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ABSTRACT. We present a tradeoff between the expected time for two identical agents to rendez-vous on
a synchronous, anonymous, oriented ring and the memory requirements of the agents. In particular, we
show there exists a 2t state agent, which can achieve rendez-vous on an n node ring in expected time
O(n?/2! + 2%) and that any ¢/2 state agent requires expected time Q(n?/2!). As a corollary we observe
that ©(loglogn) bits of memory are necessary and sufficient to achieve rendez-vous in linear time.

1 Introduction

The problem of rendez-vous (the gathering of agents widely dispersed in some domain at a common place
and time) has been studied under many guises and in many settings [2, 15, 4, 5, 7, 6, 8, 10, 9, 14, 12, 18,
20, 21, 22]. (See Reference [13] for a survey of recent results.) In this paper we consider the problem of
autonomous mobile software agents gathering in a distributed network. This is a fundamental operation
useful in such applications as web-crawling, distributed search, meeting scheduling, etc. In particular,
we study the problem of two identical agents attempting to rendez-vous on a synchronous anonymous
ring.

We consider the standard model of a synchronous anonymous oriented n-node ring [19]. The
nodes are assumed to have no identities, the computation proceeds in synchronous steps and the edges of
the ring are labelled clockwise and counterclockwise in a consistent fashion. We model the agents as
identical probabilistic finite automata A = (S, §, so) where S is the set of states of the automata including
o the initial state and the special state halt, and 6 : S x C' x P — S x M where C' = {H, T} represents
a random coin flip, P = {present,notpresent} represents a predicate indicating the presence of the
other agent at a node, and M = {—1,0,+1} represents the potential moves the agent may make, 41
representing clockwise, —1 counterclockwise and 0 stay at the current node. During each synchronous
step, depending upon its current state, the answer to a query for the presence of the other agent, and
the value of an independent random coin flip with probability of heads equal to 1/2, the agent uses ¢
in order to change its state and either move across the edge labelled clockwise, move across the edge
labelled counterclockwise or stay at the current node. We assume that the agent halts once it detects
the presence of the other agent at a node. Rendezvous occurs when both agents halt on the same node.
The complexity measures we are interested in are the expected time (the number of synchronous steps)
to rendez-vous (where the expectation is taken over all sequences of coin flips of the two agents) and the
size (]S|) or memory requirement (log, |S|) of the agents.

A number of researchers have observed that using random walks one can design O(1) state agents
that will rendez-vous in polynomial number steps on any network [3]. For the ring the expected time



for two random walks to meet is easily shown to be O(n?). (See Reference [11] for an example proof of
this fact.) This expected time bound can be improved by considering the following strategy. Repeat the
following until rendez-vous is achieved: flip a fair coin and walk n/2 steps clockwise if the result is heads,
n/2 steps counterclockwise if the result is tails. If the two agents choose different directions (which they
do with probability 1/2) then they will rendez-vous (at least in the case where they start at an even
distance apart). It is easy to see that the expected time until rendez-vous in this case is O(n). Alpern
refers to this strategy as Coin Half Tour and studies it in detail [1]. Note that the agents are required
to count up to n/2 and thus require Q(n) states or Q(logn) bits of memory to perform this algorithm.
The main result of this paper is that this memory requirement can be reduced to O(loglogn) bits while
still achieving rendezvous in O(n) expected time, and this is optimal.

Below we show a tradeoff between the size of the agents and the time required for them to
rendez-vous. We prove there exists a 2t state algorithm, which can achieve rendez-vous on an n node
ring in expected time O(n?/2! + 2') and that any t/2 state algorithm requires expected time Q(n?/2¢).
As a corollary we observe that ©(loglogn) bits of memory are necessary and sufficient to achieve rendez-
vous in linear time. Section 2 contains some preliminary results, section 3 our upper bound and section
4 the lower bound.

2 Preliminaries

2.1 Martingales, Stopping Times, and Wald’s Equations

In this section, we review some results on stochastic processes that are used several times in our proofs.
The material in this section is based on the presentation in Ross’ textbook [17, Chapter 6]. Let X =
X1, X5, X3,... be a sequence of random variables and let @Q = Q1,Q2, Q3 ... be a sequence of random
variables in which @; is a function of X1,..., X;. Then we say that Q is a martingale with respect to X
if, for all 4, EHQlH < oo and E[Qi-‘,—l | Xq,... ,XZ] =Q;.

A positive integer-valued random variable T' is a stopping time for the sequence X1, Xo, X3, ...
if the event T' = i is determined by the values X1,..., X;. In particular, the event T" = i is independent
of the values X;;1, X;12,.... Some of our results rely on the Martingale Stopping Theorem:

Theorem 1 (Martingale Stopping Theorem). If Q1,Q2, Qs, ... is a martingale with respect to X1, X2, X3, . ..

and T is a stopping time for X1, X9, X3, ... then

E[Qr] = E[@1]
provided that at least one of the following holds:

1. Q; 1s uniformly bounded for alli < T,
2. T is bounded, or
3. E[T] < oo and there exists an M < oo such that

E[|Qit1 —Qi| | X1,..., X5] <M .

If X1, Xo, X3,... is a sequence of i.i.d. random variables with expected value E[X] < oo and
variance var(X) < oo then by applying Theorem 1 on the sequence @Q; = Z;Zl(Xj — E[X]) we obtain



Wald’s Equation:

E

ZX] = E[T] - E[X] (1)

whenever T is a stopping time for X7, X5, X3, ... Similarly, we can derive a version of Wald’s Equation

. 2
for the variance by considering the martingale Q; = (Z;Zl(Xj - E[X]) — 4 - var(X) to obtain

i=1

T T 2
var (Z XZ-> =E (Z(Xi E[XA)) = E[T] - var(X) . (2)

2.2 A Lemma on Random Walks

Let X, X5, X3,... € {—1,+1} be independent random variables with
Pr{X; = -1} =Pr{X; = +1} = 1/2

and let S; = Z;Zl X;. The sequence Si, 52,53, ... is a simple random walk on the line, where each X;
represents a step to the left (X; = —1) or a step to the right (X; = +1). Define the hitting time h,, as

B =min{i: |S;| =m} |

which is the number of steps in a simple random walk before it travels a distance of m from its starting
location. The following result is well-known (see, e.g., Reference [16]):

Lemma 1. E[h,,] = m?.

Applying Markov’s Inequality with Lemma 1 yields the following useful corollary
Corollary 1. Pr{max{|S;|:i € {1,...,2m?}} >m} >1/2.

In other words, Corollary 1 says that, at least half the time, at some point during the first 2m?
steps of a simple random walk, the walk is at distance m from its starting location.

Let Yi,...,Y,, be i.i.d. non-negative random variables with finite expectation r = E[Y;], inde-
pendent of X1, ..., X,,, and with the property that

Pr{Y; > ar} >1/2

for some constant a > 0. The following lemma considers a modified random walk in which the ¢th step
is of length Y;:

Lemma 2. Let Xq,...,X,, and Y1,...,Y,, be defined as above. Then there exists constants B3,k > 0
such that

Pr { max ZXiYi:mIG{l,...,m} > Brvm p >k .

i=1



Proof. We will define 3 events F1, Fy, E5 such that Pr{E; N E; N E3} > 1/8 and, if Ey, Fs, and Ej all
occur, then there exists a value m’ € {1,...,m} such that ‘Zgl Xl-YZ-’ > ary/m/2%/2. This will prove
the lemma for x = 1/8 and 8 = «a/2%/2.

Let E; be the event that there exists a value m’ € {1,...,m} such that

By Corollary 1, Pr{E;} > 1/2. Assume E; occurs and, without loss of generality, assume Z:’il X; > 0.

Let IT={ie{l,....m'}: X; =+1}and I~ ={1,...,m'} \ I'". We further partition I into
two sets I;7 and I where I]” contains the smallest |I~| elements of It and I contains the remaining
elements. Note that, with these definitions, |I;7| = [I~| and that |I;7| = >_7", X;. Let Ey be the event

that
YK+ Y XY 20
iely iel-

which is equivalent to Zie[f’ Y; > > .., Y; and observe that, by symmetry, Pr{Es|E;} > 1/2.

i€l

Finally, let E5 be the event
> XY > ar|If|/2
i€l
To bound Pr{E3|E1 N Ey}, let T = |{i € I : Y; > ar}| and observe that T’ > |I5|/2 implies F3. Now,

T is a binomial(|I |, p) random variable for p > 1/2 so its median value is at least p|I;"| > |I,|/2 and
therefore Pr{E3|Ey N By} > Pr{T > |I]]/2} > 1/2.

We have just shown that Pr{E; N E; N Es} > 1/8. To complete the proof we observe that, if
FE1, E5 and E3 occur then

iXiY;’ = Z XY + Z XiY; + Z X;Y;
i=1

i€l iel- ierf
> ) XY

iel}
> arllf|/2
> arﬁ/23/2.

2.3 An Approximate Counter

In the previous section we have shown that, if we can generate random variables Y; that are frequently
large, then we can speed up the rate at which a random walk moves away from its starting location. In
this section we consider how to generate these frequently-large random variables. Consider a random
variable Y generated by the following algorithm:



BIGRAND(t)

1: Y+~ C+«0

2: while C <t do

3: Y—Y+1

4 if a coin toss comes up heads then
5: C—C+1

6: else

T C+—0

8 return Y
Lemma 3. Let Y be the output of Algorithm BIGRAND(t). Then

1. ElY]=2%2-1/2"1) and
2. Pr{Y > E[Y]/2} > 1/2.

Proof. To compute the expected value of Y we observe that the algorithm begins by tossing a sequence of
1 —1 heads and then either (a) returning to the initial state if the ith coin toss is a tail or (b) terminating
if i = 2'. The first case occurs with probability 1/2% and the second case occurs with probability 1/2¢.
In this way, we obtain the equation

E[Y]:Z%(i—i—E[Y}H—% .

i=1
Rearranging terms and multiplying by 2¢, we obtain

E[Y] =22 -1/2"1) .

To prove the second part of the lemma, consider the number of times the counter C' is reset to
0 in Line 7 of the algorithm. This number is a geometric(1/2!) random variable and its expected value
is therefore 2° > E[Y]/2. Since the number of times Line 7 executes is a lower bound on the number of
times the value of Y is incremented (Line 3), this completes the proof. O

3 The Rendez-Vous Algorithm

Consider the following algorithm used by an agent to make a random walk on a ring. The agent repeatedly
performs the following steps: (1) toss a coin to determine a direction d € {clockwise, counterclockwise}
then (2) run algorithm BIGRAND(?) replacing each increment of the variable Y with a step in direction
d. By using t states for a clockwise counter and t states for a counterclockwise counter this algorithm
can be implemented by a 2¢ state finite automata. (Or using one bit to remember the direction d and
logt bits to keep track of the counter C in the BIGRAND algorithm, it can be implemented by an agent
having only 1 + log, ¢ bits of memory.)

We call m iterations of the above algorithm a round. Together, Lemma 2 and Lemma 3 imply
that, during a round, with probability at least x, an agent will travel a distance of at least 32t/m from

its starting location. Set
2
[ n
" [WJ



and consider what happens when two agents A and B both execute this rendez-vous algorithm. During
the first round of A’s execution, with probability at least k, agent A will have visited agent B’s starting
location. Furthermore, with probability at least 1/2 agent B will not have moved away from A when
this occurs, so the paths of agents A and B will cross, and a rendez-vous will occur, with probability at
least /2.

By Lemma 3, the expected number of steps taken for A to execute the ith round is at most

The variables My, Ms, - - - are independent and the algorithm terminates when A and B rendez-vous. If
we define T as the round in which agents A and B rendez-vous then the time to rendez-vous is bounded

by

T

Z M; .

i=1
Note that the event T' = j is independent of M, 1, M;i2,... so T is a stopping time for the sequence
My, Ms, ... so, by Wald’s Equation

T

>

i=1

E L

2
7.m2
K

= B[T)- B[M)] <

This completes the proof of our first theorem.

Theorem 2. There ezists a rendez-vous algorithm in which each agent has at most 2t states and whose
expected rendez-vous time is O(n?/2! + 2t).

4 The Lower Bound

Next we show that the algorithm in Section 3 is optimal.

The model of computation for the lower bound represents a rendez-vous algorithm A as a
probablistic finite automata having t states. Each vertex of the automata has two outgoing edges
representing the two possible results of a coin toss and each edge e is labelled with a real number
l(e) € [-1,+1]. The edge label of e is represented as a step of length |¢(e)| with this step being
counterclockwise if ¢(e) < 0 and clockwise if £(e) > 0. As before, both agents use identical automata
and start in the same state. The rendez-vous process is complete once the distance between the two
agents is at most 1. This model is stronger than the model used for upper bound, since the edge labels
are no longer restricted to be in the discrete set {—1,0,+1} and the definition of a rendezvous has been
slightly relaxed.

4.1 Well-Behaved Algorithms and Reset Times

We say that an algorithm is well-behaved if the directed graph of the state machine has only one
strongly connected component that contains all nodes. We are particularly interested in intervals between
consecutive visits to the start state, which we will call rounds.

Lemma 4. Let R be the number of steps during a round. Then E[R] < 2! and E[R?] < 22,



Proof. For each state v of A’s automata fix a shortest path (a sequence of edges) leading from v to the
start state. For an automata that is currently at v we say that the next step is a success if it traverses
the first edge of this path, otherwise we say that the next step is a failure.

Each round can be further refined into phases, where every phase consists of 0 or more successes
followed by either a failure or by reaching the start vertex. Let X; denote the length of the ith phase
and note that X; is dominated! by a geometric(1/2) random variable X/, so E[X;] < E[X]] < 2. On
the other hand, if a phase lasts ¢t — 1 steps then the start vertex is reached. Therefore, the probability
of reaching the start vertex during any particular phase is at least 1/2!~! and the number T of phases
is dominated by a geometric(1/2!~1) random variable T, so E[T] < E[T”] < 2!=1. Therefore, by Wald’s
Equation

T T
E[R| =E [Z Xi] <E X/| =E[T"]-E[X]] =2' .
i=1 i=1

For the second part of the lemma, we can apply Wald’s Equation for the variance (2) to obtain

- )
E[RY] = E <ZX>

I
<
Q0
&

IN

=
TR R
ZARAYE

2

> Xi |+ (BI]-E[X])?

E[T'] - var(X1) + (E[T"] - E[X]])?
2t71 .4_|_ (221571 . 8)
5 . 22t

IAINA

as required. O

4.2 Unbiasing Algorithms

Note that E[R] can be expressed another way: For an edge e of the state machine, let f(e) be the
expected number of times the edge e is traversed during a round. The reset time of algorithm A is then

defined as
reset(A) = Z f(e) =E[R] .

The bias of a well-behaved algorithm A is defined as

bias(A) = f(e) - {(e) ,

which is the expected sum of the edge labels encoutered during a round. We say that A is unbiased if
bias(A) = 0, otherwise we say that A is biased.

1A random variable X dominates a random variable Y if Pr{X > z} > Pr{Y > z} for all x € R.



Biased algorithms are somewhat more difficult to study. However, observe that, for any algorithm
A we can replace every edge label ¢(e) with the value ¢(e) — x for any real number x and obtain an
equivalent algorithm in the sense that, if two agents A and B execute the modified algorithm following
the same sequence of state transitions then A and B will rendez-vous after exactly the same number of
steps. In particular, if we replace each edge label ¢(e) with the value

tle) =e) - iiiiﬁ))

then we obtain an algorithm A" with bias(A") = 0. Furthermore, since | bias(A)| < reset(A), every edge
label ¢/ (e) has —2 < £'(e) < 2. This gives the following relation between biased and unbiased algorithms:

Lemma 5. Let A be a well-behaved t-state algorithm with expected rendez-vous time R. Then there
exists a well-behaved unbiased t-state algorithm A’ with expected rendez-vous time at most 2R.

4.3 The Lower Bound for Well-Behaved Algorithms

We now have all the tools in place to prove the lower bound for the case of well-behaved algorithms.

Lemma 6. Let A be a well-behaved t-state algorithm. Then the expected rendez-vous time of A is
Q(n?/22%1).

Proof. Suppose the agents are placed at antipodal locations on an n node ring, so that the distance
between them is n/2. We will show that there exists constants ¢ > 0 and p > 0 such that, after cn?/2!
steps, with probability at least p neither agent will have travelled a distance greater than n/4 from their
starting location. Thus, the expected rendez-vous time is at least pcn? /2t = Q(n?/2!).

By Lemma 5 we can assume that A is unbiased. Consider the actions of a single agent starting
at location 0. The actions of the agent proceed in rounds where, during the ith round, the agent takes R;
steps and the sum of edge labels encountered during these steps is X;. Note that the random variables
X1, Xa, ... are i.i.d. with expectation E[X] = 0 and variance E[X?]. Since the absolute value of X; is
bounded from above by R;, we have the inequalities E[|X;|] < E[R;] and E[X?] < E[RZ].

Let S; = ‘23:1 Xj‘, for i = 0,1,... be the agent’s distance from their starting location at the

end of the ith round. Let Q; = S? — iE[X?] and observe that the sequence Q1,Qa,... is a martingale
with respect to the sequence X7, Xo,... [17, Example 6.1d]. Define

T =min{i: S; > m} ,
and observe that this is equivalent to
T = min{i : Q; > m* —iE[X?]} .
The random variable T is a stopping time for the martingale Q1,Q2, ... so, by the Theorem 1
E[Qr] = E[Q1] = E[(X1) - E[X*]] =0 . 3)
However, by definition Q7 > m? — T - E[X?], so

E[Q1] > E[m? — T-E[X]] = m — E[T] - E[X?] . (4)



Equating the right hand sides of (3) and (4) gives

E[T] >
1= B
Furthermore, the expected number of steps taken by the agent during these T rounds is, by Wald’s

Equation,
T

m?E[R] _ m?E[R] _ m?
E | =E[T]-E > > > —
;R (7] Elfa] 2 E[R?] — 2% T 2%
where the last two inequalities follow from Lemma 4 and the fact that R > 1. O

4.4 Badly-Behaved Algorithms

Finally, we consider the case where the algorithm A is not well-behaved. In this case, A’s automata
contains a set of terminal components. These are disjoint sets of vertices of the automata that are strongly
connected and that have no outgoing edges (edges with source in the component and target outside the
component). From each terminal component, select an arbitrary vertex and call it the terminal start
state for that terminal component. An argument similar to that given in Lemma 4 proves:

Lemma 7. The expected time to reach some terminal start state is at most 2¢.

Observe that each terminal component defines a well-behaved algorithm. Let ¢ be the number
of terminal components and let ¢q,...,t. be the sizes of these terminal components. When two agents
execute the same algorithm A, Lemma 7 and Markov’s Inequality imply that the probability that both
agents reach the same terminal component after at most 2!72 steps is at least 1/2c. By applying Lemma 6
to each component, we can therefore lower bound the expected rendez-vous time by

%Q(n2/2t_0) 2 Q(n2/22t) ,

Substituting ¢ = t/2 into the above completes the proof of our second theorem:

Theorem 3. Any t/2-state rendez-vous algorithm has expected rendez-vous time Q(n?/2t).

4.5 Linear Time Rendez-vous

We observe that Theorems 2 and 3 immediately imply:

Theorem 4. O(loglogn) bits of memory are necessary and sufficient to achieve rendez-vous in linear
time on an n node ring.
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