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8 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Área de la
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Abstract. The problem of computing locally a coloring of an arbitrary
planar subgraph of a unit disk graph is studied. Each vertex knows its
coordinates in the plane, can directly communicate with all its neighbors
within unit distance. Using this setting, first a simple algorithm is given
whereby each vertex can compute its color in a 9-coloring of the planar
graph using only information on the subgraph located within at most 9
hops away from it in the original unit disk graph. A more complicated
algorithm is then presented whereby each vertex can compute its color in
a 7-coloring of the planar graph using only information on the subgraph
located within a constant number of hops away from it.

1 Introduction

Graph vertex coloring is the problem of assigning colors to the vertices of a
given graph so that no two adjacent vertices share the same color. The problem
enjoys many practical and theoretical applications i.e. in scheduling, register
allocation in compilers, and pattern matching and many others. Because of its
relation to frequency assignment in mobile and wireless networks, the vertex
coloring problem has been considered in many research papers, (e.g., see the
survey papers Galinier et al. [7], Tuza [18] and the source book [10] of coloring
problems by Jensen and Toft).



In this paper we are interested in the graph vertex coloring as applicable
to wireless ad-hoc networks. The wireless ad-hoc networks of interest to us are
geometrically embedded in the plane and consist of a number of nodes, say n,
whereby two nodes are adjacent if and only if they are within the transmission
range of each other. If all the nodes have the same transmission range then these
networks are known as unit disk graphs. For such graphs there have been sev-
eral papers in the literature addressing the coloring problem. Among these it is
worth mentioning the work by Marathe et al. [13] (presenting an on-line coloring
heuristic which achieves a competitive ratio of 6 for unit disk graphs: the heuris-
tic does not need a geometric representation of unit disk graphs which is used
only in establishing the performance guarantees of the heuristics), Graf et al. [9]
(which improves on a result of Clark, Colbourn and Johnson (1990) and shows
that the coloring problem for unit disk graphs remains NP-complete for any
fixed number of colors k ≥ 3), Caragiannis et al. [3] (which proves an improved
upper bound on the competitiveness of the on-line coloring algorithm First-Fit
in disk graphs which are graphs representing overlaps of disks on the plane)
and Miyamoto et al. [14] (which constructs multi-colorings of unit disk graphs
represented on triangular lattice points).

There are also several papers on coloring restricted to planar graphs of which
we note Ghosh et al. [8] because it is concerned with a self-stabilizing algorithm
for coloring such graphs. Their algorithm achieves a 6 coloring by transforming
the planar graph into a DAG of out-degree at most five. However, this algorithm
needs the full knowledge of the topology of the graph. The specificity of the
problem for ad-hoc networks requires a different approach. An ad-hoc network
can be a very large dynamic system, and in some cases a node can join or leave
a network at any time. Thus, the full knowledge of the topology of an ad-hoc
network might not be available, or possible for each node of the network at
all times. Thus algorithms that can make computations in a fully distributed
manner, using in each node only information about the network within a fixed
distance neighborhood of the node, are of particular interest in ad hoc networks.
Examples of algorithms of this type are the Gabriel test [6] for constructing
a planar spanner, face routing [11],[1], or an approximation of the minimum
spanning tree [22], [4].

To reduce network complexity, the unit disk graph G is sometimes reduced
to a much smaller subset P of its edges called a spanner. A good spanner must
have some properties so that certain parameters of communication within P
are preserved. To ensure all to all communication P must be connected. An
important property is having a constant stretch factor s, guaranteeing that the
length of a path joining two nodes in G is at most s times shorter that the
shortest path joining these nodes in P . A desired property of P is planarity,
which, on one hand, permits an efficient routing scheme based on face routing
and, on the other hand, ensures linear complexity of P with respect to its number
of nodes. Planar graphs also have low chromatic number, hence a small set of
frequencies is sufficient to realize radio communication.



In this paper, we are interested in local distributed coloring algorithms whereby
messages emanating from any node can propagate for only a constant number
of hops. This model was first introduced in the seminal paper of Linial [12]. One
of the advantages of this model is that it aims to obtain algorithms that could
cope with a dynamically changing infrastructure in a network. In this approach,
each node may communicate with nodes at a bounded distance from it and thus
a local change in the network only needs a local adjustment of a solution. In
Linial’s model of communication, locality results in a constant-time distributed
algorithm.

Several research papers along these lines include Szegedy et al. [16], Vrede-
veld et al. [21] just to mention a few. The previously mentioned papers ignore
the geometric nature of the resulting wireless ad hoc network, as this might be
the case, e.g., when the nodes are equipped with GPS devices. In our approach,
we assume that the nodes of the network are placed in the plane according to
some global system of coordinates and that each node knows its proper coor-
dinates, i.e. the network nodes are geographically aware. In the particular case
of geographically aware ad hoc mobile networks, the techniques based on the
traditional coloring algorithms for planar graphs (see the book of Jensen and
Toft [10][Chapter 2]) like the celebrated 4-coloring theorem for planar graphs
of Appel and Haken (see also Robertson et al [15]) may not be effective or not
adaptable to the distributed setting. Our approach in this paper is to use geo-
metric awareness of the underlying ad hoc network in order to achieve a fully
distributed, local coloring algorithm.

1.1 Network model and results of the paper

We are given a set S of n points in the plane and a planar subgraph G of
the unit disk graph induced by S. We assume that G is connected and all the
nodes either know their exact (x, y) coordinates (which could be achieved for
example by having the nodes equipped with GPS devices) or have a consistent
relative coordinate system (know their (x, y) coordinates relative to each other,
see Capkun et al. [2]). If G is not connected, all reasoning can be applied to each
connected component of G independently, in which case the coloring constructed
applies to each connected component. We propose two local coloring algorithms.
The first simple algorithm computes a 9-coloring of the planar graph. We assume
that each node knows its 9-neighborhood in the original unit disk graph (i.e. all
nodes at distance at least 9 hops away from it), it can communicate with each
node of its neighborhood and it is aware which of these nodes belong to the planar
subgraph. We then present a more complicated algorithm whereby each vertex
can compute its color in a 7-coloring of the planer graph using only information
on the subgraph located within at most a constant number h = 201 of hops away
from it. The constant h is quite large though in practice nodes at much smaller
distance will need to communicate. The algorithm does not determine locally
either what the different connected components are or even what are the local
parts of a component connected somewhere far away. Moreover, the correctness
of the algorithm is independent of the connectivity of the planar subgraph.



2 Simple Local Coloring Algorithm

The basic idea of the coloring algorithms in this paper is to partition the plane
containing G into fixed sized areas, compute a coloring of the subgraph of G
within each such area independently and possibly adjust colors of some vertices
that are on the border of an area and thus are adjacent to nodes in another area.
This is possible to do consistently and without any pre-processing because the
nodes know their coordinates and thus can determine the area in which they
belong. Since each area is of fixed size, a subgraph of the given unit disk graph
belonging to this area is of a bounded diameter. Hence a constant number of
hops is needed for a node to communicate with each other node of the same
area.

2.1 Coloring with regular hexagonal tilings

The simplest partitioning we consider is obtained by tiling the plane with regular
hexagons having sides of size 1. We suppose that two edges of the hexagons are
horizontal and one of the hexagons is centered in coordinates [0, 0]. To assure
the disjointness of the hexagon areas we assume that only the upper part of
the boundary and the leftmost vertex belongs to each hexagon area while the
rightmost vertex does not belong to it. Under such conditions, two vertices of G
can be connected by an edge only if they are in the same or adjacent hexagon
areas.

As each vertex knows its own coordinates, it can calculate which hexagon it
belongs to. In the first step each vertex communicates with vertices within its
hexagon and learns the part of the subgraph located in its hexagon. By Lemma
1, communication inside a hexagon may be done using at most nine hops.

Lemma 1. Any connected component of the subgraph of a unit disk graph in-
duced by its nodes belonging to a regular hexagon with sides of size 1 has a
diameter smaller or equal to nine. Moreover, there exist configurations of nodes
inside the hexagon of diameter equal to nine.

Proof. We prove first that any independent set of nodes centered inside a given
hexagon consists of at most five nodes. Indeed, every node of such an independent
set covers an angular sector, originated at the center of the hexagon, of at least
120 ◦ and two independent nodes may share an angular sector of at most 60 ◦.
Consequently, at most five elements of an independent set may be centered in
the external region.

To prove the claim of the lemma take two nodes of a hexagon furthest apart
and the shortest path joining them. Odd-numbered nodes of such path form an
independent set. Since any such set contains at most five nodes, at most nine
edges may belong to any shortest path inside the hexagon. Figure 1 shows an
example of a configuration of nodes proving that nine is also a lower bound for
the diameter problem.



dominating set vertex

connecting vertex

Fig. 1. Vertices within a hexagon of radius 1 for which the unit disk graph is of diameter
nine.

We could apply the standard 4-coloring algorithm for each connected compo-
nent of the graph induced by G on points within each hexagon. Since the tiling
of the plane by hexagons can be 3-colored, three disjoint sets of four colors can
be used, one set of colors for vertices in each hexagon area of the same color.
This would lead to a 12 coloring of G (see the coloring scheme of the hexagonal
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Fig. 2. Coloring of a hexagonal tiling of the plane using 12 colors.

tiling depicted in Figure 2).

The number of colors can be reduced by coloring the outer face of each
component in a hexagon with prescribed colors, using the result of the following
theorem.



Theorem 1 (3 + 2 Coloring, Thomassen [17]). Given a planar graph G, 3
prescribed colors and an outer face F of G, graph G can be 5-colored while the
vertices of F use only the prescribed three colors.

The precise result in Thomassen’s paper [17] (see also Dörre [5]) states that
every planar graph is L-list colorable for every list assignment with lists of size
5. The proof of this result however implies the following statement taken from
Tuza et al. [19] that for a planar graph G with outer face F , every pre-coloring
of two adjacent vertices v1, v2 of F can be extended to a list coloring of G for
every list assignment with |L(v)| = 3 if v ∈ V (F ) − {v1, v2} and |L(v)| = 5 if
v 6∈ V (F ), where V (F ) denotes the vertex set of F . This is what we are using,
although we do not pre-color any two vertices (See also the related paper of
Voigt [20] which states that list coloring of planar graphs is impossible for some
graphs if lists are of length at most 4.)

Using Theorem 1 the number of colors can be reduced to 9 as follows. The
idea is that the vertices of G in a hexagon can be adjacent only to the outer
face vertices of the graphs induced in the neighboring hexagons. Three disjoint
sets of colors of size three are used as the prescribed colors of the vertices on
the outer faces, the inner vertices of G in a hexagon can employ, in addition to
the three colors used on the outer face of its hexagon, two additional colors of
the outer faces of other hexagons (see Figure 3). Thus we obtain the following
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Fig. 3. Colorings of a hexagonal tiling of the plane using 9-colors.

result.

Theorem 2. Using the partitioning of a plane into regular hexagons with sides
of size 1, a vertex can compute its color in a 9-coloring of the planar graph using
only information on the subgraph located within at most 9 hops away from it.



3 The 7-coloring Algorithm

In this section we give a 7 coloring algorithm and prove its correctness. The trade-
off is the larger area of the network a node needs to examine in this algorithm
and a more complex partitioning of the plane. To begin with, we attempt to
reduce the number of colors by using a tiling consisting of two tile types. The
subgraph in each tile is colored using 5 colors as in Theorem 1, but we shall
use six colors in all the tiles together. We then show how to adjust locally the
coloring on the borders of tiles where some improper coloring could exist. This
can be done using one additional color for a total of seven colors.

3.1 Reducing the number of colors using mixed tilings

We will employ the tiling using octagons and squares shown in Figure 4. Each
square is of size 5 + ε while the slanted part of an octagon border is of length
3 + ε, meaning that these sides can be chosen arbitrarily close to but greater
than 5 and 3, respectively. We shall assume that one of the octagons is centered
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Fig. 4. A coloring of the set of points based on the octagon/square tiling of the plane.

in coordinates [0, 0]. The reasons for choosing the sizes of tiles this way is to
isolate the meeting places of octagons (the slanted border part) from each other
so that each of them can be dealt with independently and locally, and to ensure
that there is no edge between two vertices in different squares or between two
vertices of the same squares that could be recolored for different crossings in
the algorithm. In handling a meeting place, only vertices at a distance at most



2 from it will be recolored, therefore it is impossible to have two neighboring
vertices recolored due to different crossing.

Similarly as in the previous coloring, the subgraph induced by the vertices
in a tile is colored using 5 colors, three of them are used on the outer face and
these three colors plus the additional two colors are used on vertices not on the
outer face using Theorem 1. Since each node knows its location, it can determine
which tile it belongs to. By Lemma 2 the communication inside an octagon may
be done using at most 201 hops.

Lemma 2. Any subgraph of a unit disk graph induced by its vertices belonging
to an octagon used in the algorithm has a diameter smaller or equal to 201.

Proof. The largest independent set of unit disks (i.e. disks of radius one) centered
inside the octagon equals the largest possible set of disjoint disks of diameter
one that may be centered within the octagon. To bound the size of such an
independent set it is sufficient to find the best packing of such disks in the
enlarged octagon, which is the result of the Minkowski sum of the octagon and
the disk of diameter one. The surface of the octagon is slightly greater than (5+
3
√

2)2−2(3
√

2/2)2 and the surface of its enlargement belt equals 16+π/4, which
results in the total surface of around 79.6. By comparing it to the surface of the
disk, equal to π/4 = 0.785, we see that no more than 101 such disks of diameter
one may be packed within the enlarged octagon. Hence, any independent set of
unit disks centered within the octagon contains at most 101 elements. We can
complete such an independent set to a shortest path of length at most 201.

Despite the fact that the simple, surface comparing argument leaves some
room for improvement (the packing density is at most π

√
3/6 = 0.907), it is

possible to construct configurations of nodes, centered inside the octagon, in-
ducing a graph of diameter at least 183.

Since the square tile admits a smaller hop diameter, any node can determine
the subgraph induced by the vertices in its tile by examining nodes at hop
distance at most 201.

The color sets used in the tiles are as specified in Figure 4. The resulting
coloring is using only 6 colors. Due to the chosen sizes of the tiles and the chosen
coloring scheme, an edge of G crossing from a square to an octagon is between
vertices of different colors. After this initial color assignment, any edge of G
whose endpoints are of the same color is necessarily an edge crossing the slanted
part of the border of two adjacent octagons. The following construction shows
that using one additional color and with careful attention to detail near the
common border of adjacent octagons, some of the vertices can be recolored in
order to achieve a 7-coloring of G. Details follow in Subsection 3.2.

3.2 Adjusting the coloring

As seen from Figure 4, the centers of the tiles form an infinite regular mesh. We
shall denote the hexagon tile that is centered at coordinates [0, 0] as S0,0. For
a tile denoted Si,j , its horizontal left, horizontal right, vertical down, vertical



up neighboring tile is denoted Si−1,j , Si+1,j , Si,j+1, Si,j−1, respectively. Let Gi,j

denote the subgraph of G induced by the vertices located within Si,j and suppose
that Fi,j denotes the outer face of Gi,j . In case that Gi,j is not connected, we
consider each connected component of Gi,j separately. (Notice that we only need
to consider those components of Gi,j that contain vertices adjacent to more than
one octagon, for otherwise the coloring of such a component could be added to
the coloring of Gi+1,j+1.)

Let Si,j be one of the hexagonal tiles, i.e., i + j is even. Consider the place
where Si,j and Si+1,j+1 meet (we call it a CRi,j crossing). Consider the sequence
of vertices obtained in a counterclockwise cyclical traversal of the outer face Fi,j

of Gi,j and let L = {u1, u2, . . . , uk} be the shortest subsegment of this traversal
containing all the vertices connected to Gi+1,j+1, i.e., as in Figure 5.

Gi+1,j

Gi+1,j+1

Gi,j+1

v1

uk

vl

v2

u3
u2

u1

Gi,j

Fig. 5. A typical simple crossing.

Notice that L could contain some vertex more than once if the outer face is
not a simple curve. Define M = {v1, v2, . . . , vl} analogously for Gi+1,j+1, using
clockwise traversal.

We say that crossing CRi,j is simple if no inside vertex of L different from
u1 and uk is connected both to a vertex of M and to a vertex in Gi,j+1 or
Gi+1,j , and the same analogous condition holds for the inside vertices of M . If
the crossing is simple, the problem of having some edges between vertices of L or
M having both endpoints of the same color can be resolved using the following
lemma.



Lemma 3. Let CRi,j be a simple crossing (see Figure 5). Then the vertices of
L and M and some of the neighbors of u1, v1, uk and vk can be recolored, possibly
with the help of color 7, in such a way that no edge incident to L or M or a
neighbor of either of L or M has both endpoints of the same color.

Proof. After the initial coloring, the only edges which might have endpoints of
the same color are the edges connecting vertices of L to vertices of M . Without
loss of generality we may assume that the vertices of L and M use colors 1, 2, 3,
the inside of Gi,j uses in addition colors 4, 5, while the inside of Gi+1,j+1 uses
colors 4, 6 in addition to 1, 2, 3.

The recoloring is done in two steps, where in the first step the conflict vertices
of L and M (i.e. the ones with a neighbor of the same color) are recolored as
indicated in Table 1.

Conflict vertex of old color new color

L 1 6
M 2 5
L 3 7

Table 1. First step of recoloring

This ensures that no edge incident to an inner vertex of L or M , i.e, different
from {u1, v1, uk, vl}, has both endpoints of the same color since:

– if there was an edge from L to M connecting two vertices of the same color,
one endpoint of this edge has been recolored.

– As no color 6 was used in Gi,j , the vertices of L recolored to 6 have no
neighbors of color 6 in Gi,j (and they cannot be neighbors, as both had
color 1 in the coloring of Gi,j). They also do not have neighbors of color 6
in Gi+1,j+1 as all their neighbors in Gi+1,j+1 are on the outer face and thus
of colors 1, 2, 3 (and newly 5). Finally, from the second property of simple
crossing it follows that the inner conflict vertices of L and M do not have
neighbors in Gi,j+1 and Gi+1,j ,

– Analogous argument applies for vertices recolored to 5 in M and vertices
recolored to 7 in L.

It remains to consider edges incident to {u1, v1, uk, vl} that might have end-
points of the same color; for example u1 was recolored from 1 to 6 but it has a
neighbor of color 6 in Si,j+1 (note that there is no problem if the new color was
7). In such a case, these same-color neighbors in Si,j+1 are recolored to color
7. We claim that this does not create same-color edges. First note that if u1

recolored its neighbors of color 6 in Gi,j+1, then v1 necessarily kept its original
color, since v1 might change its color only if it was originally 2. Hence, by the
simplicity of the crossing, only the neighbors of v1 of color 6 (or, by symmetry,
only the neighbors of u1 of color 5) need to be recolored to color 7. The cases



for other extreme vertices of L and M are analogous. Since the width of the gap
between the squares is greater than 3, it ensures that the recoloring of vertices
in Gi,j+1 and Gi+1,j does not create any conflict in coloring.

Furthermore, any two vertices of Gi,j+1 which were recolored to 7 due to
different crossings with octagons cannot be neighbors since the size of the squares
is 5 + ε.

While the width of the gap between the squares ensures the first condition
for a crossing to be simple is always satisfied, there can be a case when several
different vertices of L are connected both to a vertex of M and to a vertex in
Gi,j+1 or Gi+1,j , see Figure 6. Notice that this may happen when some inner
vertices of L or M are cut vertices in Gi,j or Gi+1,j+1.

We resolve the problem of a crossing that is not simple by a pre-processing
phase in which some of the vertices in the octagons are assigned to the neigh-
boring squares, with the goal to make the crossing simple.

Gi+1,j

Gi+1,j+1

Gi,j+1

v1

u1

u′

uk

u′′

vl
Gi,j

Fig. 6. A not simple crossing.

Consider a crossing CRi,j and let L and M be defined as before. Let u′ be
the last (in L) occurrence of a node connected to both M and Gi,j+1 (if there
is no such node, set u′ = u1). Similarly, let u′′ be the first occurrence in L of
a node connected to both M and Gi+1,j . Define v′ and v′′ analogously in M ,
using clockwise traversal, see Figure 6. Any vertex of L which is connected to
both Gi,j+1 and Gi+1,j+1 must occur in the segment of L from u1 to u′, since



the edges incident with u′ connecting it to Gi,j+1 and Gi+1,j+1 act as separa-
tors in the planar graph. Similarly, any node of L which is connected to both
Gi+1,j and Gi+1,j+1 must occur in the segment of L from u′′ to uk (see Figure 7).

Gi,j+1

Gi+1,j

Gi,j

Gi+1,j+1

u′

v′

M

v1

uk = u′′

u1

v′′

vl

L1

L2

L

Fig. 7. L and M in a crossing.

We now partition L into three parts: Let L1 be the shortest initial segment
of L from u1 to to first occurrence of u′ so that all vertices connected to both
Gi,j+1 and Gi+1,j+1 are contained in L1, let L3 be the shortest final segment of
L starting with an occurrence of u′′ so that all vertices connected to both Gi+1,j

and Gi+1,j+1 are contained in L3, and L2 be the remaining part of L. We define
M1, M2, and M3 analogously as segments of M using v′ and v′′.

To make the crossing simple, we assign the components of Gi,j separated
by u′ and encountered in the traversal of L1 to Gi,j+1, and the components
of Gi,j separated by u′′ and encountered in the traversal of L3 are assigned
to are Gi+1,j . The same is applied to the segments of Gi+1,j+1 separated by
v′ and v′′ and encountered in the traversal of M1 and M3, (see Figure 8). All
the components that are assigned to Gi,j+1 are inside the area bordered by the
edges connecting u′ or v′ to Gi+1,j+1 and Gi,j+1 or Gi,j and Gi,j+1. Similarly all
the components that are assigned to Gi+1,j are inside the area bordered by the
edges connecting u′′ or v′′ to Gi+1,j+1 and Gi+1,j or Gi,j and Gi+1,j . Since the
length of the crossing is more than 3, there cannot be any edge between vertices
assigned to Gi+1,j and Gi,j+1. Furthermore, after this reassignment, u′ is the
only vertex in Gi,j that can be connected to both Gi+1,j+1 and Gi,j+1 and u′′ is
the only vertex in Gi,j that can be connected to both Gi+1,j+1 and Gi+1,j . The
analogous statement can be made about v′ and v′′, Thus the crossing L′ and
M ′ between Gi,j and Gi+1,j+1 is a subset of u′, L2, u

′′ and v′,M2, v
′′ and this



Gi,j+1

Gi+1,j

Gi+1,j+1

u′

v′

L′

M ′

v1

uk = u′′

v′′

u1

Gi,j

Fig. 8. L′ and M ′ after the transformation. The shaded areas belong to Gi,j+1 and
Gi+1,j .

modified crossing CRi,j satisfies both conditions of a simple crossing, see Figure
8, and we can thus proceed with the coloring as stated in Lemma 3.

The following lemma, together with the size of the squares being selected as
5 + ε, allows us to apply Lemma 3 to each crossing independently.

Lemma 4. Any vertex recolored due to resolving conflicts in crossing CRi,j is
at a distance at most 2 from the line separating Si,j and Si+1,j+1.

Proof. Since L2 and M2 are subsets of the original L and M , they are at distance
at most 1 from the separating line. From construction in Lemma 3, only the
vertices of L1 and M2 and some of their neighbors are recolored.

Notice that the hexagon is of diameter less than 10.6 and a square, even
after the inclusion of the relocated parts is of diameter less than 9.1. Hence, by
Lemma 2, the local subgraphs which need to exchange the information needed
to compute the coloring are of diameter at most 201.

3.3 Local 7-coloring algorithm

Putting the pieces together we have the following local, fully distributed algo-
rithm that is executed at each vertex of the graph to obtain a valid 7-coloring
of the graph.

The results of this section can be summarized in the following theorem.

Theorem 3. Given a planar subgraph of the unit disk graph whose vertices cor-
respond to hosts that are each aware of its geometric location in the plane, Al-
gorithm 1 computes locally a 7-coloring of this subgraph using only information
on the subgraph located within a constant number of hops away from it.



Algorithm 1 The local 7-coloring algorithm for a vertex v

1: Learn your neighborhood up to distance 201 // Note that all steps can be performed
locally using the information learned in the first (communication) step, without
incurring further communication.

2: From your coordinates, identify the square/octagon Si,j you are located in, and
calculate the connected component of Gi,j you belong to.
// The next step is for vertices near a crossing

3: Calculate L and M , and then L′ and M ′. Determine whether you have been shifted
to a neighboring square. Determine whether L′ and M ′ are connected, if not
but the squares are now connected, repeat the process until the final L∗ and
M∗ are computed.

4: Apply the 3 + 2 coloring algorithm from Theorem 1 for each Gi,j , as in Figure 4
5: Apply the recoloring from Lemma 3.

4 Conclusions

We gave two algorithms computing locally a coloring of a given planar subgraph
of a unit disk graph. The two algorithms differ in the number of colors used and
in the size of the neighborhood they need to know. Two interesting questions
remain for further studies:

1. whether or not one can substantially decrease the size of the subgraph used
in the calculation of a 7-coloring, and

2. whether one can decrease the number of colors that are sufficient for col-
oring a given planar subgraph of a unit disk graph while maintaining the
algorithm’s locality and full distributivity.

In particular, is it possible to 4-color a planar graph using a local algorithm?
Since there exist uniquely 4-colorable planar graphs it seems unsuitable to start
the 4-coloring independently in the different parts of the graph. However, the
fundamental nature of any local algorithm is to perform the local computations
independently. The interesting open question is then the lower bound on the
number of colors needed by a local algorithm to perform a coloring of a planar
subgraph of a unit disk graph.
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