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Abstract

Let S denote the set of (possibly noncanonical) base pairs {i, j} of an RNA tertiary
structure; i.e. {i, j} ∈ S if there is a hydrogen bond between the ith and jth nucleotide.
The page number of S, denoted π(S), is the minimum number k such that S can be
decomposed into a disjoint union of k secondary structures. Here, we show that computing
the page number is NP-complete; we describe an exact computation of page number, using
constraint programming, and determine the page number of a collection of RNA tertiary
structures, for which the topological genus is known. We describe two greedy algorithms,
and show by an example that neither is optimal. We describe an algorithm running in
time O(n log n) that produces a decomposition of an RNA structure S on n bases into at
most ω(S) · log n disjoint secondary structures, where ω(S) denotes the maximum number
of base pairs that may cross a given base pair. It follows that ω(S) ≤ π(S) ≤ ω(S) · log n,
where π(S) denotes the page number of S. We give an O(n3/2) time algorithm for finding
a 2-page decomposition of bisecondary structures for RNA sequences of size n, and we
provide bounds on the expected page number of random structures having pseudoknots.

1 Introduction

Given an RNA sequence s = a1, . . . , an, a secondary structure S on s is defined to be a set of
unordered pairs {i, j} such that:

1. Watson-Crick or GU wobble pairs: If {i, j} belongs to S, then pair {ai, aj} must be one
of the following canonical base pairs: {A,U}, {U,A}, {G, C}, {C,G}, {G, U}, {U,G}.

2. Threshold requirement: If {i, j} belongs to S, and i < j then j − i > θ.

3. Nonexistence of pseudoknots: If {i, j} and {k, `} belong to S, then it is not the case
that i < k < j < `.
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4. No base triples: If {i, j} and {i, k} belong to S, then j = k; if {i, j} and {k, j} belong
to S, then i = k.

For steric reasons, following convention, the threshold θ, or minimum number of unpaired
bases in a hairpin loop, is taken to be 3. In contrast, a (general) RNA structure S on s is
only required to satisfy the following conditions. (1′) If {i, j} belongs to S, then the ith and
jth nucleotide can form a (possibly noncanonical) base pair. (2) If {i, j} belongs to S, and
i < j then j − i > θ. Hence, a (general) RNA structure, comprising the hydrogen bonded
nucleotide interactions, may contain pseudoknots and base triples. Throughout the paper,
when we refer to RNA structure, we mean general structure, unless we explicitly mention
secondary structure.

RNA secondary structure prediction methods generally employ either (i) thermodynamics-
based dynamic programming approaches, pioneered in Zuker’s algorithm [55], as implemented
in mfold [54], UNAFold [27], RNAfold [18], RNAstructure [29], or (ii) covariance model
approaches, such as the stochastic context free grammar approach implemented in PFOLD
[22] and tRNAscan-SE [25]. The base pair prediction accuracy of thermodynamics-based
methods (comparable with covariance model methods) is at most approximately 70% for
RNA sequences of at most 700 nt [30]; for a comparative benchmarking of a number of
thermodynamics-based and covariance model methods, see the important study of Gardner
et al. [11]. The most accurate current method of RNA secondary structure prediction uses
a hybrid approach, combining the experimental method of selective 2′-hydroxyl acylation an-
alyzed by primer extension (shape) with minimum free energy structure prediction using
constraints [8]. This hybrid approach yields secondary structure accuracy of approximately
95%, comparable with the manually intensive method of comparative sequence analysis [16].

Figure 1: (a,b) Pseudoknot-free secondary structure of Y RNA with EMBL access code
AAPY01489510/220-119, depicted in panel (a) in Feynman circular form, and in panel (b)
in classical form. (c,d) Pseudoknotted structure for the Gag/pro ribosomal frameshift site
of mouse mammary tumor virus, depicted in panel (c) in Feynman circular form, and in
panel (d) in classical form. Images produced with sofware jViz [51] from structures taken
respectively from Rfam [15] and Pseudobase [47].

The situation is different for pseudoknotted structures containing crossing base pairs (i, j),
(x, y), such that i < x < j < y, where there is a need to improve structure prediction ac-
curacy. Indeed, in the case that an RNA structure contains non-nested base pairs, there is
no universally accepted criterion even to define which base pairs form part of the secondary
structure and which base pairs form pseudoknots. In fact, given an RNA X-ray structure,
different methods surveyed in [41] may yield predictions of different pseudoknotted regions!
Another difficulty in pseudoknot structure prediction is the fact that there are no experi-
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mentally determined free energies for pseudoknot formation, although Cao and Chen have
described a computational method to approximate loop entropies for type-H pseudoknots
[6]. Moreover, Lyngsø and Pedersen [26] have shown that minimum free energy pseudoknot
structure prediction is an NP-complete problem. This situation is unfortunate, since pseudo-
knots often play important biological roles, such as promoting a programmed −1 ribosomal
frameshift [45]. For additional biologically important examples of pseudoknot, consult the
pseudobase database of pseudoknots [47, 44].

Pseudoknot prediction algorithms include the genetic algorithm of [1], the maximum
weight matching approach of [43], the thermodynamics-based methods of [39, 9, 37, 38] which
handle certain subclasses of pseudoknots, the Monte Carlo approaches of [32, 31], heuristics
like position specific scoring matrices on tree structures [40] and ProbKnot [2], and the ex-
act (exponential-time) methods using tree-width decomposition [53] and branch-and-bound
[5]. Using tree-width decompositions, Huang et al. [19] developed fast and accurate genomic
search for non-coding RNA pseudoknot structures.

1.1 Preliminaries and notation

A (general) RNA structure, defined in Section 1, can be identified with a simple, undirected
graph G having vertices 1, 2, . . . , n and undirected edges {i, j}, where max(i, j) > min(i, j)−3.
An RNA structure thus uniquely corresponds to a given contact map, or adjacency matrix,
A = (ai,j), where ai,j = 1 if the ith and jth nucleotide form a hydrogen bond, and otherwise
ai,j = 0. By analyzing the distance and geometry between atoms in the X-ray crystal structure
of an RNA molecule, the software RNAview [52] determines the collection of hydrogen bonds,
including noncanonical bonds [24]. Thus for the purposes of this paper, an RNA structure is
the output of the program RNAview.

When depicting both secondary structures and (general) RNA structures, we may add
additional edges {i, i+1}, for 1 ≤ i < n, which correspond to the covalent backbone; however,
these edges do not formally belong to the structure. At times we will consider an RNA
structure S to be a collection of base pairs satisfying only conditions (1′, 2) given immediately
after the definition of a secondary structure in Section 1. At other times, we will variously
consider S to be the corresponding graph just defined, or adjacency matrix, or circle graph,
which latter is defined in Definition 2. Moreover, since much of the work in this paper
concerns the combinatorics of laying out, or decomposing, an RNA structure into a disjoint
union of secondary structures, the identity of the nucleotides is not essential, hence will not
be mentioned. In particular, we let S(n) denote the set of all (general) RNA structures on
positions (or bases) 1, . . . , n.

Definition 1 (Page number) The page number of a structure S ∈ S(n), denoted by π(S),
is the minimum number n, such that S can be written as a disjoint union of n secondary
structures; i.e. S = S1 ∪ · · · ∪ Sn, where each Si is a secondary structure, and Si ∩Sj = ∅ for
distinct i, j..

An equivalent graph theoretic formulation of page number is as follows. Let A = (ai,j) be the
contact map (or adjacency graph) of a tertiary structure for the RNA sequence s = s1, . . . , sn;
i.e. if there is a hydrogen bond between the ith and jth nucleotide, then ai,j = 1, otherwise
ai,j = 0. Given RNA sequence s and contact map A, the page number is the minimum number
k such that k colors suffice to color all base pairs, with the constraint that if distinct base
pairs (i, j) and (x, y) have the same color, then it is not the case that i ≤ x ≤ j ≤ y.
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Let Pp(n) denote the set of RNA structures on n bases having page number at most p.
A structure in Pp(n) can be visualized by writing the vertices 1, 2, . . . , n along the spine of a
book, where each of the p pages contains a (planar) secondary structure with no crossing edges.
Figure 2 depicts a 3-page decomposition of an RNA structure, i.e. a structure belonging to
P3(n).

1

2

3S

S

S

Figure 2: An RNA structure represented in three pages.

RNA structures are related to a class of graphs known in the literature as circle graphs
[20].

Definition 2 (Circle graphs) Consider a circle consisting of n points, arranged counter-
clockwise in order along the periphery of a circle. A circle graph G = (V,E) consists of
vertices v ∈ V , which are chords between these n points, and of edges e ∈ E formed when two
chords intersect.

To each RNA structure S we associate its corresponding circle graph GS . It follows that
RNA structures can be viewed as constituting a subset of circle graphs. A circle graph G
may not correspond to an RNA structure for two reasons.

1. It can happen that there is no way to label positions by nucleotides A,C,G,U such that
for each vertex v = {i, j} of G, the ith and jth nucleotide can form hydrogen bond.
This could happen, if we restrict hydrogen bonds to only canonical (Watson-Crick and
wobble) interactions, whenever there are triangles, i.e. a clique of interactions {i, j},
{i, k}, {j, k} of size 3.

2. There could exist a vertex v = {i, j} of G, with i < j ≤ i + 3.

Two base pairs b = {i, j} and b′ = {i′, j′}, with i < j and i′ < j′, are said to cross if either
i < i′ < j < j′ or i′ < i < j < j′.

Definition 3 (Chromatic number) The chromatic number of an RNA structure S, de-
noted by χ(S), is defined to be the minimum number n of colors, such that each base pair
can be colored in a manner such that crossing base pairs have distinct colors; i.e. n is the
chromatic number χ(GS) of the graph GS.

Clearly, the chromatic number of a structure is the same as the page number π(S). In the
sequel, we abuse notation and use χ(S) to denote the chromatic number χ(GS) of GS .

Definition 4 (Clique number) If S is an RNA structure, then let ω(S) denote the maxi-
mum number s of base pairs b1, b2, . . . , bs in S such that bi crosses bj, for all i 6= j.
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Clearly, ω(S) is the same as the size of the largest clique in GS .
For each base pair b we can compute the number of base pairs crossing it, called the

crossing number of b and denoted by cn(b).

Definition 5 (Crossing number) The crossing number of a general structure S, denoted
by cn(S), is the maximum of cn(b) taken over all possible base pairs b in S.

Figure 3 depicts a structure S such that ω(S) = 2 < π(S) = 3. It is easy to construct

4

21 3 4 5 6 7 8 9 10

5

21 3

Figure 3: An RNA structure S on 10 bases with 5 base pairs, having clique number ω(S) = 2
and page number π(S) = 3.

examples of structures with page number 2 and arbitrarily large crossing number.

1 2k

b

Figure 4: An RNA structure S on 2k bases with k + 1 base pairs, having page number 2, yet
the crossing number of base pair b is k.

It is straightforward to compute the clique number ω(S) of an RNA structure S. Simply
scan vertices v one at a time, computing the clique number of all the base pairs {i, j} such
that i < v < j and output the maximum number found. A similar observation holds for the
crossing number cn(S). However, no such simple method exists to compute the page number
π(S), since we show that page number is an NP-complete problem.

1.2 Related work

In graph theory, a book embedding of a graph consists of a linear ordering of the vertices along
the “spine of a book” and a planar embedding of its edges on the “pages of the book”, i.e.
such that no two edges on the same page intersect. The minimum number of pages in which a
graph can be embedded is its page number. Page number plays a role in circuit design, in the
sense that VLSI circuits are created in several layers, or pages. The notion of page number
considered in this paper differs from graph theoretic concept of page number, in that the
vertices of the graph (in our case the nucleotides) are in fixed positions given by the primary
structure. See [7] for additional work on this topic.
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Another rigorous classification of pseudoknotted structures uses the notion of topological
genus g, which in our case corresponds to the the minimum number of handles of a topological
surface on which a given RNA structure can be depicted without crossing edges [49, 50]. The
genus g of a given RNA structure can be computed by a simple application of depth first
search, since g = P−L

2 , where P is the number of base pairs and L the number of closed loops
[4]. Vernizzi et al. [49] developed recurrence relations to compute the number of genus g
structures of a given RNA sequence, and Bon et al. [4] computed the genus of RNA X-ray
structures, using the hydrogen bonding information provided by the program RNAview [52]. In
his thesis, Bon [5] described a novel RNA energy model depending on topological genus, and
using this energy model developed a branch-and-bound algorithm to compute the minimum
energy pseudoknotted structure for a given RNA sequence.

As is the case with page number, where the notion used in this paper differs from the
standard graph theoretic concept due to the ordering 1, . . . , n of the nodes (nucleotides), there
is a difference between the notion of genus of RNA structure [49] and the (general) treatment
of genus for unordered graphs. In the latter case, Thomassen [46] has shown that computing
the genus is NP-complete, although Filotti et al. [10] have described an algorithm to compute
the genus of a (general, unordered) graph in nO(g) time, where n is the number of vertices
and g is the genus.

1.3 Outline of the paper

In this paper we address the question of computing the page number π(S) of a given RNA
structure S and producing a layout of the decomposition of S into π(S) (planar) secondary
structures. Section 2 shows that the problem of computing the page number is NP-complete
for arbitrary structures with pseudoknots. Section 3 describes an exact algorithm to com-
pute the page number and associated layout of base pairs on various pages; in addition, the
(optimal) page number is computed for a collection of RNA tertiary structures considered in
Bon et al. [4], where the topological genus is computed. Section 4 examines the performance
of two greedy algorithms and provides an log n approximation algorithm for computing the
page number. Section 5 considers the problem of finding a decomposition of a bisecondary
structure. Section 6 gives bounds on the page and clique numbers of random RNA structures.

2 NP-completeness of Computing the Page Number

We now show NP-completeness of page number by a polynomial time reduction to the NP-
completeness of chromatic number of circle graphs.

Definition 6 (Minimum page number problem) The minimum page number problem,
abbreviated MPN, is the optimization problem of finding the smallest positive integer p such
that a given pseudoknotted structure can be represented on p pages.

More specifically we consider the following decision problem on RNA structures with param-
eters p (number of pages) and n (number of bases).

MPN(n, p)
Instance: RNA structure S with pseudoknots on n bases;

positive integer p.
Question: Is π(S) ≤ p?
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We prove the main result of this section by describing a polynomial time transformation
of a given circle graph into an RNA structure with the same chromatic number.

Theorem 1 MPN is NP-complete.

Proof. It is known that computing the chromatic number of circle graphs is NP-complete
[12]; for a more recent and simpler proof of this fact see [28].

A circle graph may not be an RNA structure either because (i) there is no labeling
of positions 1, . . . , n along the periphery of a circle by A,C,G,U for which the ith and jth
nucleotide can form a (possibly noncanonical) base pair for each chord in the circle graph.
there is a base pair {i, j} with |j − i| ≤ θ = 3, or (ii) there is a base pair {i, j} with
|j− i| ≤ θ = 3, or since they may have vertices of degree ≥ 2. Let G = (V,E) be a given circle
graph, whose vertex set V consists of chords {i, j} between distinct positions 1 ≤ i < j ≤ n,
ordered along the periphery of a circle, and whose edge set E consists of crossing chords {i, j},
{k, `}, where i < k < j < `. We describe how to transform G into a circle graph G′ = (V ′, E′)
of the same chromatic number, such that the vertex set V ′ consists of chords {i, j} between
distinct positions 1 ≤ i < j ≤ p(n), for a fixed polynomial p, where each position i belongs to
at most one chord, thus permitting a labeling of positions in a manner that chords correspond
to canonical base pairs. Additionally, we ensure that if chord {i, j} ∈ V ′, then |j− i| > θ = 3.
In this fashion, we can ensure conditions (1,2,4) of the definition of secondary structure given
in Section 1. Clearly then G′ is the circle graph representation GS for an RNA structure.
Hence, if the page number for RNA structures can be computed in polynomial time, then the
chromatic number for circle graphs can be computed in polynomial time, contradicting the
NP-completeness of chromatic number for circle graphs.

u

1

2

d

u

2
d1

u u
1 d

2

.....

.....

Figure 5: Polynomial time transformation of an arbitrary circle graph G (left panel) into
a graph of the form GS (right panel), for some pseudoknotted RNA structure, such that
χ(G) = χ(GS).

We now describe the transformation for a given circle graph G = (V,E), where 1, . . . , n are
positions occurring in counter-clockwise along the periphery of a circle, in which the vertices
of G are chords. We define as follows a new circle graph G′ = (V ′, E′) of the same chromatic
number.

• Positions: For each position 1 ≤ i ≤ n along of the periphery of the circle used to
define G, we associate positions ij1 , . . . , ijρ(i)

in G′, where {i, j1}, . . . , {i, jρ(i)} is a listing
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of all chords of G incident to i. If 1 ≤ i ≤ n is not incident to any chord of G, then
we associate the position i0 in G′. If {i, j} is a chord of G where i < j ≤ i + θ, then
we associate positions i−3, i−2, i−1 in G′. The positions of G′ just defined are ordered
lexicographically; i.e. ij < xy if either i < x or (i = x and j < y).

• Vertices: For each vertex (chord) {i, j} of G, we associate the vertex (chord) {ij , ji}
of G′.

• Edges: Edges of G′ are defined by crossing chords.

See Figure 5 for an example of the transformation just defined. Clearly the transformation
G → G′ is computable in polynomial time, since the number of edges of G is at most O(n2).
Moreover, G′ is the representation of an RNA structure whose bases correspond to positions
1, . . . , n′ along the periphery of the circle corresponding to G′. Since each position is incident
to at most one chord in G′, the positions can be labeled by A,C,G,U in a manner that chords
correspond to Watson-Crick or wobble pairs. If {ij , ji} is a chord of G′, then we have ensured
that |ji − ij | > θ = 3, hence the threshold requirement is met; moreover, by construction,
there are no base triples. Finally, since ordering of nodes has been preserved, the chromatic
number is as well, i.e. χ(G) = χ(G′). This completes the proof of Theorem 1.

A related problem concerns the size of the page number of an RNA structure. In [23] it
is proved that χ(S) ≤ 2ω(S). It is an interesting open question to determine necessary and
sufficient conditions which guarantee that the number of pages needed to represent an arbi-
trary RNA structure can be bounded by a constant independent of the size of the structure.
Surprisingly, there is a bound on page number if the circle graph GS of a given RNA structure
S has no triangles (clique of size 3; if there do not exist three distinct, mutually crossing base
pairs in S.

Theorem 2 Pseudoknotted structures without any triangles can be represented on at most
five pages.

Proof. If the RNA structure S has no triangles then [21] has shown that χ(S) ≤ 8. This
was later improved to χ(S) ≤ 5 by Melnikov (see [20] for additional details).

3 Exact Computation of Page Number

Here we present an algorithm using Constraint Programming [48] to find the page number for
a given RNA tertiary structure. Our approach is divided into three different steps:

1. Given a set S of (possibly noncanonical) base pairs {i, j}, we collapse S into a set H of
helices {hi}, where each hi is represented by the closing base pair {h`

i , h
r
i }, where h`

i is
the 5′ or left position, which is paired with hr

i , the 3′ or right position.

2. We generate a graph G = (V,E) in which the set of vertices V is equal to the set of
helices H from the previous step, and in which the set of edges is E = {(hi, hj) : h`

i <
h`

j < hr
i < hr

j}; i.e. there is an edge between crossing base pairs (h`
i , h

r
i ) and (h`

j , h
r
j).

3. In this final step we solve the minimum vertex coloring problem on G using Constraint
Programming.

For the sake of speed we merged the first two steps in our implementation. The details of
these phases are given in the following.
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3.1 Collapsing helices

Given a set S of (possibly noncanonical) base pairs {i, j} from the tertiary structure of some
RNA, as could be computed using the program RNAview [52], we collapse base pairs into
helices and create a graph G in which each vertex is a helix and each edge represents a
pseudoknot between two helices. Formally, given two helices hi and hj characterized by their
closing base pairs {h`

i , h
r
i } and {h`

j , h
r
j}, we say they represent a pseudoknot if and only if:

h`
i < h`

j < hr
i < hr

j .

1. collapseAndConstructGraph(S)
2. S∗ = list of S in lexicographic order
3. V = ∅
4. E = ∅
5. n = |S∗|
6. lastbp = S∗[0] first element of S∗

7. forall bp ∈ S∗ − {lastbp}
8. if lastbp, bp are not consecutive
9. V = V ∪ {lastbp}
10. forall h ∈ V
11. if pseudoknot(h,bp)
12. E = E ∪ {h, h(bp)}
13. lastbp = bp
14. G = (V,E)
15. return G

Figure 6: Algorithm to collapse base pairs and construct graph.

Figure 6 depicts the algorithm for collapsing the base pairs and constructing the graph
G. It scans the list of base pairs in lexicographic order, creating a new vertex/helix each time
a base pair is not consecutive with respect to the previous one, where two base pairs {i, j}
and {x, y}, with i < x < y < j are defined to be consecutive if, and only if:

x ∈ {i + 1, i + 2} ∧ y ∈ {j − 1, j − 2}.

In other words, two base pairs are consecutive if they are either stacked, or separated by
a bulge of size 1 or an internal loop of size 2. The algorithm selects the lexicographically
least base pair from each helix, where a helix (or stem) is a maximal collection of consecutive
base pairs. After a new helix is “closed”, we check with all other previously “closed” helices
to determine if they form a pseudoknot with the the one we have just scanned. If so, we
create an edge between that helix and the one we are just “opening”, denoted by h(bp) in the
pseudocode.

As can be seen, this algorithm has a worst time complexity of O(m2) where m is the
number of base pairs in S.

3.2 Solving the minimum vertex coloring using CP

Constraint Programming Constraint programming is one the main methodologies for
solving hard combinatorial optimization problems. The salient features of CP are its rich
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modeling language and its computational model based on branch and prune. At the mod-
eling level, CP models a complex application in terms of decision variables, domains which
specify the possible values for the variables, and constraints which capture its combinatorial
substructures, giving the underlying solver significant information on the application struc-
ture.

The computational model of constraint programming is branch and prune. Constraints
are used to filter the variable domains by removing values that cannot appear in any soluion.
In fact, each constraint is associated with two algorithms: (1) a feasibility algorithm which
determines if a constraint can be satisfied in isolation given the current variable domains; (2)
a filtering algorithm that removes values from the variable domains that cannot satisfy the
constraints given the current domains.

Graph Coloring In graph theory, vertex coloring of an input graph G [13] is a special case
of graph labeling in which labels, traditionally called “colors”, are assigned to the vertices
of G, in a manner such that no two adjacent vertices share the same color. The minimum
vertex coloring problem is to determine, given an input graph G, the minimum number of
colors necessary for a vertex coloring of G. The vertex coloring problem is well-known to be
NP-complete [13]. Coloring the graph constructed in the previous subsection with a minimum
number of colors is of course equivalent to finding the page number of a given RNA tertiary
structure. The number of colors used to color the graph is indeed the page number.

CP model To solve the minimum coloring problem, we use a traditional CP formulation
which consists of the following components:

• Variables: There is a variable ci for each vertex vi in the graph, which represents the
color to be assigned to that vertex. There is a variable k, which represents the maximum
number of colors used (colors are coded as integers so that calculations of minimum and
maximum are possible).

• Domains: Letting V represent the set of vertices of the graph G constructed above, we
define the domains for all variables ci to be D = {0...|V | − 1}, and the domain for k to
be D(k) = {1...|V |}.

• Constraints: There is a constraint for each edge in E such that, for an edge between
vertices vi and vj , there is a constraint ci 6= cj . There is also a constraint for each vertex
vi of the form ci < k, that ensures that k is greater than any “color” used.

• Objective: minimize the number of colors used, i.e. minimize k.

3.3 Results

In [4], Bon et al. defined the notion of topological genus of a pseudoknot, and classified a
number of RNA tertiary structures from the Protein Data Bank [3] according to genus. In this
section we present comparable results with respect to page number for the same RNA tertiary
structures considered in [4]. The results from Table 1 were obtained by our implementation of
the above-described Constraint Programming algorithm in the Comet programming language
[48].
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Given an RNA tertiary structure in PDB file format, our program computes the list of
lexicographic least base pairs of each helix belonging to a single page, for pages 0,1,2, etc.
and then the optimal page number structure is displayed, using different types of bracket
(parentheses, square brackets, curly brackets, etc.) for distinct pages. For instance, given the
PDB file 6TNA [42] for the 76 nt yeast phenylalanine transfer RNA, we have the following
page layout:

0 : (6,65),(18,55),(29,39)

1 : (12,21),(52,60)

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

(((((((..[[[[.....(..]]]].((((.........)))).....[[[[[..)....]]]]])))))))....

Notice that there is a single pseudoknot at (19,56), between the D-loop and the TΨC-loop.
Rather than perform a page layout where base pair (19, 56) is depicted by a square-bracket,
with all other base pairs depicted by round-brackets, our program output the previously
displayed, equivalent form. Using jViz [51], the 2-page pseudoknotted structure of 6TNA,
computed by our program is displayed in Figure ??. Although the determination that 6TNA
has page number 2 is trivial, this can hardly be said of the 2922 nt sequence of 23S ribosomal
RNA with PDB code 1KC8:A (A chain of 1KC8), depicted in Figure ??. As mentioned in
Table 1, the only page 4 structure we found in the collection studied by Bon et al. was the
chain A of the file with PDB accession code 1KC8, corresponding to the 2922 nt sequence
of 23S ribosomal RNA. The (optimal) page number structure for this and all other RNAs
appearing in Table 1 can be found at our web server. Each computation took less than one
second.

4 Greedy and Approximation Algorithms for Computing the
Page Number

In view of Theorem 1, computing the page number of an arbitrary RNA structure is NP-
complete. In this section we provide greedy heuristics to compute for the decomposition of a
given RNA structure into a possibly suboptimal number of pages. Additionally, we provide
a log n approximation algorithm to compute the page number of an RNA structure.

4.1 Greedy algorithm

An obvious greedy algorithm to compute an upper bound for page number proceeds as follows:
(1) order the base pairs of the RNA structure, and (2) place the base pairs on pages in this
order by adding new pages as necessary to prevent crossings. Suppose we are given an RNA
structure S with bases 1, 2, . . . , n. Partition as follows the collection of base pairs of S into
disjoint secondary structures S1, S2, . . . , Sk.

4.1.1 Algorithm GPN (Greedy Page Number)

Enumerate all base pairs of S as b1, b2, . . . , bm and place b1 into the first secondary structure
S1. Assume, by induction that the first i base pairs b1, b2, . . . , bi have already been placed
into disjoint sets S1, S2, . . . , Sj . Given the next base pair bi+1
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Page Number PDB file
2 6tna, 4tra, 4tna, 437d, 2tra, 2tpk, 2g1w, 2fk6, 2csx-C,

2a43, 2a2e, 1znn, 1ymo, 1yl4-A, 1yg3, 1yfg, 1y27 1y26,
1x8w, 1voz, 1voy-B, 1vox, 1vov, 1vou-B, 1vos, 1voq,

1vc7, 1vc6, 1vc5, 1vc0, 1vbz, 1vby, 1vbx, 1u8d, 1u6b-B,
1ttt-D, 1tra, 1tn2, 1sz1-E, 1sjf, 1sj4, 1sj3, 1ser, 1qu3,
1qu2, 1qtq, 1qru, 1qrt, 1qrs, 1qf6, 1pnx, 1o0c, 1o0b,
1n77-C, 1n36, 1n34, 1mzp, 1mj1-D, 1l3d, 1l2x, 1kpz,

1kpy, 1kpd, 1jgq-D, 1jgp-D, 1jgo-D, 1j1u, 1il2-C, 1i9v,
1i97, 1i95, 1gtr, 1grz-A, 1gix-C, 1gix-B, 1g59-B, 1fka,

1fir, 1fg0, 1ffz, 1ffy, 1fcw-A, 1f7v, 1f7u, 1exd, 1euy, 1eiy,
1ehz, 1drz, 1cx0, 1c2w, 1c0a, 1asz-S, 1asz-R, 1asy-S,

1asy-R, 1b23
3 2d3o, 2awb-B, 2aw7, 2aw4-B, 2avy, 2aar, 2a64, 1yl3-A,

1yjw-0, 1yjn-0, 1yj9-0, 1yit-0, 1yij-0, 1yi2-0, 1yhq-0, 1y69-0,
1y0q, 1xnr-A, 1xnq-A, 1xmq-A, 1xmo-A, 1xbp-0, 1vqp-0,
1vqo-0, 1vqn-0, 1vqm-0, 1vql-0, 1vqk-0, 1vq9-0, 1vq8-0,
1vq7-0, 1vq6-0, 1vq5-0, 1vq4-0, 1vp0, 1vow-B, 1sm1-0,
1s72-0, 1s1i-3, 1s1h, 1qvg-0, 1qvf-0, 1q86-A, 1q82-A,
1q81-A, 1q7y-A, 1pny-0, 1pnu-0, 1pns-A, 1p9x, 1ond,
1nwy-0, 1nwx-0, 1nkw-0, 1njp-0, 1njo, 1njn, 1njm-0,

1nji-A, 1n8r-A, 1n33-A, 1n32-A, 1m90-A, 1m1k-A, 1kqs-0,
1k9m-A, 1k8a-A, 1k73-A, 1kd1-A, 1k01, 1jzz, 1zy, 1jzx,

1jj2-0, 1j5e, 1j5a, 1ibm-A, 1ibl, 1ibk, 1i96, 1i94, 1hr0, 1hnz,
1hnx, 1hnw, 1fjg, 1ffk-0, 1et4-A, 1ddy-A

4 1kc8-A

Table 1: Page number of all RNA tertiary structures, for which Bon et al. [4] computed
the topological genus. In each case, the exact page number was computed by our Constraint
Programming algorithm within one second.
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Figure 7: Pseudoknotted structure of the 76 nt yeast phenylalanine transfer RNA with PDB
code 6TNA [42]. This example is trivial, since there is only one pseudoknot. Image produced
using jViz [51].

1. either for some r = 1, 2, . . . , j there is no base pair in Sr that crosses b, in which case
we place bi+1 into the first such set Sr,

2. otherwise, we create a new secondary structure Sj+1 := {bi+1} with bi+1 as its only
element.

It is clear that the secondary structures S1, S2, . . . , Sk constructed have no crossings and
π(S) ≤ k, thus the following result is immediate.

Theorem 3 Algorithm GPN is a greedy algorithm which when given an RNA structure S
computes a decomposition into secondary structures. The running time of the algorithm is
O(n2), where n is the number of bases of the structure S.

4.1.2 Greedy is not optimal

In the sequel we give two examples indicating the failure of the greedy algorithm to construct
an optimal page decomposition of a given RNA structure.

Example 1 The following example shows that the greedy algorithm GPN is not optimal
in the sense that for a given S ∈ S(n) the resulting number of secondary structures can be
greater than the optimal π(S). To see this take ten bases numbered 1, 2, . . . , 10. Consider
the following five base pairs

1 = {7, 10},2 = {3, 6},3 = {1, 5},4 = {2, 8},5 = {4, 9}
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Figure 8: Pseudoknotted structure of the 2922 nt sequence of 23S ribosomal RNA with PDB
code 1KC8:A (A chain of 1KC8). Minimum page number layout produced by the Constraint
Programming method described in this section; image produced using jViz [51].

21 3 4 5 6 7 8 9 10

13

54

2

Figure 9: Example of an RNA structure with ten bases and page number three, but for which
the greedy algorithm allocates four pages.

and suppose that the base pairs are being considered in this order. The greedy algorithm
will output S1 = {{7, 10}, {3, 6}}. Since {1, 5} crosses one of the base pairs of S1 we must
have that S2 = {{1, 5}}. Since {2, 8} crosses base pairs in both S1 and S2 we have that
S3 = {{2, 8}}. Finally, since {4, 9} crosses base pairs in S1, S2 and S3 we must have that
S4 = {{4, 9}}. Therefore the greedy algorithm allocates four pages. Nevertheless three pages
are sufficient, namely

S1 = {{7, 10}, {1, 5}}, S2 = {{3, 6}, {2, 8}}, S3 = {{4, 9}},

and the page number of this RNA structure is three.
In [36], Ponty described a simple modification of the Nussinov-Jacobson algorithm [35],
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to compute the maximum size secondary structure (collection of nested base pairs) contained
within a given RNA structure. Independently and later, Smit et al. [41] rediscovered the
same algorithm to compute the maximum planar portion of an RNA structure. One could
consider a a second type of greedy algorithm, obtained by iteratively applying Ponty’s maxi-
mum planarization to a given RNA structure, where each successive maximum planarization
appears on a separate page. The previously given example also shows that this second type
of greedy algorithm may output a larger number of pages than the optimal. Indeed, the
maximum planarization greedy approach would place base pairs 1, 2 on page 1, base pair 5
on page 2, base pair 4 on page 3, and base pair 3 on page 4.

Example 2 The following example shows that the greedy algorithm GPN may assign
O(log n) for an RNA structure which requires only a constant number of pages. The sets
of base pairs are constructed recursively in stages S0, S1, . . . , Sn. Initially, S0 consists of one
base pair. Assume that Sn has been constructed. Then the set Sn+1 is constructed by ap-
pending a copy of Sn to itself plus the addition of a base pair which 1) surrounds the second
copy of Sn, 2) crosses the first copy of Sn, 3) its leftmost base is enclosed inside the rightmost
innermost base pair of the first copy of Sn. The resulting structure is depicted in Figure 11
for n = 0, 1, 2.

Figure 10: Example of the sequence of sets of base pairs S0, S1, S2.

The number Bn of base pairs introduced by the n-th step satisfies the recursion Bn =
2Bn−1 + 1 with initial condition B0 = 1. Solving the recursion we see that Bn = 2n+1 − 1.
Now we look at the number of pages being used by the greedy algorithm GPN. Enumerate
the base pairs by occurrence of their leftmost base, say b0, b1, b2, . . .. At the k-th step, a new
page is introduced only if the base pair bk crosses a previously placed base pair in each of the
pages introduced so far; in this case a new page is introduced on which bk is placed. It is easy
to see that the optimal algorithm requires n pages and so does the greedy algorithm GPN.

4.2 Approximation algorithm

In this section, we describe a method that provides a upper bound for page number within a
factor of log n.
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Theorem 4 There is a log n approximation algorithm producing a decomposition of an RNA
structure S on n bases into O(π(S) log n) pages. Furthermore, the time required to produce
the decomposition is O(n log n).

Proof. It is clear that a given RNA structure requires at least ω(S) pages, where ω(S) was
previously defined as the clique number of S, and therefore π(S) ≥ ω(S). Next we give a
page decomposition algorithm and prove that

π(S) ≤ ω(S) · log n.

This and the fact that π(S) ≥ ω(S) proves the approximation claim for π(S) in the theorem.
The idea of the proof is to use a divide and conquer approach. Look at the bases

bn/2c, bn/2c + 1 of the structure depicted in Figure 11, where for simplicity, we assume
that n is even.

1 nn/2 n/2+1

Figure 11: Using divide and conquer in a structure with pseudoknots.

Consider all the base pairs {i, j} such that i ≤ bn/2c ≤ bn/2c + 1 ≤ j. These base pairs
can be colored with at most ω(S), thus resulting in at most ω(S) pages. This coloring can
be found in time O(n log n). Indeed, the graph induced on the set of edges connecting bases
between 1..bn/2c and bn/2c + 1..n has the property that each of its edges is crossing the
vertical dashed line depicted in Figure 11 and as such is a permutation graph (see [14]). Now
remove all the base pairs crossing this vertical line. Two RNA structures result, the first from
1..bn/2c, and the second from bn/2c+ 1..n. Since the base pairs of 1..bn/2c and bn/2c+ 1..n
do not interfere with each other, the original structure can be colored with the ω(S) colors
required to color the base pairs crossing the vertical line plus the maximum of the number of
colors required to color the RNA structures in 1..n/2 and n/2 + 1..n. If χ(n) is the minimum
number of colors required to color an RNA structure on n bases then it follows that

χ(n) ≤ ω(S) + max{χ(bn/2c), χ(n− bn/2c)}.

Applying this technique recursively we derive that π(S) ≤ ω(S) log n, as desired. This proves
the approximation claim in the theorem.

Concerning the time required to produce the decomposition, observe that each step of the
divide and conquer algorithm is required to find a clique in a permutation graph consisting of
the base pairs connecting the bases of the structures 1..bn/2c and bn/2c + 1..n. Algorithms
for finding such a clique are known and require time O(n log n) (see [14] for more details on
algorithms for permutation graphs).

5 Bisecondary structures

An RNA structure is a bisecondary structure, first defined in [17], if it is the disjoint union
of at most two secondary structures; i.e. if it has page number at most 2. In this section we
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limit ourselves to bisecondary structures.

5.1 Finding a decomposition

An interesting question arises as to how to compute the decomposition of a structure S, given
that we know the page number π(S). We address this question below by providing an efficient
algorithm when the page number is at most 2.

Theorem 5 Assume that S is a structure on n bases such that π(S) ≤ 2. There is an
algorithm with running time O(n3/2) to compute the decomposition of S into the minimal
number of pages.

Proof. Consider the circle graph GS associated with the structure S. It is clear that GS is
bipartite. The partition of the vertex set of GS into two parts is according to the decomposi-
tion of S into the two pages. Now observe that finding a decomposition is the same as finding
a matching in the bipartite graph: since all cycles are even we can partition the vertex set of
the graph GS according to the parity of a vertex in a cycle. The complexity bound O(n3/2)
follows immediately from [33]. This completes the proof of the theorem.

6 Random structures with pseudoknots

Next we consider the clique size and page number for random RNA structures of a certain
type. We begin by defining the particular notion of random structure S considered in this
section, where S has exactly n base pairs and at most 2n nucleotides incident to the base
pairs (base triples, etc. are allowed). Suppose we have n points on the periphery of a
circle. Assume that n chords are drawn randomly and independently, each with probability
1

(n
2)

. For a fixed node u, there are 2(n − 1) ordered base pairs (i, j) incident to u, i.e. in

which u ∈ {i, j}, compared with a total of n(n − 1) possible ordered base pairs. It follows
that the probability, for fixed node u, of selecting an ordered base pair (i, j) incident to u

is 2(n−1)

(n
2)

= 2
n ; hence the probability of selecting an unordered base pair incident to u is 1

n ,

as two ordered base pairs correspond to each unordered base pair. Hence, the probability
distribution pk := Pr[degree of point u is k] of the degree of a given point is Bernoulli, i.e.,

pk =
(

n

k

)
(1/n)k(1− 1/n)n−k,

which gives expected degree equal to
∑n

k=0 kpk = n(1/n) = 1. We now construct as follows
a random RNA structure S with n base pairs and no base triples. For each vertex which is
the endpoint of t chords, t > 1, we add t − 1 vertices and associate the chords with each of
the vertices, one-by-one, in such a way that chords do not overlap. Additionally, we ensure
the threshold condition, that if {i, j} is a base pair, then |j − i| > θ = 3 – see details from
construction in Theorem 1. Clearly, the resulting RNA structure has the same number of
base pairs and at most 2n bases; moreover, the clique number of S remains unchanged. In
the sequel we determine the clique size of this random RNA structure.

Theorem 6 For the random RNA structure Sn defined above we can prove that

1. E[ω(Sn)] ∈ Ω(
√

n/ log n),
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2. E[ω(Sn)] ∈ O(
√

n), and as a consequence

3. E[π(Sn)] ∈ Ω(
√

n/ log n) and E[π(Sn)] ∈ O(
√

n log n).

Proof. Consider a random RNA structure S := Sn defined above. The lower bound in Part 3
of the theorem follows from the fact that ω(S) ≤ π(S), while the upper bound follows directly
from Theorem 4 since π(S) ≤ ω(S) · log n. It remains to prove Parts 1, 2 of the theorem.
Proof of Part 1. Without loss of generality assume that k is an integer such that 2k divides
n. Divide up the circle into 2k consecutive arcs each of size n

2k (see Figure 12) and number

Figure 12: Depicted is a clique consisting of 4 chords (solid lines). A new chord (dashed line)
increments the size of the clique to 5 if and only if its vertices lie in an antipodal pair of arcs.

these arcs counter-clockwise S1, S2, . . . , S2k. We can view the “antipodal” pair {Si, Si+k} as
a “bucket”. Thus we have k buckets and n chords. It is clear that if every bucket has a
chord in it then by selecting one chord from each bucket the resulting set of chords forms a
clique. These chords are thrown randomly and independently into the buckets and we would
like to guarantee with high probability that every bucket has a chord. We can guarantee this
with high probability using the probabilities associated with the coupon collector’s problem,
provided that a total of at least k log k chords fall into the buckets (see [34]). Clearly, the
probability that a random chord falls into a given bucket is equal to(

n
2k

)2(
n
2

) ≈ 1
2k2

.

As a consequence, the probability that a random chord falls into at least one of the k buckets
is at most

∑k
i=1

1
2k2 = k 1

2k2 = 1
2k .

In the experiment above we have n chords (drawn independently) and k buckets. It is
therefore clear that with high probability, an expected fraction n

k of these chords will fall into
the k buckets, while the remaining n − n/k = n(1 − 1/k) will fall outside these k buckets.
Moreover, the previous argument shows that if

n

k
> k log k (1)

then with high probability every bucket has a chord and consequently there is a clique of size
k. Since k =

√
n/ log n satisfies Inequality 1 we conclude the desired lower bound claimed in

Part 1.
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Proof of Part 2. To prove the upper bound O(
√

n) stated in Part 2 we argue as follows.
First we show by induction on k that the probability that a set of k chords forms a clique
is at most 1/(k − 1)!. Indeed, consider the event Ek+1 that a random set {e1, . . . , ek, ek+1}
of k + 1 chords forms a clique. Also consider the event Fk that ek+1 crosses all the chords
e1, . . . , ek. Now observe that

Pr[Ek+1] = Pr[Ek & Fk]
= Pr[Fk | Ek] · Pr[Ek]

= Pr[Fk | Ek] ·
1

(k − 1)!
(By induction Hypothesis)

=

(
1(
n
2

) k∑
i=1

titi+k

)
· 1
(k − 1)!

.

The last identity is valid because the k chords forming a clique divide up the circle into 2k
subintervals of respective, successive lengths t1, t2, . . . , t2k (see Figure 12) such that

∑2k
i=1 ti =

n − 2k and the additional chord ek+1 forms a clique together with the chords e1, e2, . . . , ek

if its endpoints are chosen to an antipodal pair. Therefore the sum in the right-hand side is
maximixed when ti = n

2k in which case

Pr[Ek+1] ≤

(
1(
n
2

) k∑
i=1

( n

2k

)2
)
· 1
(k − 1)!

≤ 1
k!

,

which completes the inductive proof. It follows that

Pr[∃(a clique of size k)] ≤
(

n

k

)
Pr[C is a clique of size k]

≤ n(n− 1) · · · (n− k + 1)
k!

· 1
k!

≤ nk

(k!)2

≤ nk

(k/e)2k2πk
(Using Stirling’s Formula)

≤
( n

k2

)k e2k

2πk

≤ 1
ek2πk

,

provided that k ≥ e3/2√n. It follows from this that

Pr[∃(a clique of size ≥ e3/2√n)] ≤
n∑

k≥e3/2
√

n

Pr[∃(a clique of size k)]

≤ ne−e3/2√n.

19



Finally, concerning the upper bound on the expected value, we observe that

E[ω(S)] =
∑

k

Pr[ω(S) ≥ k]

=
∑

k≤e3/2
√

n

Pr[ω(S) ≥ k] +
∑

k≥e3/2
√

n

Pr[ω(S) ≥ k]

≤ e3/2√n + n2e−e3/2√n

∈ O(
√

n).

This completes the proof of Theorem 6.

7 Conclusion

In this paper, we have proven that that computing the page number of possibly pseudoknotted
RNA structures is NP-complete. We described two greedy algorithms (GMP and an iteration
of Ponty’s maximum planarization), and showed by an example that neither is optimal. (Of
course, the non-optimality of any polynomial time algorithm, in particular of the greedy al-
gorithm, follows immediately from NP-completeness of the page number.) We have described
an O(n3/2) time algorithm to determine a ≤ 2-page decomposition of bisecondary structures
for RNA sequences of size n, and we have provided bounds on the expected page number of
random RNA structures constructed by randomly choosing n base pairs.

The application of topological genus was introduced in the context of RNA structure in
[49, 50], and subsequently used in [4] to classify tertiary RNA structures from the Protein
Database [3]. In [5], an energy model for RNA structures was introduced which includes
a pseuodoknot penalty according to genus. Since genus is a topological notion, that does
not take into account stericity and other molecular constraints, one might consider whether
page number provides a better classification of RNA structures. Unfortunately, the work in
this paper shows that no reasonable energy model involving page number exists, since page
number is an NP-complete problem.

Acknowledgements

Funding for the research of P. Clote and I. Dotu was provided by the National Science Founda-
tion with grants DMS-1016618 and DMS-0817971, with additional funding to P.C. by Digiteo
Foundation. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National
Science Foundation. Funding for the research of E. Kranakis was supported in part by the
Natural Sciences and Engineering Research Council of Canada (NSERC) and Mathematics of
Information Technology and Complex Systems (MITACS). J. Urrutia was supported in part
by CONACYT grant.

References

[1] J.P. Abrahams, M. van den Berg, E. van Batenburg, and C. Pleij. Prediction of RNA
secondary structure, including pseudoknotting, by computer simulation. Nucl. Acids
Res., 18:3035–3044, 1990.

20



[2] S. Bellaousov and D. H. Mathews. Probknot: fast prediction of RNA secondary structure
including pseudoknots. RNA., 16(10):1870–1880, October 2010.

[3] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, and P.E. Bourne. The protein data bank. Nucleic Acids Researches,
28(1):235–242, 2000.

[4] M. Bon, G. Vernizzi, H. Orland, and A. Zee. Topological classification of RNA structures.
J. Mol. Biol., 379(4):900–911, June 2008.

[5] Michael Bon. Prédiction de structures secondaires d’ARN avec pseudo-noeuds. PhD
thesis, Ecole Polytechnique, 2009. Ph.D. dissertation in Physics.

[6] S. Cao and S. J. Chen. Predicting RNA pseudoknot folding thermodynamics. Nucleic.
Acids. Res., 34(9):2634–2652, 2006.

[7] F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg. Embedding graphs in books: A
layout problem with applications to VLSI design. SIAM J. Algebraic Discrete Methods.,
8(1):33–58, 1987.

[8] K. E. Deigan, T. W. Li, D. H. Mathews, and K. M. Weeks. Accurate SHAPE-directed
RNA structure determination. Proc. Natl. Acad. Sci. U.S.A., 106(1):97–102, January
2009.

[9] R.M. Dirks and N.A. Pierce. A partition function algorithm for nucleic acid secondary
structure including pseudoknots. J Comput Chem, 24(13):1664-1677, 2003, 24(13):1664–
1677, 2003.

[10] I. S. Filotti, G. L. Miller, and J. H. Reif. On determining the genus of a graph in O(νO(g))
steps. In STOC, pages 27–37. ACM, 1979.

[11] P. P. Gardner and R. Giegerich. A comprehensive comparison of comparative RNA
structure prediction approaches. BMC. Bioinformatics, 5:140, September 2004.

[12] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity
of coloring circular arcs and chords. SIAM Journal on Algebraic and Discrete Methods,
pages 216–227, 1980.

[13] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman & Co., 1990. New York.

[14] M.C. Golumbic. Algorithmic graph theory and perfect graphs. North-Holland, 2004.

[15] S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S.R. Eddy. Rfam: an RNA
family database. Nucleic Acids Res., 31(1):439–441, 2003.

[16] R. Gutell, J. Lee, and J. Cannone. The accuracy of ribosomal RNA comparative structure
models. Current Opinion in Structural Biology, 12:301–310, 2005.

[17] Christian Haslinger and Peter F. Stadler. Rna structures with pseudo-knots: Graph-
theoretical, combinatorial, and statistical properties. Bulletin of Mathematical Biology,
61(3):437–467, May 1999.

21



[18] I. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Res, 31(13):3429–
3431, 2003.

[19] Z. Huang, Y. Wu, J. Robertson, L. Feng, R. L. Malmberg, and L. Cai. Fast and ac-
curate search for non-coding RNA pseudoknot structures in genomes. Bioinformatics,
24(20):2281–2287, October 2008.

[20] T. R. Jensen and B. Toft. Graph Coloring Problems. John Wiley and Sons, 1995.

[21] I. A. Karapetyan. Coloring of arc graphs (in Russian). Akad. Nauk Armyam. SSR
Doklady, 70:306–311, 1980.

[22] Bjarne Knudsen and Jotun Hein. Pfold: RNA secondary structure prediction using
stochastic context-free grammars. Nucleic Acids Res, 31(13):3423–3428, 2003.

[23] A. Kostochka and J. Kratochvil. Covering and coloring polygon-circle graphs. Discrete
Mathematics, 163(1):299–305, 1997.

[24] N. B. Leontis and E. Westhof. Geometric nomenclature and classification of RNA base
pairs. RNA., 7(4):499–512, April 2001.

[25] T. Lowe and S. Eddy. tRNAscan-SE: A program for improved detection of transfer RNA
genes in genomic sequence. Nucleid Acids Research, 25(5):955–964, 1997.

[26] R. B. Lyngso and C. N. Pedersen. RNA pseudoknot prediction in energy-based models.
J. Comput. Biol., 7(3-4):409–427, 2000.

[27] N. R. Markham and M. Zuker. UNAFold: software for nucleic acid folding and hybridiza-
tion. Methods Mol. Biol., 453:3–31, 2008.

[28] D. Marx. A short proof of the NP-completeness of circular arc coloring, 2003. 7th
November (unpublished), http://www.cs.bme.hu/∼dmarx/papers/circularNP.pdf.

[29] D.H. Mathews, M.D. Disney, J.L. Childs, S.J. Schroeder, M. Zuker, and D.H. Turner.
Incorporating chemical modification constraints into a dynamic programming algorithm
for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA, 101:7287–7292,
2004.

[30] D.H. Mathews, J. Sabina, M. Zuker, and H. Turner. Expanded sequence dependence of
thermodynamic parameters provides robust prediction of RNA secondary structure. J.
Mol. Biol., 288:911–940, 1999.

[31] D. Metzler and M. E. Nebel. Predicting RNA secondary structures with pseudoknots by
MCMC sampling. J. Math. Biol., 56(1-2):161–181, January 2008.

[32] I. M. Meyer and I. Miklos. Simulfold: simultaneously inferring RNA structures including
pseudoknots, alignments, and trees using a Bayesian MCMC framework. PLoS. Comput.
Biol., 3(8):e149, August 2007.

[33] S. Micali and V.V. Vazirani. An O(
√
|V ||E|) algoithm for finding maximum matching

in general graphs. In Foundations of Computer Science, 1980., 21st Annual Symposium
on, pages 17–27, 1980.

22



[34] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1998.

[35] R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the secondary struc-
ture of single stranded RNA. Proceedings of the National Academy of Sciences, USA,
77(11):6309–6313, 1980.
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