h, respectively,
while c(s, h) denotes the expected cost. More formally, we are given probability distributions
s = {pS : S ∈ S}, h = {qH : H ∈ H} on S and H, respectively, and the expected cost c(s, h)
is defined by

c(s, h) =
∑
S∈S

∑
H∈H

c(S, H)pSqH . (1.2)
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As with pure stategies, we define

value of s: v(s) := suph c(s, h) = supH∈H c(s,H),
value of h: v(h) := infs c(s, h) = infS∈S c(S, h),
minimax value: v := infs v(s) = suph v(h).

(1.3)

When S and H are finite, the fundamental theorem of Von Neumann (see von Neu-
mann et al. [vNM53]) on two-person, zero-sum games applies and states that

max
h

min
s

c(s, h) = min
s

max
h

c(s, h).

(If only one of either S or H is finite then the minimax value can be proven to exist.
If both are infinite the minimax value may not exist, but under certain conditions, like
uniform convergence of trajectories, it can be proved to exist. See Alpern and Gal [AG03]
for additional results.)

If the hider is immobile a pure hiding strategy in the search graph G is simply a vertex,
while a mixed hiding strategy is a probability distribution on the vertices of G. A pure
search strategy is a trajectory in G starting at the origin O of the graph. We denote
by XS(t) the set of vertices of G which have been searched using strategy S by time t.
Obviously, the set XS(0) of points discovered at time 0 does not depend on the strategy S
but only on the discovery radius r. A mixed search strategy is a probability distribution
over these pure search strategies.

The rendezvous search problem is also a search game but it differs from the search problem
in that it concerns two searchers placed in a known graph that want to minimize the
time required to rendezvous (usually) at the same node. At any given time the searchers
may occupy a vertex of a graph and can either stay still or move from vertex to vertex.
The searchers are interested in minimizing the time required to rendezvous. A detailed
investigation of this problem has been carried out by Alpern and collaborators (see [Alp95b,
Alp02]) and a full discussion can also be found in the book of Alpern and Gal [AG03]. As
in search games we can define pure and mixed rendezvous strategies as well as the expected
rendezvous time.

Example of a search game

As an example, consider the uniform mixed hiding strategy whereby the hider is immobile
and chooses the hiding vertex randomly with the uniform distribution among the vertices
of a graph with n vertices. Further assume that the discovery radius satisfies r = 0,
which means that the searcher discovers the hider only when it lands in the same vertex.
Since the searcher discovers at most one new vertex per time unit we must have that
Pr[T ≤ t] ≤ min{1, t

n}, where T is the capture time. It follows that the expected capture
time satisfies

E[T ] =
∑

t

Pr[T > t] ≥
∑

t

max
{

0, 1− t

n

}
=

n + 1
2

.

To show this is tight, consider the complete graph Kn on n vertices. Let the hider strategy
be uniform as before. A pure search strategy is a permutation S ∈ Sn. For a given S, H
the capture time c(S, H) is equal to the smallest t such that St = H. Given t, H, there
are exactly (n − 1)! permutations S ∈ Sn such that St = H. Consider a mixed search
strategy whereby the searcher selects a permutation S ∈ Sn at random with the uniform
distribution. We have that

n∑
H=1

∑
S∈Sn

c(S, H) =
n∑

H=1

n∑
t=1

∑
S∈Sn
St=H

t =
n(n + 1)

2
· (n− 1)!.
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Consequently, it follows that the expected capture time is

E[T ] =
1
n!
· 1
n
·

n∑
H=1

∑
S∈Sn

c(S, H) =
n + 1

2
.

The problem is more difficult on arbitrary networks. For example, on trees it can be
shown that the optimal hiding strategy is to hide among leaves according to a certain
probability distribution that is constructed recursively, while an optimal search strategy is
a Chinese postman tour (i.e., a closed trajectory traversing all vertices of the graph which
has minimum length). The value of this search game on trees is the minimum length of a
Chinese postman tour. We refer the reader to Alpern and Gal [AG03] for a proof of this
result as well as for search games on other networks.

Example of a rendezvous search game

Consider again the complete graph Kn. If searchers select their initial position at random
the probability they occupy the same vertex is 1/n. In a rendezvous strategy the players
select trajectories (i.e., paths) S = s0, s1, . . . and S′ = s′0, s

′
1, . . ., where si, s

′
i are the nodes

occupied by the two searchers at time i, respectively. For a given pair S, S′ of trajectories
the rendezvous time is equal to the smallest t such that st = s′t. Hence, the probability that
they meet within the first t steps is at most t/n. The expected rendezvous time is equal to

E[T ] =
∞∑

t=0

Pr[T > t] =
∞∑

t=0

(1− Pr[T ≤ t]) ≥
n−1∑
t=0

n− t

n
=

n− 1
2

. (1.4)

In general, the rendezvous problem is easy if there is a distinguished vertex since the
searchers can rendezvous there. This possibility can be discounted by considering an ap-
propriate symmetry assumption on the graph, e.g., the group A of vertex automorphisms is
a transitive group. As suggested by Anderson et al. [AR90], it can be shown that the lower
bound in Inequality 1.4 holds for any graph with a transitive group of automorphisms with
essentially the same proof as above.

In the asymmetric version of the rendezvous game players are allowed to play different
strategies. For example, assuming that the graph is hamiltonian, one of the searchers can
stay stationary while the moving player can choose to traverse a hamiltonian path (this is
also known as wait for mammy strategy), in which case it is not difficult to show that the
expected meeting time is at most n−1

2 , i.e., the lower bound in Inequality 1.4 is also an
upper bound.

In the symmetric rendezvous game the players do not have the option of playing different
strategies. A natural strategy without searcher cooperation, for example, is a simultaneous
random walk. If the searchers cooperate they can build a spanning tree and then they can
perform a preorder traversal on the this tree which can search all the nodes exhaustively in
2n steps. Now the searchers in each time interval of length 2n − 1 search exhaustively or
wait each with probability 1/2. This scheme has expected rendezvous time 2(2n− 1). For
the complete graph there is an even better strategy proposed by Anderson et al. [AR90] that
has expected rendezvous time ∼ .82·n. Certainly, there are interesting questions concerning
other topologies as well as memory and expected rendezvous time tradeoffs. We refer the
reader to Alpern and Gal [AG03] for additional studies.

1.7 Network Decontamination and Black Holes
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Mobile agents have been found to be useful in a number of network security applications.
Intrusion is the act of (illegally) invading or forcing into the premises of a system without
right or welcome in order to compromise the confidentiality, integrity or availability of a
resource. Computer systems need to be monitored for intrusions and their detection is a
difficult problem in network and computer system security. Once detected it is important to
remove the intruders or decontaminate the network. In this section we look at two different
problems related to these issues. First we discuss a model for decontaminating a network
efficiently, and second we discuss algorithms for detecting malicious nodes called black holes.

1.7.1 Network decontamination

In the graph searching problem a set of searchers want to catch a fugitive hidden in a
graph. The fugitive moves with a speed that may be significantly higher than the speed
of searchers, while the fugitive is assumed to have complete knowledge of the searchers’
strategy. In an equivalent formulation, we are given a graph with contaminated edges and,
via a sequence of steps using searchers, we want to arrive at a situation whereby all edges
of the graph are simultaneously clean. The problem is to determine the minimum number
of searchers sufficient to clean the graph and the goal is to obtain a state of the graph in
which all edges are simultaneously clean. An edge is cleaned if a searcher traverses it from
one of its vertices to the other. A clean edge is preserved from recontamination if either
another searcher remains in a vertex adjacent to the edge, or all other edges incident to
this vertex are clean. In other words, a clean edge e is recontaminated if there exists a
path between e and a contaminated edge, with no searcher on any node of the path. The
basic operations, also called search steps, are the following: 1) place a searcher on a node,
2) move a searcher along an edge, 3) remove a searcher from a node. Graph searching is
the problem of developing a search strategy, i.e., a sequence of search steps resulting in all
edges being simultaneously clean.

The main issues worth investigating include devising efficient search strategies and min-
imizing the number of searchers used by a strategy. In general, the smallest number of
searchers for which a search strategy exists for a graph G is called the search number s(G)
of G. Determining the search number of a graph is NP-hard (see Meggido et al. [MHG+88]).
Two properties of search strategies are of particular interest: first, absence of recontami-
nation, and second, connectivity of the cleared area. A search strategy is monotone if no
recontamination ever occurs. Monotone searching becomes more important when the cost
of clearing an edge far exceeds the cost of traversing an edge. Hence each edge should be
cleared only once. Lapaugh [Lap93] has proved that for every G there is always a monotone
search strategy that uses s(G) searchers.

Another type of search is connected search whereby clean edges always remain connected.
Connectivity is an important safety consideration and can be important when searcher com-
munication can only occur within clean areas of the network. Such strategies can be defined
by not allowing operation searcher removals and allowing searcher insertions either only in
the beginning of the search or when applied to vertices incident to an already cleared edge.
Optimal connected strategies are not necessary monotone. A family of graphs (depending
on a parameter k) that can be contiguously searched by 280k + 1 searchers but require
at least 290k searchers for connected monotone search are constructed by Dyer [Dye05].
The problem of determining optimal search strategies under the connectivity constraint is
NP-hard even on planar graphs but it has been shown that optimal connected strategies
can be computed in linear time for trees.
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Let G = (V,E) be a graph (with possible multiple edges and loops), with n vertices and
m edges. For subsets A,B ⊆ E such that A ∩ B = ∅ we define δ(A,B) to be the set of
vertices adjacent to at least one edge in A and to at least one edge in B. We also use δ(A)
to denote δ(A,E−A). A k-expansion in G is a sequence X0, X1, . . . , Xr, where Xi ⊆ E for
every i = 0, . . . , r, X0 = ∅, Xr = E, and satisfying the following:

• |Xi+1 −Xi| ≤ 1, for every i = 0, . . . , r − 1,
• |δ(Xi)| ≤ k, for every i = 0, . . . , r.

The expansion number x(G) of G is the minimum k for which there is a k-expansion in
G. A graph with expansion number k can thus be obtained by adding one edge after the
other, while at the same time preserving the property that no more than k nodes are on the
boundary between the current and remaining set of edges. The following relation between
expansion and searching holds: x(G) ≤ s(G) ≤ x(G) + 1, for any graph G.

Branch decomposition of a graph G is a tree T all of whose internal nodes have degree
three, with a one-to-one correspondence between the leaves of the tree and the edges of
G. Given an edge e of T , removing e from T results in two trees T

(e)
1 and T

(e)
2 , and an

e-cut is defined as the pair {E(e)
1 , E

(e)
2 }, where E

(e)
i ⊂ E is the set of leaves of T

(e)
i for

i = 1, 2. Note that E
(e)
1 ∩ E

(e)
2 = ∅ and E

(e)
1 ∪ E

(e)
2 = E. The width of T is defined as

ω(T ) = maxe |δ(E(e)
1 )|, where the maximum is taken over all e-cuts in T . The branchwidth

bw(G) of G is then minT ω(T ), where the minimum is taken over all branch decompositions
T of G. It follows easily that for any graph G, bw(G) ≤ max{x(G), 2}. Branchwidth is
related to the ability of recursively splitting the graph into several components separated
by few nodes. In particular, there is an edge of the optimal branch decomposition of a graph
G whose removal corresponds to splitting G into components of size at most m/2 edges,
and with at most bw(G) nodes in common. For any graph G, we have that bw(G) − 1 ≤
s(G) = O(bw(G) log n).

A k-expansion X0, X1, . . . , Xr of a graph G is connected if, for any i = 1, . . . , r, the
subgraph induced by Xi is connected. The connected expansion number cx(G) of G is the
minimum k for which there is a connected k-expansion in G. Similarly, a search strategy
is connected if the set of clear edges induces a connected subgraph at every step of the
search. The connected search number cs(G) of a graph G is the minimum k for which
there is a connected search strategy in G using at most k searchers. It can be proved that
cx(G) ≤ cs(G) ≤ cx(G) + 1.

There is a polynomial-time algorithm that, given a branch decomposition T of a 2-edge-
connected graph G of width k, returns a connected branch decomposition of G of width k
(see Fomin et al. [FFT04]). Therefore, the connected branchwidth of any 2-edge-connected
graph is equal to its branchwidth. In other words, there is no additional price for imposing
the connectedness in branch decompositions. As a consequence, it is possible to partition
the edges of any 2-edge-connected graph of branchwidth k into at most three connected
subgraphs of size m/2 edges, sharing at most k nodes. The connected expansion cannot be
too large in comparison with the expansion, and the same holds for graph searching. More
specifically, it can be proved (see Fomin et al. [FFT04]) that for any connected graph G,

cx(G) ≤ bw(G) · (1 + log m),
cx(G) ≤ x(G) · (1 + log m),
cs(G) ≤ s(G) · (2 + log m),

where m is the number of edges of the network.
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1.7.2 Black holes

Mobile code is designed to run on arbitrary computers and as such it may be vulnerable to
“hijacking” and “brainwashing”. In particular, when an agent is loaded onto a host, this
host can gain full control over the agent and either change the agent code or alter, delete
or read/copy (possibly confidential) information that the agent has recorded from previous
hosts (see Schelderup et al. [SØ99]). An important question is whether a mobile agent
can shelter itself against an execution environment that tries to tamper and/or divert its
intended execution (see Sander et al. [ST98]).

Blackoles were introduced by Dobrev et al. [DFPS01] in order to provide an abstract
representation of a highly harmful object of unknown whereabouts but whose existence we
are aware of. A black hole is a stationary process which destroys visiting mobile agents
upon their arrival without leaving any observable trace of such a destruction. The problem
posed by Dobrev et al. [DFPS01] “is to unambiguously determine and report the location of
the black hole”. The Black Hole Search (BHS) problem is to determine the location of the
black hole using mobile agents. Thus, BHS is solved if at least one of the agent survives,
while all surviving agents know the location of the black hole.

Consider a ring of n nodes and a set A of k ≥ 2 mobile agents traversing the nodes of
this ring. Assume that the size n of the ring is known to all the mobile agents but the
number k of agents may not be a priori known to them. Suppose that the agents can move
from node to (neighboring) node and have computing capabilities and bounded storage,
follow the same protocol, and all their actions take a finite but otherwise unpredictable
amount of time. Each node has a bounded amount of storage (O(log n) bits suffice), called
a whiteboard, which can be used by the agents to communicate by reading from and writing
on the whiteboards.

Let us consider the case of the ring network. At least two agents are needed to locate the
black hole. Moreover, as a lower bound, it is shown in Dobrev et al. [DFPS01] that at least
(n− 1) log(n− 1) + O(n) moves are needed in order to find a black hole, regardless of the
number of agents being used. In addition, it is shown that two agents can find the black
hole performing 2n log n + O(n) moves (in time 2n log n + O(n)).

Questions of related interest include 1) how many agents are necessary and sufficient to
locate a black hole, and 2) time required to do so and with what a priori knowledge. For
additional results and details on the black hole search problem in arbitrary networks we
refer the reader to Dobrev et al. [DFPS02]. For results on multi-agent black hole search see
[DFPS04].
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