
Counting Targets with Mobile Sensors

in an Unknown Environment

Beat Gfeller1, Matúš Mihalák1, Subhash Suri2⋆, Elias Vicari1, and Peter Widmayer1

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
{gfeller,mmihalak,vicariel,widmayer}@inf.ethz.ch

2 Department of Computer Science, University of California, Santa Barbara, USA
suri@cs.ucsb.edu

Abstract. We consider the problem of counting the number of indistinguishable

targets using a simple binary sensing model. Our setting includes an unknown num-
ber of point targets in a (simple or multiply-connected) polygonal workspace, and
a moving point robot whose sensory input at any location is a binary vector rep-
resenting the cyclic order of the polygon vertices and targets visible to the robot.
In particular, the sensing model provides no coordinates, distance or angle mea-
surements. We investigate this problem under two natural models of environment,
friendly and hostile, which differ only in whether the robot can walk up to them or
not, and under three different models of motion capability.
In the friendly scenario we show that the robots can count the targets, whereas in
the hostile scenario no (2 − ε)-approximation is possible, for any ε > 0. Next we
consider two, possibly minimally more powerful robots that can count the targets
exactly.

1 The Problem and the Model

Simple, small and inexpensive computational and sensing devices are currently at the fore-
front of research interest in computer science. These devices promise to bring computational
capabilities into areas where previous approaches (usually consisting of complex and bulky
hardware) are not feasible or cost-effective. Such devices are being successfully used in var-
ious monitoring systems, military tasks, and other information processing scenarios. Their
main advantages are quick and easy deployment, scalability, and cost-effectiveness. How-
ever, in order to realize the full potential of these technologies, many new and challenging
research problems must be solved, because the classical schemes designed for centralized
and desktop computational hardware are inapplicable to the lightweight and distributed
computational model of sensor nodes. The inherent limitations of the systems based on
these simple devices have inspired the research community to consider the computation
with a minimalistic view of hardware complexity, sensing and processing, energy supply,
etc.

In this paper we use such a minimalistic approach in the area of mobile sensors – simple
robots. We consider and define robots of unsophisticated sensing and mobile capabilities

⋆ Work done while the author was a visiting professor at the Institute of Theoretical Computer
Science, ETH Zurich



and investigate their computational power on an elementary yet natural problem of count-
ing objects of interest in the robots’ environment. We model the environment by a polygon
P (simply or multiply-connected) in the plane and the objects of interests, namely, targets

are modeled as a set of points inside P .

We assume that the robot is a (moving) point, equipped with a simple camera that
can sense just the combinatorial features of the surrounding. In particular, the robot can
see a vertex of P or a target, can distinguish a target from a vertex, but the vertices
and the targets are otherwise indistinguishable, i.e., all vertices are visually identical and
all targets are visually identical. It is only the cyclic order in which the robot sees the
objects that distinguishes them from each other. We assume that the ordering is always
consistent, which we take, without loss of generality, to be counterclockwise. We model such
a discrete vision by a point identification vector (piv), which is a binary vector defined by
the cyclically ordered list of targets and polygon vertices that are visible from the current
robot’s position, where each bit indicates whether the corresponding point is a target (value
1) or a vertex of the polygon (value 0). Sitting at a vertex of P , we assume that the cyclic
order of the visible points (vertices and targets) starts with the neighboring vertex, i.e.,
the first component of the piv always represents the neighboring vertex (and therefore has
value 0). For the robot located on a target, we make no assumption about the position of
the first vertex – it is chosen by an adversary.

Moreover, the robot can see the edges of the polygon. This is modeled by a combinatorial

visibility vector (cvv), a binary vector of length k whose i-th bit encodes whether there is
an edge between vertex i−1 and vertex i of the k vertices visible from the robot’s position.
See Fig. 1 for illustration.

robot

counterclockwise ordering

P

Fig. 1. An illustration of a point identification vector (piv) and a combinatorial visibility vector
(cvv) in polygon P (with 4 targets); piv is (0, 1, 0, 0, 1, 1, 0, 0) and cvv is (1, 1, 0, 1, 0, 1)

The robot has no other sensing capability, and in particular has no information about
distances, angles, or world coordinates. This also motivates our simplistic model of robot’s
movement. The robot can pick a direction based on its sensing system and move in that
direction until the environment prevents the robot to go any further. The direction of a
robot’s movement is the direction to one of the visible points (a vertex of P or a target)
in robot’s piv, and the robot stops when it reaches that point. The robots can sense the
environment only when not moving.



Due to these unsophisticated vision and motion primitives, seemingly easy tasks become
difficult in this model. For instance, a robot sitting at a vertex u can specify a visible vertex
v by its index in the cvv of u. However, if the robot moves from u to v, it is not possible in
general to recover the position of u with respect to v. A way to circumvent this issue is to
mark u with a pebble before moving to v. A pebble is visually distinguishable from vertices
and targets. If no other pebbles are visible from v, the position of u can be recovered. For
a detailed discussion of the implications of this minimalistic model, see [1].

We are interested in how the robots can solve various environment exploration tasks
and what are the limitations implied by our simplistic assumptions on robots capabilities.
In this paper we consider the problem of determining the number of targets in an unknown
polygon P . Throughout this paper we refer to this problem as the counting problem. By
n we denote the number of vertices of P and by m the number of targets therein. For
simplicity we assume that the targets and polygon vertices are in a general position, i.e.,
no three points are collinear. In this paper we consider two different scenarios to model
two basic classes of applications. In the friendly environment, the robot is allowed to walk
to any target. In the hostile environment, the robot is not allowed to walk to targets. This
scenario models the situation where a target represents an unsafe entity and coming into
an imminent closeness to targets is dangerous.

For a friendly scenario we show that a single robot with a single pebble (marker) can
count the number of targets in any polygon P . In contrast, we show that in a hostile sce-
nario, the robots cannot count the targets in general. Thus, requiring the robots to count
targets only from afar is a more complicated problem, and we must endow the robots with
some additional capabilities. Surprisingly, we show that these additional capabilities are
quite minor, yet subtle. In fact, we consider two possible models, and show their implica-
tions on our problem. We consider robots that can walk along edge or diagonal extensions,
i.e., if a robot picks a visible vertex u as the direction of its walk, the robot can continue
its walk in the same direction after it reaches u, if there is no polygonal edge to prevent
it. In the second model we consider one additional global direction in which the robot can
walk from any vertex of P . In both models the robots can solve the counting problem.

We are interested in deterministic algorithms and their worst-case analyses, which
we express in terms of the number of steps (movements) of robots and in the amount
of used memory. We work with word-memory units, where one word of memory has
θ(log(max{m, n})) bits. We are also interested in approximation algorithms, i.e., in al-
gorithms that deliver a (provably good) estimate on the number of targets. Further, we
look for estimates that are never smaller than the actual number of targets. We say that an
algorithm is a ρ-approximation for the counting problem if for the setting with m targets,
m ∈ IN, the algorithm estimates the number of targets by z, for which m ≤ z ≤ ρ · m. 3

To demonstrate the notion of approximation and to justify our sensing model we il-
lustrate that for the following weaker sensing model no non-trivial approximation exists:
consider the sensing of the vertices in the same way as we defined before, but consider the
sensing of the targets only by their presence. Thus, the only information the robot gets is

3 We can generalize the approximation concept and consider α-approximation algorithms, for
which 1

α
m ≤ z ≤ α ·m holds. Observe that these two approximation concepts are equivalent in

the following sense: for any solution z that is a ρ-approximation there is a solution z′ that is an
α-approximation, and vice versa. It is enough to set z′ = z√

ρ
, α =

√
ρ.



the number of visible targets (but not their ordering within the vertices of P ). Consider
Fig. 2. It depicts two different scenarios, one scenario with m = 1 target and the second
scenario with m = n/3 targets. In both scenarios the robot senses from every vertex exactly
one target and therefore cannot distinguish the scenarios. Hence, for this simple sensing
model no approximation algorithm can guarantee a ratio better than n/3.

Fig. 2. If a robot only senses the number of targets then the number of targets cannot be approx-
imated within o(n)

1.1 Related Work

The work of [1] considered simple robots with combinatorial sensing of the environment
and investigated some elementary questions of what information about the topology of the
environment can be deduced by simple robots. In our paper, we consider the same robots,
but enlarge the complexity of the environment by adding the targets into the environment.
The paper [1] demonstrates that a robot, although being strongly limited, can solve non-
trivial tasks. A robot cannot decide whether a vertex is convex, but can decide whether the
polygon is convex. Also, a robot cannot decide which is the outer boundary of a multiply
connected polygon P , although it can discover and count all the boundary components in
P . The paper also shows that a robot with one pebble can virtually label the vertices of
any (simple or multiply-connected) polygon P , which allows the robot to navigate from
any vertex i to any vertex j. The navigation result is an important building block in our
paper. Further, the paper shows that the robot can compute a triangulation of P and solve
a distributed version of the famous Art Gallery Problem with n/3 robots.

Combinatorial geometric reasoning is used in many motion planning and exploration
tasks in robotics [2, 3]. There are other papers dealing with minimalistic models for robots [4–
7]. However, the nature of problems investigated in our paper does not seem to be addressed
in the past. They deal mainly with navigation and pursuit evasion and not with recogni-
tion of important points (targets) in the environment. [4] assumes labeled features of the
environment (which is not a polygon), allowing sensors to distinguish these landmarks.

2 The Friendly Environment

In this section we show that in a friendly environment a robot with two pebbles can count
the targets in any simply or multiply connected polygon.

We consider simple polygons first. In the beginning the robot counts n, the number
of vertices of the polygon. This is an easy task: the robot leaves a pebble on the starting



vertex and walks around the polygon’s boundary, counting the vertices until it returns to the
pebble. Let 1, 2, . . . , n denote the vertices of the polygon, ordered in the counterclockwise
direction, starting at the robot’s position.

The idea of the algorithm is to go to every vertex i, i = 1, 2, . . . , n, and count the targets
that are visible from i and that are not visible from any vertex j, j < i. We call these targets
newly visible at vertex i. Thus, the robot can go through vertices i = 1, 2, . . . , n and sum
up all newly visible targets. Clearly, no target will be counted twice, and therefore the
resulting sum is the total number of targets.

We now describe how the robot can identify whether a target is newly visible. Being at
vertex i, the robot wants to identify whether a k-th target in its visibility vector is newly
visible. The robot goes to the target, leaves the pebble there, and checks for every vertex
j < i, whether the pebble is visible from j (the navigation from the target back to the
vertex i can be done by leaving a pebble at i and checking the position of i in the visibility
vector of the target). Obviously, the target is newly visible if and only if the pebble is not
visible from any vertex j, j < i. Overall, the robot needs one pebble and constant memory
(to remember the number of vertices, the current position i, the position j and the position
k of the considered target at i, and to mark the newly visible targets in the visibility vector
of vertex i). Hence, in time 2i we can check whether a target visible from the i-th vertex
is newly visible. To check all targets at position i we need at most 2mi steps. Thus, the
robot needs O(mn2) steps to count the targets in P .

If the time is crucial, one can achieve a O(mn) running time at the expense of used
memory. For each vertex i the robot maintains the piv with the additional information
stating whether a given target is newly visible. In the beginning, every target in the piv is
marked as newly visible. Then for every vertex i the robot marks each newly visible target
with a pebble and walks around the boundary towards vertex n and at every vertex i, if
the robot sees the pebble, it marks the corresponding bit in the bit array of vertex i as
not newly visible. Thus, the robot walks m times around the boundary (for each target
it walks exactly once and at most n steps), resulting into O(mn) steps of the robot. The
robot needs O(n) of memory.

Theorem 1. In the friendly environment a robot with two pebbles can count the targets

in a simple polygon in O(mn2) steps and with O(1) memory, or in O(mn) steps and with

O(n) memory.

The result can be easily extended to polygons with holes (multi connected polygons), if
we can navigate through the vertices in a consistent way. In [1], a navigation in an arbitrary
multiply connected polygon was demonstrated with a robot and one pebble. Our robot has
all the capabilities of the robot in that work, therefore the robot can first compute the
navigation instructions, which are then stored in the robot’s memory. Alternatively, we
can use an additional, globally distinguishable pebble and perform the vertex navigation
on the fly.

Theorem 2. In the friendly environment a robot with two pebbles can count the targets in

any polygon.



3 Hostile Environment

After solving the counting problem in the scenario where robots can walk to targets, we
consider now the scenario where robots walk only on vertices of P .

3.1 Inapproximability and Approximation

Inapproximability. We show that the counting problem cannot be approximated within
a factor 2−ε, for any ε > 0, even if the polygon P is simple. Consider the polygon in Fig. 3.
The polygon consists of four spikes attached to the four sides of a rectangle. It depicts two
scenarios with a different number of targets. In the first scenario there are 6 targets and in
the second scenario there are 4 targets. Considering any vertex of the polygon, the vectors
cvv and piv are the same in both scenarios. Hence, the robot cannot distinguish the two
scenarios, which shows a lower-bound of 6/4 = 3/2 for the approximation ratio.

Fig. 3. The counting problem cannot be approximated within a factor 3/2.

This construction can be extended to a general-sized polygon, where 2k spikes are
attached to a regular 2k-gon, using 2k and 4k − 2 targets in two different scenarios, thus
giving the desired lower-bound (2 − ε). See the Appendix for details.

Theorem 3. The counting problem cannot be approximated within a factor 2 − ε even in

a simple polygon.

Note that this inapproximability result relies only on the visibility limitations of the
robots and not on their limited navigation capabilities.

Approximation. Since the counting problem cannot be solved optimally, it is natural to
look for approximate solutions, i.e., for good estimates of m, the number of targets.



Observe first that m is at least the number of targets visible from any vertex of P . Let mi

denote the number of targets that are visible from vertex i. We have m ≥ maxi mi. On the
other hand, clearly, m ≤

∑
i mi. Since every target is visible from at least three vertices of

P (consider a triangulation of P and the vertices of the triangle, in which the target lies), we
have m ≤ 1

3

∑
i mi. A robot can compute the sum z =

∑
i mi with one pebble that allows

the robot to navigate through all vertices of P (even with holes). Obviously, reporting
1

3
z as the estimate for the number of targets yields an n

3
-approximation. Alternatively,

if we denote by k the number of vertices with non-zero mi, the value z becomes a k
3
-

approximation.

Although the approximation is not sound at first sight (consider a convex polygon with
a single target in it), it gives some insight into the complexity of the counting problem.
Notice that the derived approximation ratio depends solely on the number of vertices n (or
on k, the number of vertices with a view on at least one target) and not on the number of
targets. Hence, if m grows in comparison to n or k, the approximation ratio gets better.
In other words, the approximation ratio does not grow with the number of targets, but is
determined by the structure of the polygon (i.e., by n) and by the way how the targets are
placed in this structure (i.e., by k).

For the sake of completeness, we would like to mention that a 2-approximation algorithm
can be designed under a slightly stronger model (but weaker than the one described in
Section 3.3). In this model, the 2 − ε inapproximability result still holds. We omit the
precise description of the algorithm due to space limitations.

3.2 More Power to the Robots

We have seen in the previous subsection that a simple robot cannot count the targets in a
simple polygon. We therefore look at possible robot enhancements, which keep the robots
as simple as possible and at the same time enable the robots to count the targets. We
consider two such extensions.

In the first one we allow the robot to walk along edge-extensions and diagonal-extensions,
i.e., if a robot at vertex v picks a vertex w as the direction of the robot’s walk, the robot
is allowed to walk in the same direction after it reaches w, and stops on the boundary at
a point w′. Fig. 4 illustrates this enhancement. The line vw′ is called an edge-extension

(diagonal-extension) if vw is an edge (diagonal) of P . If we do not need to distinguish
whether vw′ is an edge- or diagonal-extension, we shall call vw′ simply an extension. If a
pebble is placed at w′, it is then visible in the same way as a vertex of P , but visually
distinguishable.

In the second extension one additional, global direction is introduced, in which a robot
can move. Without loss of generality we assume that it is the direction of a vertical line
going through the robot’s position. For simplicity of presentation we assume that the
polygon does not have vertical edges. On top of that we assume the robot can tell whether
a visible point (a vertex or a target) is to the left or right of the vertical line, and whether
it is above or below the robot, i.e., above or below the horizontal line going through the
robot’s position. Such an enhancement can be viewed as a navigation with compass. If a
robot walks from a vertex v in the vertical direction we say that it walks along the vertical

extension of v.



For both extensions we present algorithms that allow robots to count the number of
targets inside the polygon P .

v

w

w
′

Fig. 4. A robot at position v chooses vw as the direction of the robot’s walk. After the robot
reaches w, it can continue in the same direction until it hits the boundary of P at point w′

Partition of the Polygon and Counting. The algorithms are based on the idea of
partitioning the polygon into special triangles and counting the targets in the triangles
exactly. To illustrate the idea, consider a triangulation of P with the property that every
triangle has at least one side identical to a side of P . We call such a triangle a baseline

triangle, and the edge of the triangle that lies on the boundary of P a baseline edge. A
triangulation with all baseline triangles is called a Hamiltonian triangulation, as its dual
is a path4.

In the case of a Hamiltonian triangulation a robot can count the targets with the
following algorithm. For every triangle the robot moves to the vertex opposite the edge of
the triangle which is also an edge of P , and counts the targets that are visible between
the two vertices of the edge. Clearly, in this way every target is counted exactly once.
Unfortunately, such a triangulation does not always exist, see Fig. 5. However, if we add

Fig. 5. A polygon and its unique triangulation with a triangle consisting solely of diagonal edges.
The triangulation is depicted by dashed lines

new vertices on the boundary of P at particular positions, we can always partition a
polygon P into baseline triangles. Such a partition does not necessary form the “usual”

4 A dual of a triangulation is a graph, where each triangle corresponds to one vertex and there is
an edge between two vertices if the two corresponding triangles share an edge.



triangulation of P in the sense that a triangle can consist of more than 3 vertices of P (see
Fig. 6 and the triangle vw1v2 which also contains a vertex v1 on its boundary). We call
such a partition a baseline triangulation. Either of the two robot extensions which we have
introduced allows robots to use additional points of P to compute such a triangulation.

The result of [8] presents an algorithm that recognizes whether a polygon has a Hamil-
tonian triangulations and computes one. The algorithm can be adapted by a robot with an
additional capability, which allows the robot to recognize the reflex vertices of P (which is
not possible in our model, see [1]).

3.3 Walking Along Edge- and Diagonal-Extensions

In this section we consider robots that can walk along edge- and diagonal-extensions. We
show that such robots can partition any simple polygon into baseline triangles, and thus
can count the targets.

Consider a robot at a vertex v of the polygon P . Let v1, v2, . . . , vi . . . denote the visible
vertices from v, cyclically ordered in the counterclockwise direction. Observe that the lines
vvi partition the visible part of P into triangles (all with a common point v), each with
at least one baseline edge. See Fig. 6 for an illustration, where the triangles vw1v2, vv2w2,
vv3v4 and vv4v5 partition the visible part of P . Thus we can partition the visible part
of P . Observe that the invisible part of P is a set of disjoint simple sub-polygons. In the
example from Fig. 6 the sub-polygons P1 and P2 form the invisible part of P . We call
such a sub-polygon a pocket of P . Observe that a pocket is created by a line which is an
edge-extension or a diagonal-extension. Applying a recursive partitioning approach on the
pockets, we create a partition of P into triangles with at least one edge on the boundary
of P . Let T denote this triangulation.

w1

w2

v

P1

P2

v2

v4

v5

v1 = p1

p2 = v3

Fig. 6. The extensions of a vertex v define baseline triangles and pockets of v

The main idea of the algorithm is to count all vertices from the robot’s position v
and then proceed recursively in the corresponding pockets of the polygon, thus navigating



through T and counting the targets in the triangles of T . We begin with a high-level
description. For a vertex v let P1, . . . , Pℓ denote pockets of P defined by all extensions
originating at v. Let pi, i = 1, . . . , ℓ, denote the visible vertex whose extension defines Pi.
Let wi be the point of P for which vwi is the extension of vpi.

Counting in Simple Polygons

1. Count all the targets that are visible from the robot’s position at vertex v.
2. Put a pebble at v and remember the position of v in the respective piv of every

vertex pi and of every point wi.
3. Recursively count the targets in Pi, i = 1, . . . , ℓ, by marking the point wi with

a pebble and going to pi.

When a robot walks to vertex pi to start a recursive call for pocket Pi, it first checks the
position of the pebble that marks the point wi. Next the robot determines which vertices
(and targets) visible from pi belong to pocket Pi. Let k be the number of vertices (including
wi) and targets visible from pi. Let h be the index of wi in the piv of vertex pi. If pocket
Pi lies to the right of piwi, then Pi contains the vertices and targets from the piv of pi

with index 1, 2, . . . , h. If pocket Pi lies to the left of piwi, then Pi contains the vertices and
targets from the piv of pi with index h, h + 1, . . . , k. Observe that Pi lies to the right of
piwi if and only if pi is the first end-point of the diagonal in piv of vertex v.

The robot at vertex pi knows which part of its piv represents the sub-polygon Pi and it
can therefore perform the same steps of the Counting in Simple Polygons algorithm on
the pocket Pi only. Before that, the pebble from wi is recollected as it is no longer needed.
When the robot finishes the counting in Pi it returns to the vertex v (using the stored
navigation information) and continues the algorithm there.

Theorem 4. A robot with one pebble, able to walk along extensions, can count the number

of targets in every simple polygon in O(n) steps with O(n) memory.

Proof. Observe first that the algorithm provides a consistent navigation scheme through
the triangulation T of P . Thus every target is counted exactly once. The dual of T is
a tree. When traversing T in the way it was created, we encounter for every triangle a
vertex that defines the triangle which was not visited before. Thus, the dual of T has O(n)
vertices which determines the number of steps of the algorithm (since the robot spends a
constant time in every triangle of T ). The robot needs to store the necessary information
to return from a recursive call – the predecessor v of every vertex pi. Hence, O(n) memory
is needed. ⊓⊔

3.4 Walking with a Compass

In this section we consider one additional fixed direction in which the robot can move.
Without loss of generality, we assume that a robot sitting at a vertex can, additionally to
moving to all visible vertices, move also along the vertical line going through the robot’s
position.

We present an algorithm that computes a baseline triangulation in any simple or
multiply-connected polygon and navigates the robot such that each triangle is consid-
ered for counting exactly once and thus it allows the robot to count the number of targets



in the polygon. To simplify the presentation we first use an arbitrary number of pebbles –
we show later how to use only a constant number of pebbles.

The key observation is that all the vertical extensions of a polygon P partition the
polygon into baseline cones and quadrilaterals for which two opposite sides are on the
boundary of P (Figure 7). Each quadrilateral can be subsequently partitioned into two
baseline triangles (by picking a diagonal as the common boundary of the triangles).

baseline triangle

quadrilateral

Fig. 7. A multi-connected polygon with its partition by vertical extensions.

Hence, using at most 2n pebbles, the robot can mark every end-point of every vertical
extension which then imposes a baseline triangulation. This can be done by visiting every
vertex of P (using one pebble) [1]. To count every target exactly once, the robot goes
through every vertex or pebble p and considers only triangles lying above p and on its right

(if any). Since every triangle has one vertical side, the robot can always reach the opposite
vertex of the baseline side in one step and count the targets in the triangle, and return
back.

Counting with a Compass – Go through every vertex of P . At any vertex v
walk along the vertical extension of v and mark its endpoint(s) by a pebble. Go
through every vertex or marked point p and count the number of targets in the
triangles with common point p lying above p and to the right of p.

We now show how to reduce the number of used pebbles at the cost of an increased
running time. The robot does not mark all the quadrilaterals at once, but one by one.
Let us call an endpoint of a vertical extension a q-node. We shall show how to navigate
through all the vertices and q-nodes in a consistent way. We begin with the navigation
through vertices of P from [1], where every edge of P is visited exactly once. If a robot
moves in this navigation along a polygonal edge uv, we compute all the q-nodes lying on
this edge and before the robot moves to v it visits all the q-nodes in the order of increasing
distance from u.

Let us consider the situation where the robot is at a point p (a vertex u or a q-node) of
the edge uv and it wants to move to the next q-node. The robot can find the next q-node
by sequentially creating all q-nodes (by going to every vertex of P ) and checking which
one lies on the edge uv and closest to p. Specifically, using a pebble the robot marks the



initial position p. The next pebble is used to mark the so-far closest q-node on the edge
uv. The robot goes through every vertex w of P and creates q-nodes lying on the vertical
extensions of w. For every such q-node the robot checks whether it lies on the edge uv and
whether it is closer to u than the current best. The two pebbles make this operation easy
for the robot.

Theorem 5. A robot with 2 pebbles, able to walk along vertical extensions, can count the

number of targets in every polygon in O(n3) steps and with O(n) memory.

4 Conclusions

We considered a minimalistic computational framework of mobile sensors – simple robots,
whose visibility-based sensing reflects just the combinatorial character of the environment.
We investigated their capabilities on the problem of counting points of interest (targets) in
a polygon P and considered two scenarios. We have showed that in the friendly environment
the robots can count the targets using one pebble. In the hostile environment the robots
cannot count the targets and they cannot even approximate the number of targets by a
multiplicative factor less than 2. We showed that a naive approach is an n-approximation,
where n is the number of vertices of the polygon. We have looked at possible minimum
extensions of the robots’ capabilities that allow to count targets. We have considered two
such extensions – walking along edge- and diagonal-extensions, and walking with compass.

We have not answered all interesting questions and many of these remain open for the
future research. For example, what is the best approximation ratio of the problem? Is the
lower-bound tight or is there a better approximation algorithm? What is the inherent power
of pebbles: can we do anything without them? Are there simpler robots’ enhancements that
allow the robots count the targets? Can a collaboration of more robots do better than a
single robot?

References

1. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From local visibility to
global geometry. In: Proceedings of the 22nd Conference on Artificial Intelligence (AAAI07).
(to appear)

2. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell, MA, USA
(1991)

3. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge, U.K. (2006)
4. Tovar, B., Freda, L., LaValle, S.M.: Using a robot to learn geometric information from permu-

tations of landmarks. Contemporary Mathematics, to appear
5. Yershova, A., Tovar, B., Ghrist, R., LaValle, S.M.: Bitbots: Simple robots solving complex

tasks. In: AAAI National Conference on Artificial Intelligence. (2005) 1336–1341
6. Guibas, L.J., Latombe, J.C., LaValle, S.M., Lin, D., Motwani, R.: A visibility-based pursuit-

evasion problem. IJCGA 9(5) (1999) 471–494
7. Sachs, S., Rajko, S., LaValle, S.M.: Visibility-based pursuit-evasion in an unknown planar

environment. International Journal of Robotics Research 23(1) (2004) 3–26
8. Narasimhan, G.: On hamiltonian triangulations in simple polygons. Int. J. Comput. Geometry

Appl. 9(3) (1999) 261–275



A The (2 − ε) Lower Bound

We construct a simple polygon P with 2n vertices and place into the polygon 2n − 2
targets in the first scenario and n targets in the second scenario such that the piv remains
unchanged in both scenarios, at every vertex of P . We assume n is even, i.e., n = 2k.

The Fig. 8 outlines the construction for n = 12. The polygon consists of n outer vertices
y1, y2, . . . , yn and n inner vertices x1, x2, . . . , xn. It can be viewed as an n-gon, a regular
polygon formed by vertices xi, i = 1, . . . , n, connected on each side xi, xi+1 to a triangular
spike xi, yi, xi+1. Here and further in the text, the indices are to be understood in a cyclic
fashion. The line yixi intersects the segment xi+1xi+2 in the middle. Thus, the visibility
region of yi, i.e., the cone of yi defined by lines yi, xi and yi, xi+1, intersects the visibility
regions of vertices yi−1 and yi+1, but not the visibility regions of other yjs.

Observe first that a robot at vertex yi sees only two vertices of P , namely vertex xi

and vertex xi+1. Further, a robot sitting at vertex xi sees all vertices xj , j = 1, 2, . . . , n,
and vertices yi−1 and yi.

The aim is to place the targets in a way that a robot sitting at vertex y2l+1 sees
one target (the piv is (0, 1, 0)), and a robot sitting at vertex y2l sees 2 targets (the piv
is (0, 1, 1, 0)). For a robot at vertex xi, i = 1, . . . , n, we want the robot to see exactly
1 target between each two consecutive vertices of its piv, i.e., we want the piv to be
(0, 1, 0, 1, 0, 1, . . . , 0, 1, 0). Observe that the consecutive vertices of piv at vertex xi are
yi, xi+1, . . . , xn, x1, . . . , xi−1, yi−1. We show how to achieve such visibility with two different
number of targets. First we use only n targets and then we use 2n − 2 targets.

To place the n targets we proceed as follows. We place one target into each triangle
yi, xi, xi+1. Observe that the triangle is divided into three parts by the lines yi−1, xi and
yy−1, xi−1. Let us label the parts P1, P2 and P3, starting at a part containing the vertex
xi+1. Fig. 9 illustrates the partition. For odd i, we place the target into part P2. For even
i, we place the target into P1. Observe now that a robot indeed sees one target from every
vertex y2l+1 and two targets from every vertex y2l. Observe also that any vertex xj sees
exactly one target between two consecutive vertices xi, xi+1, i, i+ 1 6= j, because the parts
P1 and P2 of triangle yi, xi, xi+1 contain exactly one target and the parts are completely
visible from xj within the segment xi, xi+1. There is also one target visible in the segment
yj , xj+1 and in the segment xj−1, yj which shows the claim for n targets.

We now use 2n − 2 targets in P to achieve the same visibility configuration. First, we
place one target into every triangle xi, yi, xi+1 such that the target is visible only from
vertices xi, yi and xi+1. This can be easily achieved when the target is placed very close
to yi. This leads to piv being (0, 1, 0) at vertices yi and piv being (0, 1, 0, 0, . . . , 0, 0, 1, 0) at
vertices xi. The remaining n−2 targets are placed in the following way. For the presentation
purposes we label the targets t1, . . . , tn−2. Each target ti is placed close to vertex xi and
in the cone Ci of xi defined by the vertices xn−1, xn. More precisely, by placing ti close
to xi we mean to place the target ti into the triangle Ti := xi−1, xi, xi+1. Observe now
that for any placement of target ti into Ci ∩ Ti the piv of vertex xi is as desired, i.e.,
(0, 1, 0, 1, 0, . . . , 0, 1, 0). Indeed, for vertex xi, i ≤ n − 2, the cone Ci contains ti and thus
the target is visible between xn−1 and xn. For every other cone of xi defined by vertices
xj and xj+1, the target tj lies in that cone. Also, for vertex xn−1 the cone of xn−1 defined
by vertices xi and xi+1 contains exactly one target – ti+1. Similarly, the cone of vertex xn

defined by vertices xi and xi+1 contains exactly one target – ti. To achieve the desired piv



xi

yi

yi+1

xi+1

xi+2

yi−1

xi−1

Fig. 8. Construction of a polygon P for the (2 − ε)-inapproximability



xi

yi

xi+1

yi−1

xi−1

P3

P2

P1

Fig. 9. The partition of the triangle yi, xi, xi+1 into three parts P1, P2 and P3 by the lines yi−1, xi−1

and yi−1, xi

from the vertices yi, we place each target ti within Ti either to the left or to the right of line
yi−1, xi−1. For i − 1 = 2l we place ti to the right of the line yi−1, xi−1, so that ti is visible
from yi−1 (i.e., into the cone of yi−1 defined by vertices xi−1 and xi). For i − 1 = 2l + 1
we place ti to the left of line yi−1, xi−1, so that ti is not visible from yi−1. It is easy to
observe that for every vertex yi, its piv is (0, 1, 0) if i = 2l + 1, and (0, 1, 1, 0) if i = 2l. A
placement of 2n− 2 targets into the polygon P with 2n vertices, where n = 12, is depicted
in Fig. 10.

This ends the proof.



xn−1

xn

Fig. 10. A placement of 2n − 2 targets into the polygon P from Fig. 8


