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1 PROBLEM DEFINITION

How can a network be explored efficiently with the help of mobile agents? This is a very
broad question and to answer it adequately it will be necessary to understand more precisely
what mobile agents are, what kind of networked environment they need to probe, and what
complexity measures are interesting to analyze.

Mobile agents. Mobile agents are autonomous, intelligent computer software that
can move within a network. They are modeled as automata with limited memory and
computation capability and are usually employed by another entity (to which they must
report their findings) for the purpose of collecting information. The actions executed by the
mobile agents can be discrete or continuous and transitions from one state to the next can
be either deterministic or non-deterministic, thus giving rise to various natural complexity
measures depending on the assumptions being considered.

Network model. The network model is inherited directly from the theory of distributed
computing. It is a connected graph whose vertices comprise the computing nodes and edges
correspond to communication links. It may be static or dynamic and its resources may
have various levels of accessibility. Depending on the model being considered, nodes and
links of the network may have distinct labels. A particularly useful abstraction is an
anonymous network whereby the nodes have no identities, which means that an agent
cannot distinguish two nodes except perhaps by their degree. The outgoing edges of a
node are usually thought of as distinguishable but an important distinction can be made
between a globally consistent edge-labeling versus a locally independent edge-labeling.

Efficiency measures for exploration. Efficiency measures being adopted involve the
time required for completing the exploration task, usually measured either by the number of
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edge traversals or nodes visited by the mobile agent. The interplay between time required
for exploration and memory used by the mobile agent (time/memory tradeoffs) are key
parameters considered for evaluating algorithms. Several researchers impose no restrictions
on the memory but rather seek algorithms minimizing exploration time. Others, investigate
the minimum size of memory which allows for exploration of a given type of network (e.g.,
tree) of given (known or unknown) size, regardless of the exploration time. Finally, several
researchers consider time/memory tradeoffs.

Main Problems. Given a model for both the agents and the network, the graph
exploration problem is that of designing an algorithm for the agent that allows it to visit
all of the nodes and/or edges of the network. A closely related problem is where the domain
to be explored is presented as a region of the plane with obstacles and exploration becomes
visiting all unobstructed portions of the region in the sense of visibility. Another related
problem is that of rendezvous where two or more agents are required to gather at a single
node of a network.

2 KEY RESULTS

Claude Shannon [1] is credited with the first finite automaton algorithm capable of ex-
ploring an arbitrary maze (which has a range of 5 × 5 squares) by trial and error means.
Exploration problems for mobile agents have been extensively studied in the scientific
literature and the reader will find a useful historical introduction in Fraigniaud et al.[2].

Exploration in general graphs. The network is modeled as a graph and the agent can
move from node to node only along the edges. The graph setting can be further specified in
two different ways. In Deng and Papadimitriou [7] the agent explores strongly connected
directed graphs and it can move only in the direction from head to tail of an edge, but
not vice-versa. At each point, the agent has a map of all nodes and edges visited and
can recognize if it sees them again. They minimize the ratio of the total number of edges
traversed divided by the optimum number of traversals, had the agent known the graph.
In Panaite and Pelc [8] the explored graph is undirected and the agent can traverse edges
in both directions. In the graph setting it is often required that apart from completing
exploration the agent has to draw a map of the graph, i.e., output an isomorphic copy
of it. Exploration of directed graphs assuming the existence of labels is investigated in
Albers and Henzinger [9] and Deng and Papadimitriou [7]. Also in Panaite and Pelc [8],
an exploration algorithm is proposed working in time e + O(n), where is n the number of
nodes and e the number of links. Fraigniaud et al. [2] investigate memory requirements
for exploring unknown graphs (of unknown size) with unlabeled nodes and locally labeled
edges at each node. In order to explore all graphs of diameter D and max degree d a mobile
agent needs Ω(D log d) memory bits even when exploration is restricted to planar graphs.
Several researchers also investigate exploration of anonymous graphs in which agents are
allowed to drop and remove pebbles. For example in Bender et al. [10] it is shown that
one pebble is enough for exploration, if the agent knows an upper bound on the size of the
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graph, and Θ(log log n) pebbles are necessary and sufficient otherwise.

Exploration in trees. In this setting it is assumed the agent can distinguish ports at
a node (locally), but there is no global orientation of the edges and no markers available.
Exploration with stop is when the mobile agent has to traverse all edges and stop at some
node. For exploration with return the mobile agent has to traverse all edges and stop at
the starting node. In perpetual exploration the mobile agent has to traverse all edges of
the tree but is not required to stop. The upper and lower bounds on memory for the
exploration algorithms analyzed in Diks et al. [11] are summarized in the table, depending

Exploration Knowledge Lower Bounds Upper Bounds

Perpetual ∅ None O(log d)
w/Stop n ≤ N Ω(log log log n) O(log N)

w/Return ∅ Ω(log n) O(log2 n)

on the knowledge that the mobile agent has. Here, n is the number of nodes of the tree,
N ≥ n is an upper bound known to the mobile agent, and d is the maximum degree of a
node of the tree.

Exploration in a geometric setting. Exploration in a geometric setting with un-
known terrain and convex obstacles is considered by Blum et al. [3]. They compare the
distance walked by the agent (or robot) to the length of the shortest (obstacle-free) path
in the scene and describe and analyze robot strategies that minimize this ratio for different
kinds of scenes. There is also related literature for exploration in more general settings
with polygonal and rectangular obstacles by Deng et al. [4] and Bar-Eli et al. [5], respec-
tively. A setting that is important in wireless networking is when nodes are aware of their
location. In this case, Kranakis et al. [6] give efficient algorithms for navigation, namely
compass routing and face routing that guarantee delivery in Delaunay and arbitrary planar
geometric graphs, respectively, using only local information.

Rendezvous. The rendezvous search problem differs from the exploration problem in
that it concerns two searchers placed at different nodes of a graph that want to minimize
the time required to rendezvous (usually) at the same node. At any given time the mobile
agents may occupy a vertex of the graph and can either stay still or move from vertex to
vertex. It is of interest to minimize the time required to rendezvous. A natural extension
of this problem is to study multi-agent mobile systems. More generally, given a particular
agent model and network model, a set of agents distributed arbitrarily over the nodes
of the network are said to rendezvous if executing their programs after some finite time
they all occupy the same node of the network at the same time. Of special interest is the
highly symmetric case of anonymous agents on an anonymous network and the simplest
interesting case is that of two agents attempting to rendezvous on a ring network. In
particular, in the model studied by Sawchuk [12] the agents cannot distinguish between
the nodes, the computation proceeds in synchronous steps, and the edges of each node
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are oriented consistently. The table summarizes time/memory tradeoffs known for six
algorithms (see Kranakis et al. [13] and Flocchini et al. [14]) when the k mobile agents use
indistinguishable pebbles (one per mobile agent) to mark their position in an n node ring.

Memory Time Memory Time
O(k log n) O(n) O(log n) O(n)
O(log n) O(kn) O(log k) O(n)

O(k log log n) O
(

n log n
log log n

)
O(log k) O(n log k)

Kranakis et al.[15] show a striking computational difference for rendezvous in an oriented,
synchronous, n×n torus when the mobile agents may have more indistinguishable tokens.
It is shown that two agents with a constant number of unmovable tokens, or with one mov-
able token each cannot rendezvous if they have o(log n) memory, while they can perform
rendezvous with detection as long as they have one unmovable token and O(log n) memory.
In contrast, when two agents have two movable tokens each then rendezvous (respectively,
rendezvous with detection) is possible with constant memory in a torus. Finally, two agents
with three movable tokens each and constant memory can perform rendezvous with detec-
tion in a torus. If the condition on synchrony is dropped the rendezvous problem becomes
very challenging. For a given initial location of agents in a graph, De Marco et al [16]
measure the performance of a rendezvous algorithm as the number of edge traversals of
both agents until rendezvous is achieved. If the agents are initially situated at a distance
D in an infinite line, they give a rendezvous algorithm with cost O(D|Lmin|2) when D is
known and O((D+|Lmax|)3) if D is unknown, where |Lmin| and |Lmax| are the lengths of the
shorter and longer label of the agents, respectively. These results still hold for the case of
the ring of unknown size but then they also give an optimal algorithm of cost O(n|Lmin|),
if the size n of the ring is known, and of cost O(n|Lmax|), if it is unknown. For arbitrary
graphs, they show that rendezvous is feasible if an upper bound on the size of the graph is
known and they give an optimal algorithm of cost O(D|Lmin|) if the topology of the graph
and the initial positions are known to the agents.

3 APPLICATIONS

Interest in mobile agents has been fueled by two overriding concerns. First, to simplify
the complexities of distributed computing, and second to overcome the limitations of user
interface approaches. Today they find numerous applications in diverse fields such as
distributed problem solving and planning (e.g., task sharing and coordination), network
maintenance (e.g., daemons in networking systems for carrying out tasks like monitoring
and surveillance), electronic commerce and intelligence search (e.g., data mining and surfing
crawlers to find products and services from multiple sources), robotic exploration (e.g.,
rovers, and other mobile platforms that can explore potentially dangerous environments or
even enhance planetary extravehicular activity), and distributed rational decision making
(e.g., auction protocols, bargaining, decision making). The interested reader can find useful
information in several articles in the volume edited by Weiss [17].
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4 OPEN PROBLEMS

Specific directions for further research would include the study of time/memory tradeoffs
in search game models (see Alpern and Gaal [18]). Multi-agent systems are particularly
useful for content-based searches and exploration, and further investigations in this area
would be fruitful. Memory restricted mobile agents provide a rich model with applications
in sensor systems. In the geometric setting, navigation and routing in a three dimensional
environment using only local information is an area with many open problems.

5 EXPERIMENTAL RESULTS

None is reported.

6 DATA SETS

None is reported.

7 URL to CODE

None is reported.
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Deterministic Search, Online Robotics, Routing, Search.
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