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Abstract. A man walks into a men’s room and observes n empty uri-
nals. Which urinal should he pick so as to maximize his chances of main-
taining privacy, i.e., minimize the chance that someone will occupy a
urinal beside him? In this paper, we attempt to answer this question
under a variety of models for standard men’s room behavior. Our results
suggest that for the most part one should probably choose the urinal fur-
thest from the door (with some interesting exceptions). We also suggest
a number of variations on the problem that lead to many open problems.

1 Introduction

The question of digital privacy and how to protect it has a long history of study
in computer science and it raises a number of interesting algorithmic (as well as
other) research problems[7]. But it is also the case that algorithmic issues may
arise when considering physical privacy. A particular instance of this occurs
when one considers the use of a public men’s room. The standard design of a
men’s room contains a number of urinals which are generally located along one
wall with neighboring stations in full view of each other (Figure 1). (Although
recently there has been a trend to place dividers between adjoining positions [1].
For a history of privacy concerns in restroom design see [15].) In order to obtain
some amount of privacy while vacating one’s bladder it is desirable to have a
urinal such that its neighboring positions are unoccupied3.

This leads to the following algorithmic question: A man walks into a men’s
room and observes n empty urinals. Which urinal should he pick so as to maxi-
mize his chances of maintaining privacy, i.e., minimize the chance that someone
will occupy a urinal beside him? One’s intuition might suggest that choosing one
of the end urinals is the best choice. It turns out the answer depends on many
3 We hope that by focusing on the men’s room version of the problem we are not

leaving out our female readers. We chose this version since (1) we understand (not
from personal experience) that most women’s rooms contain only water closets which
already provide some amount of privacy beyond that afforded by urinals and (2) we
are more familiar with the behavior of men in a public restroom situation which we
shall see is an important aspect of our study. It has been pointed out to us that
women may also use urinals [2] and should this become a more prevalent behavior
our results may directly interest our female readers.



Fig. 1. Standard men’s room urinal arrangement.

things but in particular on how one models the behavior of the men who enter
later. In this paper, we consider a variety of models for men’s room behavior
and attempt to develop strategies for maintaining privacy under each. The re-
sults of this preliminary study suggest that for the most part one’s intuition is
correct (the ends are best) with some interesting exceptions. We also examine a
number of variations on the problem that might lead to a better understanding
of physical privacy concerns and which suggest many interesting open questions.

2 Related Work

As far as we know the problem we consider has not been studied before. If one
is interested in finding the most private position to place an object in the sense
of it being furthest from all other occupied positions in some space this can be
formulated as a version of the well-studied Obnoxious Facility Location Problem.
(See [13] for a survey of results in this area.) But in our case this question is
trivially solved by taking the position at the mid-point of the largest gap of
urinals (i.e., contiguous sequence of empty urinals) and it does not really answer
our question. The question of privacy in querying sensors in a sensor network
also shares some aspects of our question but again the concerns turn out to be
different [16].

Most closely related to our question (at least for the case where the men
behave randomly) seems to be the following “unfriendly seating arrangement”
problem posed by Freedman and Shepp [4]: There are n seats in a row at a



luncheonette and people sit down one at a time at random. They are unfriendly
and so never sit next to one another (no moving over). What is the expected
number of persons to sit down? Solutions to this problem were provided by
Friedman, Rothman and MacKenzie [5, 12] who show that as n tends to infinity
the expected fraction of the seats that are occupied goes to 1

2 −
1

2e2 . (For a nice
exposition of this and related problems see [3].) Georgihou et al. [6] consider the
following generalization of this problem (the unfriendly theatre seating arrange-
ment problem): People arrive one at a time to a theatre consisting of m rows
of length n. Being unfriendly they choose seats at random so that no one is in
front of them, behind them or to either side. What is the expected number of
people in the theatre when it becomes full, i.e., it can not accommodate any
more unfriendly people? They give bounds on the fraction of the theatre that is
full (in the limit) for all m and show that for m = 2 this limit is 1

2 −
1
4e .

While perhaps related to our problem in name only, our study was at least
partially inspired by Knuth’s Toilet Paper problem [11]. Don Knuth relates that
the toilet paper dispensers in the Stanford Computer Science public restrooms
are designed to hold two rolls of tissues either of which is available for use. This
led him to consider the following problem: A toilet stall contains two rolls of toilet
paper of n sheets each. The stall is used by people of two types: big choosers
and little choosers. They arrive to use the toilet randomly and independently, the
former with probability p and the latter with probability 1−p. Big (respectively,
little) choosers select exactly one sheet of paper from the roll with the most
(respectively, least) number of sheets. What is the expected number of toilet
sheets remaining just after one of the two rolls has emptied, defined to be the
residue Rn(p)?

Knuth used combinatorial techniques to prove that for fixed p and r, which
satisfy the condition 4p(1− p) < r < 1, we have that

E[Rn(p)] =



p
2p−1 +O(rn) if p > 1/2
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+O(n−3/2) if p = 1/2

1−2p
1−p n+ p

1−2p +O(rn) if p < 1/2

as n → ∞ where the constants implied by the O notation depend on p, r but
not on n. A high probability version of this result was recently used to prove
bounds on the time required for routing on a Markovian grid [9].

3 The Urinal Problem

For our initial study we assume that you are the first man to enter and all of the
urinals are available. We will discuss the case where some urinals are occupied
below. Further we assume that men enter one at a time and depending on one
of the strategies outlined below they make a choice of a urinal that provides
privacy (i.e., is unoccupied on either side) if possible. If this is not possible



then we assume the random strategy for choosing a urinal where one chooses
uniformly at random among all unoccupied urinals. We note that other models
of how the remaining urinals are filled are possible and make some remarks on
some of them below. Finally, we assume that men enter at a constant rate of
one man every time unit and stay at their position until you have finished.

For each of the scenarios we consider, we are interested in maximizing the
expected time until your privacy will be violated, i.e., a man occupies one of
the urinals beside yours. We call a set of the occupied urinals a configuration.
We call a configuration saturated if the next man entering is forced to violate at
least one person’s privacy. It is fairly clear that, under the assumptions above,
the time until your privacy is violated can be divided into two phases: the time
until saturation is reached and time until a man violates your privacy once
the configuration is saturated. As such we divide our analysis for each of the
cases below into two parts: the time until saturation and the time until privacy
violation once saturation has been achieved.

3.1 Lazy behavior

In this model one chooses the lowest number unoccupied urinal that provides
privacy, i.e., we assume that a urinal’s distance from the door of the men’s room
is directly proportional to its number and that men, being naturally lazy, will
always choose the first empty private spot. The analysis of the first phase divides
into two cases depending upon whether n is even or odd.

If n is even and you choose an odd numbered position then clearly the satu-
rated configuration will consist of all of the odd positions and will contain n/2
occupied urinals. If you choose an even numbered position, 2k, then the sat-
urated configuration consists of the k − 1 odd positions before you (excluding
2k − 1) and the n/2− k even positions after you. Again there are n/2 occupied
urinals at saturation. In the odd case, you are better off choosing an odd position
as in that case the saturated configuration consists of all of the odd positions
and contains (n + 1)/2 men versus (n − 1)/2 men in case you choose an even
position.

In either case, choosing any odd position yields dn/2e men in the saturated
configuration. At this point, if the remaining positions are filled randomly, there
is a distinct advantage to picking one of the positions at the end. The number of
men that enter before picking a urinal beside you follows a negative hypergeo-
metric distribution with parameters N = n− dn/2e, a where a is the number of
positions available beside you, i.e., a = 1 if you occupy position 1 or n and a = 2
otherwise. The expectation of such a random variable is given by (N+1)/(a+1)
so we get the expected time until your privacy is violated is

dn/2e+
bn/2c

2

if you choose positions 1 or n and

dn/2e+
bn/2c

3



otherwise. Clearly, choosing an end position is to your advantage for all n. (We
discuss the case where urinals are filled in a lazy fashion after saturation is
reached below.)

3.2 Cooperative behavior

In this model, all men cooperate to ensure that the configuration becomes satu-
rated at the last possible moment, by each choosing a position that guarantees
the maximum number of men have full privacy for as long as possible. It is easy
to establish that this case is very similar to the above in that as long as you
choose an odd position the saturated configuration will contain dn/2e men and
the best overall choice turns out to be either end.

3.3 Maximize your distance behavior

In this model we assume that a new entrant to the washroom will choose the
urinal which maximizes his distance to any of the current occupants of urinals.
If more than one such urinal exists then a random one among them is chosen. If
no urinal with privacy exists then a random urinal is chosen.

First we observe that by symmetry the number and positions of the men
when saturation is first reached are independent of the random choices made
among equidistant positions and only depends on the choice that you make as
the first man. Let A(n, i) be number of men in the saturated state if the first
man chooses position i, i = 1, . . . , n. Let B(n) be the number of men in such a
saturated state assuming positions 1 and n are filled (not including the men at
urinals 1 and n).

Assume n > 3. (The cases 1 ≤ n ≤ 3 are straightforward to analyze.) Observe
that if the first man chooses position 1 (respectively, n) then the second one will
choose n (respectively, 1) and the saturated configuration will contain 2 +B(n)
men. If the first man chooses 2 (respectively, n − 1) the second will choose n
(respectively, 1). If the first man chooses some position i between 3 and n − 2
then the second man will choose the further of 1 and n and eventually someone
will choose the other. This yields the following equation for A(n, i):

A(n, i) =

2 +B(n) i = 1, n
2 +B(n− 1) i = 2, n− 1
3 +B(i) +B(n− i+ 1) 3 ≤ i ≤ n− 2.

Further observe that in any gap of k > 2 unoccupied urinals with the urinals
at either end occupied, the first of the unoccupied positions to be occupied will
be the middle one (or one of the two middle ones if k is even). This yields:

B(n) =
{

0 n ≤ 4
1 +B(b i+1

2 c) +B(d i+1
2 e) n > 4.

It is relatively straightforward to establish the following closed form solution
for B(n):



B(n) = 2blog(n−1)c−1 + (b n− 1
2blog(n−1)c−1

c − 2)(n− 3 · 2blog(n−1)c−1 − 1)− 1

which in turn allows us to compute A(n, i) for any n, i. Unfortunately, we were
not able to establish a closed form expression for maxiA(n, i) or show that it
can be computed any faster than evaluating A(n, i) for all i. Note that this is
a pseudo-polynomial time algorithm as the input is just n. (See the discussion
below concerning different initial configurations for more on the analysis of this
algorithm.) While the function is reasonably well-behaved it does vary widely
for some values of n between the extremes of dn/3e and dn/2e.

If one was just concerned about maximizing the time until saturation occurs
it turns out that end positions are not optimal. In fact, for some values of n
position 1 is the worst choice in this regard. For example, for n of the form
3 · 2k + 1 for some k > 0, A(n, 1) = dn/3e while A(n, dn/3e) = dn/2e.

Fortunately, one can show that once again the end positions have an advan-
tage when we assume that the remaining positions are filled in random order. It
is fairly easy to show that A(n, i) ≥ dn/3e for all n (at least one of every three
urinals must be occupied) and that A(n, i) ≤ dn/2e (at most one of every pair
may be occupied) for all n and i and since

dn/3e+
n− dn/3e

2
> dn/2e+

bn/2c
3

we see that urinal number 1 (and n) is always (by a very slight margin in some
cases, e.g., for n of the form 3 · 2k + 1 for some k > 0 the difference is 1/6) the
optimal choice.

3.4 Random behavior

In this model we assume that when a man enters if the configuration is not satu-
rated he chooses uniformly at random among all positions that provide him with
privacy on both sides and that once saturation is reached he chooses uniformly
among all available positions. If the first man chooses randomly like everyone
else then the question of how many men there are at the time of saturation
corresponds to the unfriendly seating arrangement problem discussed above. In
our case we are interested in computing whether it makes a difference which po-
sition you choose as the first man. And indeed it does. Consider the case n = 5.
If position 1 is chosen it is easy to calculate that the expected number of men at
saturation is 2.67 but if you choose position 3 you are guaranteed 3 men at satu-
ration so it would appear that position 3 is better. But as above it is during the
filling phase that the advantage of an end takes over. In this example, position
1 expects 4.33 men (including himself) before his privacy is violated versus the
situation for position 3 where the fourth man will certainly violate his privacy.

Let E(n, i) be the expected number of men entering before your privacy
is violated assuming you choose position i. Let pi,k be the probability that if



you choose position i the resulting saturated configuration has k men in it.
Let qj,k,` be the probability that, if there are k spots available after saturation
and ` = 1, 2 depending on whether you are at an end or not (indicating the
number of positions you have available beside you), your privacy is violated by
the jth man (j = 1, . . . , n− k) entering after saturation. As above we note that
a saturated configuration has between dn/3e and dn/2e positions taken and so
we can calculate:

E(n, i) =
n∑

s=dn/3e+1

s
∑

j+k=s,j>0,dn/3e≤k≤dn/2e

qj,n−k,`pi,k

=
dn/2e∑
k=dn/3e

(k +
n−k∑
j=1

j · qj,n−k,`)pi,k.

Using the fact that that qj,k,` is negative hypergeometrically distributed we get:

E(n, i) =

{
n+1

2 + (1/2)
∑dn/2e
k=dn/3e kpi,k i = 1, n

n+1
3 + (2/3)

∑dn/2e
k=dn/3e kpi,k i = 2, . . . , n− 1.

Let F (n, i) =
∑dn/2e
k=dn/3e kpi,k. Note that F (n, i) is the expected number of

urinals occupied at saturation if position i is chosen first. But it is easy to see
that

F (n, i) = 1 +

F (n− 2) i = 1, n
F (n− 3) i = 2, n− 1
F (i− 2) + F (n− i− 1) n = 3, . . . , n− 2

where F (n) =
∑n−1
i=0

(−2)i(n−1)
(i+1)! is the expected number of urinals at saturation

if all choices are random established in [5, 12].
While F (n) is monotonic as we saw above for the case n = 5 it is not the case

that F (n, 1) > F (n, i) for all i. On the other hand, it is fairly straightforward
to show that F (n, 1) + 1 > F (n, i) and F (n, i) ≤ dn/2e for all i and n and from
this conclude (from the formula for E(n, i) above) that once again positions 1
(and n) are the optimal choice.

4 Variations on our Theme

4.1 Different filling strategies

The above analysis assumes once saturation is reached the remaining positions
are filled uniformly at random. This may not be realistic as one could imagine
other approaches.

Consider, for example, a lazy filling strategy whereby a new entrant, finding
the configuration saturated, chooses the first available urinal. We say a position
is fully-private if the urinals on either side of it (if they exist) are unoccupied.
A non-end position is semi-private if only one of its neighbors is occupied. A



position is non-private if it is not fully private or semi-private. We say a man’s
behavior is fully-private first if a man always chooses a fully-private position if
available. All of the behaviors we have been considering are fully-private first.

It is fairly straightforward to show that for any behavior that follows a fully-
private first initial strategy and a lazy filling strategy, the optimal choice is
always position n as in this case all urinals except n − 1 must be used before
your privacy is violated.

An interesting situation arises in the case where semi-private positions are
preferred to non-private positions when filling. The expected time until your
privacy is violated now depends on how many semi-private positions versus non-
private positions exist at saturation and what types of gaps exist beside you
(one or two unoccupied positions). Given this information the expected time of
your privacy can be calculated using the appropriate negative hypergeometric
distribution.

Consider what happens in the case of the distance maximizing behavior above
if (1) in the initial phase when choosing between two equi-distant alternatives
one always chooses the lower numbered urinal (i.e., the lazy choice) and (2) after
reaching saturation the men choose randomly first among semi-private positions
and only after they are filled they choose randomly among non-private positions.
In this case, the advantage held by the end positions disappears! If n = 8 the
expected time until privacy is violated for position 1 is 5 versus 6.33 if you choose
position 3. If n = 21 the expected length of your privacy for position 21 is 14.5
versus 15 if you choose position 3. In fact, one can construct infinitely many n
for which position 1 (or position n) is not the best choice. (n = 8 is the smallest
case for position 1 and n = 6 the smallest for the last position.) But in each of
these cases, we find that if the first urinal is not optimal, the last is, and vice
versa. We conjecture that under the behavior above it will always be the case
that either position 1 or position n will be optimal. Further we conjecture that
if instead of making a lazy choice for equidistant positions in the first phase but
make a random choice, the advantage for both position 1 and position n remains.
If your filling strategy is to always fill a randomly chosen gap of size 2 in order
to get a semi-private position (if one exists) in a lazy manner, then one can show
that position 1 is no longer optimal (already it fails for n = 4) but position n
is always optimal. For the random behavior and for any of the filling strategies
considered above one can show that position n remains optimal.

4.2 Non-empty initial configuration

More often than not when you enter a public men’s room in a busy area the
configuration you observe is not the empty one. What should one do in this
case?

A rule of thumb that follows from the discussion above is it likely the case
that if one of the end positions is open and its single neighbor is unoccupied,
you should choose that position. Note that this is not always the case! If we are
in a situation where one of the ends is available but choosing it will force a gap



of size 2 to form beside it, it may be the case that, if semi-private positions are
preferred after saturation, choosing the end is not a good idea.

In general, the only way we know of to be certain you make the best choice is
to compute for each position the expected length of privacy using the formulas
provided above applying them to the subproblems created by the configuration.
For example, if one is analyzing the case where maximizing the distance behavior
is assumed, then one can compute the time to saturation by adding the times
resulting from each of the gaps in the configuration using the formula B(n) (or
an appropriate modification in the case where one end of a gap is position 1
or n). After saturation, the filling time can be computed using the appropriate
negative hypergeometric distribution. If the configuration is presented as {0, 1}
vector then this results in a O(n2) time algorithm for finding the best urinal
to choose. If the configuration is given as a list of positions then in general the
algorithm is only pseudo-polynomial. We conjecture there is a polynomial time
algorithm for each of the behaviors and filling strategies discussed above but
have not been able to determine one for all cases.

4.3 Dynamic situation

Perhaps the least realistic assumptions we have made above are (1) the arrival
rate of men is constant and (2) the men stay indefinitely once they arrive rather
than leaving once they have completed their business. It is fairly evident that
both the arrivals and service times of the men are complex random processes. As
a first attempt, the use of queueing theory to model this aspect of the problem
seems warranted.

The simplest assumption in this regard would be that the arrival times form
a Poisson process and the time required to relieve oneself is exponential dis-
tributed. As there are n urinals, this leads to what is termed an M/M/n queue
in the standard queueing theory terminology [10, 14]. Given 1/λ, the mean time
between arrivals, and 1/µ, the mean service time, it is straightforward to cal-
culate such quantities as the expected number of “customers” in the system
(either being serviced or waiting for a urinal to open up in case all are full), the
probability that k urinals are free, etc. and use this information to help devise
a strategy for picking a urinal.

For example, if λ
µ < n/2 then you are in a region where one expects that

saturation will not be reached during your visit (or even if it is the number of
filled positions after saturation will be small.) In this case, if one assumes the
maximizing distance behavior above then the advantage of the ends disappears.
One should use the algorithm above to estimate the position that prolongs the
time until saturation the longest. Generally, this will be somewhere in the largest
gap of urinals and not necessarily at the end. (Again, if we assume a configuration
is represented by a {0, 1} vector this will be a polynomial time algorithm.) On
the other hand, if one assumes random behavior then for most configurations
(ones with a sufficiently large gap) a search using a Python program suggests
the best choice is one that leaves three empty urinals between you and either



the beginning or the end of the largest gap. This appears to insure that the time
to saturation in that gap will be maximized.

The above analysis assumes you have an good estimate of λ and µ which
seems unlikely4. Without this information one can make a maximum likelihood
estimate of λ

µ using the number of men in the configuration upon your arrival.
If the current configuration is not saturated you may as well assume that this
is the steady-state and follow the guidelines described in the last paragraph for
the case λ

µ < n/2. On the other hand if the configuration is saturated then you
have no choice but to pick a semi-private or even non-private position. It might
be interesting to investigate whether one such spot is better than another for
increasing your privacy. This would seem to depend on having an estimate of the
time remaining to service individuals currently in the configuration but perhaps
not.

4.4 Game-theoretic formulation

Another objection to the approach taken above is that those arriving after the
first arrival are limited to following a particular behavior. In reality they are
also interested in maximizing their private time. How might considerations of
more general strategies effect your choice? If the second man to enter is going to
maximize his privacy based upon your choice how does that effect your choice as
first. If k men enter simultaneously, is there a mechanism by which they might
be led to choose a configuration that maximizes the average or maxmin privacy?

These questions suggest that our problem is in reality some sort of game
played by multiple players in rounds and the tools of game theory might be
applied to establish better strategies. We leave it up to experts in algorithmic
game theory to formulate the right questions that might shed some light on this
problem. We are hopeful this might lead to some interesting lines of research.

4.5 Metric space generalizations

The urinal problem is just one of many situations where physical privacy might
be desirable, in a place where people are entering (and leaving) over time. The
unfriendly theatre seating arrangement problem described above is one such
example (as is any situation with open seating). Another might be called the
beach blanket problem: Frankie and Annette arrive at the beach early in the
morning and want to decide where to place their beach blanket to allow for
the most privacy throughout the day in order to engage in whatever activities
they have planned for the day. Under various assumptions about the behavior of
later arrivals, what place should they choose? We note that some old fashioned

4 The designers of men’s rooms do make estimates of such quantities in order to decide
how many urinals are required for a given site. As one might expect this will depend
on the size of a building, what it is used for (e.g., office building, cinema, shopping
mall, etc.) and the expected mix of men versus women versus children. For tables of
the recommended number of fixtures required see [8].



urinals consist of one contiguous urinal with a single central drain. This would
correspond to the continuous version of our original urinal problem.

A natural generalization of the urinal problem that captures all of these
might be termed the metric space privacy problem. You are given a metric space
(M,d), an ε (the radius of privacy), and a deterministic or randomized behavior
describing the choices of points in the space of later arrivals. Given a configu-
ration (a subset of points in M) choose a point that maximizes the (expected)
time until your privacy radius is violated, i.e., a later arrival chooses a point
within distance ε of your spot. In the theatre seating problem we take M to be
the vertices of an m × n grid with edge weights equal to 1 and ε = 1. In the
beach blanket problem M may be modelled by a simple polygon (perhaps even
a rectangle) with the Euclidean distance measure and ε may depend upon how
much privacy you need. In the continuous urinal problem M is a unit interval
and ε is a function of a man’s width and privacy needs.

One suspects that some instances of these problems will turn out to be NP -
hard as it would appear that in some cases you would be forced to solve a version
of the obnoxious facility location problem that in some cases is known to be NP -
hard. Consideration of a given metric space can be combined with dynamics
and/or game theory to yield more problems. We feel there is the potential for
many interesting open questions in this area.

5 Conclusions

Our main conclusion is that when faced with the decision of what urinal to choose
upon entering the men’s room, in order to maximize your privacy, you should
probably choose the one furthest from the door if it is available and the one
next to it is unoccupied. For a vast majority of the (what we consider) natural
behaviors that men choosing urinals might follow, this choice is optimal (in the
sense defined above). Beyond this observation, we feel that this problem leads
to many interesting variations that are worthy of investigating further and we
encourage everyone to do more of their thinking while using public restrooms.
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