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set of sensors, each equipped witHL < k < 5, directional antennae with any angle of transmission,
these antennae can be oriented in such a way that the rgstdtmmunication structure is a strongly
connected digraph spanning aléensors. Moreover, the transmission range of the antenaaenisst
2. sin(W"l) times the optimal range (a range necessary to establish aatedrmeetwork on the same
set of sensors using omnidirectional antennae). The ahgonthich constructs this orientation runs
in O(n) time provided a minimum spanning tree on the set of sensorseés giv

We also prove that for two antennae it is NP-hard to decidethvdnesuch an orientation exists if
both the transmission angle and range are small for each @genn

Keywords Antenna; Directional Antenna; Minimum Spanning Tree; ®ess Spanning Graphs;
Strongly Connected.

1. Introduction

The sensors of a wireless network can be connected usirgy eittmidirectional antennae
that transmit in all directions around the sensor, or diogetl antennae that transmit only
within a limited predefined angle. The energy usage of annaiatés proportional to its
coverage area (for a directional antenna, this is usudtignas the area delimited by the
angle of transmission and the range of the antenna). Threredoectional antennae can
often perform more efficiently than omnidirectional onesider to attain overall network
connectivity.

Given set of sensol§ a necessary transmission range of an antenna can be detdrmi
as the smallest length of a longest edge over all minimumrspgirees constructed on the
set of sensorS. In this paper we will refer to this length as an optimal rafayethe set of
sensorsS. A reasonable way to lower energy consumption is by reduttingransmission
angle of the antenna being used. However, by reducing aatamgles the connectivity may
be lost, since direct communication between sensors caosheTlherefore an interesting
question is how to maintain network connectivity when anteangles are being reduced
while at the same time the transmission range of antennagrig kept as low as possible.

Formally, we consider a s&of n sensors in the plane. L& 1 < k <5 be an inte-
ger, andd, 0 < ¢ < 2man angle. Each sensor is equipped wittlirectional antennae of
the transmission anglg¢ and a given transmission range. The reception of each sensor
assumed to be omnidirectional. This network gives rise tarectéd graph that models
communication in the network as follows: The vertices aredlnsors, and there is a di-
rected edgéu, v) from sensou to sensow if v is within the transmission range of and it
lies inside the sector of angteformed by an antenna at

We are interested in the problem of providing an algorithmdigenting the antennae
at each sensor, and estimating the value of transmissige ismthat we obtain a strongly
connected graph which spans all the sensors.

1.1. Preliminaries and Notation

Givenk antennae of transmission anglén each sensor, lek (S, ¢) denote the minimum
range of these antennae using which it is possible to dinecahtennae at each sensor so
that a strongly connected network (or spanning graph$ anformed. A special case of
this is when the anglé = 0, i.e. there is a direct line connection, in which case wethise
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simpler notatiormy(S) = r¢(S,0). Let 2x(S) be the set of all strongly connected digraphs
on Swhich have out-degree at mdstFor any digraptG € 2x(S) let r(G) be the length
of a longest edge d&. It is easy to see thak(S) = mingc g (g rk(G).

It is useful to relate(S) to another quantity which arises from a Minimum Spanning
Tree (MST) orS. LetMST(S) denote the set of all MSTs @& ForT € MST(S) letr(T) de-
note the length of longest edge Bf and letryst(S) = min{r(T) : T € MST(S)}. Clearly,
for any anglep > 0 we have thatyst(S) < rk(S,¢), since every strongly connected, di-
rected graph o% has an underlying spanning tree.

1.2. Related work

The first paper to address this problem in the case when easbrsis equipped with one
directional antenna i$ [4]. In that paper the authors pitepetynomial time algorithms

for the case when the transmission angle of antennae issit8eéb. For smaller angles
they present approximation algorithms for the minimum enlfhen the angle is smaller
than 21/3, they show that the problem of determining the minimum eawgich achieves

strong connectivity is NP-hard.

A different problem is considered in a subsequent papetnizhis paper, each sensor
has a fixed number of directional antennae, and the strongectimity problem is con-
sidered under the assumption that the maximum (taken olveemgors) sum of antennae
angles is minimized. The authors present trade-offs betweagnnae range and specified
sums of antennae angles per sensor.

When each sensor has one antenna of transmission éngl@, then our problem
is equivalent to finding a Hamiltonian cycle that minimizée tlength of its longest
edge. This is a special case of the following well-known peob For a set ofn
points 12, ... n with associated edge weights$i, j) satisfying the triangle inequality
the Bottleneck Traveling Salesman Problem (BT&Pjhe problem of finding a Hamil-
tonian cycle on these points which minimizes the maximumghiebf an edge, i.e.,
min{max; j)cn c(i, j) : H is a permutation of [r§]. Paper [[10] shows that no polynomial
time (2 — €)-approximation algorithm is possible for BTSP unléss- NP, and it also
gives a 2-approximation algorithm for this problem.

No results are known in the literature on the connection betwthe MST of a set of
points and strongly connected spanning digraph with giveérdegree on the same set of
points, except the following two papers somehow relatires¢htwo concepts: In][5] it is
shown that to decide for a given s&bf n points in the plane and a given réawhetherS
admits a spanning tree of maximum degree four whose sum efledgths does not exceed
kis NP-hard. A simple algorithm to find a spanning tree thatdiameously approximates
a shortest-path tree and a minimum spanning tree is givéfi.in [

Directional antennae can reduce the total energy consamistithe network in com-
parison with omnidirectional antennae. Furthermore, thieyknown to enhance ad hoc
network capacity and performance. A theoretical modelgresl in[[6] shows that when
n omnidirectional antennae are optimally placed and asdigpémally chosen traffic pat-
terns, the transport capacity@ /W /n), whereW is the number of bits each antenna can
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transmit per second over the common channel(s). When bathritiasion and reception
are directional,[[14] proves/2mt/(¢P) capacity gain as well as corresponding throughput
improvement, where is the transmission angle afif2rt is the average proportion of
the number of receivers inside the transmission zone tHaget interfered with. Addi-
tional experimental studies confirm the importance of uslingctional antennae in ad hoc

networking (see, for examplé J[1.9,8/17(12,13]).

1.3. Results of the paper

We are interested in estimating the valuedB, ¢ ). The optimality of antennae ranges will
be compared toyst(S) called here theptimal and without loss of generalityys7(S) will
be normalized, i.erusT(S) = 1. The two main results in this paper are the following.

Theorem 1.1. Consider a set S of n sensors in the plane and suppose eadalr &gk,
1 <k <5, directional antennae with transmission angle> 0. If the range of each antenna
is at least2- sin(;}7) times the optimal, then the antennae can be oriented at eztos
so that the resulting spanning digraph is strongly conngchMoreover, given an MST on

the set of points S, such orientation can be constructedaditfitional O(n) overhead.

Note that the cask = 1 was derived in[[10], and that the case- 5 follows from the
comment after Definition 211 .

Theorem 1.2. For two antennae and angular sum of the antennae at moisis NP-hard
to approximate the optimal range to within a factor of x, wdhgranda are the solutions of
equations x= 2sin(a) and x= 1+ 2cog2a).

Using the identity co®a) =1 — 2sirfa and solving the resulting quadratic equation
we obtain numerical values~ 1.30,a = 0.45r1L

The proof of the first theorem is given in Sectldn 2, and dugsttength we split it into
three parts. In Subsections1.1]2.2, 2.3 we deal withatbek = 4,k = 3 andk = 2 as
Theorem§ 214,215, and 2.6, respectively.

The pseudocode of Algorithm 1 that constructs a stronglyneoted spanning graph
with max out-degree & k < 5, and range bounded by &n(11/(k+ 1) times the optimal,
is presented in SubsectibnP.4.

Sectior B contains the proof of Theorem]1.2.

2. Upper Bound Result on Strongly Connected Spanners

We begin by introducing some notation which is specific toghlesequent proofs.

D(u;r) denotes the open disk with raditiscentered ati, andC(u,r) is the circle with
radiusr and centered at. We used(u,V) to denote the usual Euclidean distance between
pointsu andv. We say that two neighbours of a verieareconsecutivéf the smaller sector
they form withu does not contain any other neighbouruofin addition, we define below
the concept ofAntenna-TredA-Treefor short) which isolates the particular properties of
an MST that we need in the course of the proofs.
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Definition 2.1. An A-Tree is atree T embedded in the plane satisfying thevolg three
conditions:

(1) Its maximum degree is five.

(2) The minimum angle among nodes with a common parent isstig3.

(3) For any point u and any eddel, v} of T, the disk Bv;d(u,v)) does not contain a
point w=£ v which is also a neighbor of uin T.

Itis well known and easy to prove that for any set of pointhmplane there is an MST
on these points which is also an A-Tree. Recall also that wsider normalized ranges
i.e., we assumg(T) = 1).

Definition 2.2. For any real r> 0, we define the geometric r-th power of an A-Tree T, de-
noted by T, the graph obtained from T by adding all edges between esrti€ (Euclidean)
distance at most .

In the sequel we refer tgeometric r-th poweasr-th power, for simplicity.

Definition 2.3. Let G be a graph. An orientatioa of G is a digraph obtained from G by
orienting every edge of G in at least one direction.

As usual,(u,v) denotes a directed edge framto v, whereas{u,v} denotes an undi-
rected edge betweanandv. Furthemoredé(u) denotes the out-degree ofin G and

A*(a) denotes the maximum over out-degrees of verticed in

2.1. Maximum Out-Degree 4

Theorem 2.4. Let T be an A-Tree. Then there exists a spanning gragh & S"™> and
its orientation G so thatG is strongly connected ami (G ) < 4. Moreover, cg(u) <1
for each leaf u of T and every edge of T incident to a leaf isaiort in G.

Proof. We first introduce a definition used in this proof. We say that¢onsecutive neigh-
bors of a vertex areloseif the smaller angle they form with their common vertex is aisin
21/5. Observe that i andw are close, thed(v,w) < 2sinTt/5.

Let| be the diameter of . The proof is done by induction on the diameter of the tree.
First, we do the base case ok 2. If | <1, letG =T and the result follows trivially. If
| =2, thenT is an A-Tree which is a star with2 d < 5 leaves. Two cases can occur:

(1) d<5.LetG=T and orient every edge in both directions. This results inangly
connected digraph which trivially satisfies the hypothes$ite theorem.

(2) d =5. Letu be the center of . Two consecutive neighbors of say,v andw must
be close. LeG =T U{{v,w}} and orient edges db as depicted in Figufd 1. Itis
easy to check thdb satisfies the hypothesis of the theorem.

Next we continue with the inductive step. Assuime 3 and that the theorem is valid
for any A-Tree of diametex |. Let T be an A-Tree of diametdr ConsiderT’, the tree
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Fig. 1: T is a tree with five leaves and diametet 2 (The angular sign with a dot depicts
an angle of size at most25.)

obtained fromT by removing all leaves. Since the removal of leaves does iotdte the
property of being an A-Tred,’ is also an A-Tree and has diameter less than the diameter
of T. Thus, by inductive hypothesis, there exigts_ T'25"Y5 and its orientatiora which

is strongly connected, ad" (G') < 4. Moreoverdé(u) < 1for each leafiof T’ and every

edge ofT’ incident to a leaf is contained i@

Now we add all the removed leaves back to T and cons@ufodtm G’ as well as corre-
sponding orientatio@. We will add all removed vertices at once for each leaf T'. We
describe this process only for fixedBy the way how we modif{z’ and since the diameter
of T is at least three, all these modifications are independentfalefined. After we add
all removed vertices the resulting gra@will be a spanning subgraph @25"/> and its
orientationa will have all the required properties. Following is the regd modification
for a fixed leafu of T’. Letug be the neighbor afi in T” andug, .., uc be thec neighbors of
uin T\ T’ in clockwise order around starting fromug. Two cases can occur:

(1) c<3.LetG=G U{{u,u1},..,{u,uc}} and orient these edges in both directions
thus obtainingG. The graptG C T25"/5, A*(G) < 4, d (x) < 1 for each leaf
x adjacenttasin T, and every edge oF joining u and a leaf is contained i@.

(2) c=4. We consider two cases. In the first case suppose that tveecotive neigh-
bors ofuin T\ T’ are close. Consider thaf andu;; are close; where £ j < 4.
DefineG = G'U{{u,u1},{u,u2},{u,us},{u,us},{uj,uj;1}} and orient edges of
G as depicted in Figulle Ra.

In the second case, eithag andu; are close, oug anduy are close. With-
out loss of generality assume thatandu; are close. LeG = {G'\ {u,up}} U
{{u,ur}, {u,uz}, {u,us}, {u,us}, {uo,us } }, but now the orientation o& will de-
pend on the orientation diu,up} in G'. Thus, if(Up, u) is in 3 then orient edges
of G as depicted in Figufe2b, otherwise orient edges aé depicted in Figuie Pc.
The graphG C T2siMY/5, A*(B) <4, d%(x) < 1 for each leak adjacent tasin T
and every edge of incident tou and a leaf is contained i@.

This completes the proof of the theorem. m|
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(a) uj—2 and uj,1-3 are (b) up and u; are close (c) up and u; are close
close and(up, u) is in the orien- and(u, up) is in the orien-
tation of G/ tation of G’

Fig. 2: Depicting the inductive step wherhas four neighbors i’ \ T (The dashed edge
{up, u} indicates that it does not exist @ but exists inG/, the angular sign with a dot
depicts an angle of size at most/5, and the dotted curve is used to sepafdttom T.)

2.2. Maximum Out-Degree 3

Theorem 2.5. Let T be an A-Tree. Then there exists a spanning gra@G@ and its
orientation G which is strongly connected afd (G) < 3. Moreover, c‘%(u) < 1for each
leaf u of T and every edge of T incident to a leaf is containgd.in

Proof. In this proof we say that two consecutive neighbors of a weat® closeif the
smaller angle they form with their common vertex is at mm&. Otherwise we say that
they arefar. Observe that i andw are close, thed(v,w) < v/2.

The proof is by induction on the diameteof T. First, we do the base case fox 2.
If 1 <1,letG=T and the result follows trivially. If = 2, thenT is an A-Tree which is a
star with 2< d < 5 leaves, respectively. Three cases can occur:

(1) d< 4. LetG=T and orient every edge in both directions. This results inangly
connected digraph which trivially satisfies the hypothes$ite theorem.

(2) d =4. Letu be the center of . SinceT is a star, two consecutive neighborsupf
say,u; andup are close. Le6 =T U{{uz,u>}} and orient edges @ as depicted
in Figure[3a. It is easy to check thét satisfies the hypothesis of the theorem.

(3) d =5. Letu be the center of andus, Uz, Us,Us, Us be the five consecutive neigh-
bors ofu in clockwise order around starting at any arbitrary neighbor of Ob-
serve that at most two consecutive neighbore afe far sincel is a star and the
angle between two nodes with a common parent is at ige&stAssume without
loss of generality thatis andu, are far. LetG =T U {{ug,u2}, {us,us}} and ori-
ent edges o6 as depicted in Figuife_Bb. Thua satisfies trivially the hypothesis
of the theorem.

Next we continue with the inductive step. Assuime 3 and that the theorem is valid
for any A-Tree of diametex |. Let T be an A-Tree of diametdr ConsiderT’, the
tree obtained fronT by removing all leaves. Since removal of leaves does noatedhe
property of being an A-Tre€el’ is also an A-Tree and has diameter less thahhus,
by inductive hypothesis there exigB C T2 and its orientatiora which is strongly
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U2

us
Ugq

(&) T has four leaves (b) T has five leaves

Fig. 3: T is a tree of diametdr= 2 (The angular sign with a dot depicts an angle of size at
mostTt/2 and the angular sign depicts an angle of size greaterrthian

%
connectedAt (G') < 3. Moreover,dé(u) < 1 for each leati of T’ and every edge of’

incident to a leaf is contained i@'.

Now we add all the removed leaves back to T and const®ufitom G’ as well as
corresponding orientatiog. We will add all removed vertices at once for each leaiff
T’. As before, we describe this process only for fixedBy the way how we modifyG’
and since the diameter @f is at least three, all these modifications are independent so
well defined. After we add all removed vertices the resultingphG will be a spanning
subgraph off V2 and its orientatiorﬁ will have all the required properties. Following is
the required modification for a fixed leabf T'. Letu be a leaf ofT’, ug be the neighbor of
uin T" anduy, ... uc be thec neighbors ofuin T\ T’ in clockwise order around starting
from ug. Three cases can occur:

(1) uhas at most two neighbors h\ T’. LetG = G' U {{u,u1},{u,uz}} and orient
thesec edges in both directions. The graghc T2, A*(é) < 3,d%(x) < 1 for
each leak adjacent tauin T, and every edge df joininguand a Ie:§ is contained
in G.

(2) u has three neighbors i\ T’. We consider two cases. In the first case suppose
that two consecutive neighbors win T\ T’ are close. Assume thaj anduj, 1
are close; where & j < 3. LetG =G U{{u,u1},{u,uz},{u,us},{uj,uj+1}} and
orient edges o6 as depicted in Figulle 4a.

In the second case, eitheg andu; are close oty andus are close. Without
loss of generality assume thaf andu; are close. Thus, |66 = {G'\ {u,up}} U
{{u,ur},{u,uz2}, {u,us}, {up,u1}}. Now the orientation o5 will depend on the
orientation of{u,up} in G'. Thus, if (Up,u) is in @ then orient edges d& as
depicted in Figur€4b. Otherwise orient edge&ads depicted in Figule #c. The
graphG C TV2, A+(8) < 3,d%(x) < 1 for each leak of T incident tou, and
every edge of joining u and a leaf is contained i@.

(3) uhas four neighbors ifi \ T’. We consider two cases. In the first case suppose that
eitherug andu, are far oru, andus are far orus andug are far. Assume without
loss of generality thatp andu; are far. Let

G=G U{{uui},{u,uz},{u,us},{u,us},{us,uz},{us,us}}
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(@) uj—2 and uj;1-3 are (b) up and u; are close (c) up and u; are close

close and (ug,u) is in the ori- (u,up) is in the orienta-
entation ofG’ tion of G’

Fig. 4: Depicting the inductive step wherhas three neighbors ih\ T’ (The dashed edge
{u,up} indicates that it does not exist @ but exists inG/, the angular sign with a dot
depicts an angle of size at mast2 and the dotted curve is used to sepafédteom T.)

and orient edges @ as depicted in Figuile ba.

In the second case, assume eitbeandu, are far oruz anduy are far. As-
sume without loss of generality that andu, are far. LetG = {G'\ {u,up}} U
{{u,us}, {u,u2}, {u,uz}, {u,us}{uo,us},{uz,uz}}. The orientationG will de-
pend on the orientation diu, Up} in G'. Thus, if (Up, u) is in G', then orient edges
of G a s depicted in Figure bb. Otherwise orient edge§afs depicted in Fig-
ure[5¢. The grapls C TV2, A*(B) <3, dé(x) < 1 for each leak of T adjacent
to u, and every edge df joining u and a leaf is contained iB.

(a) up anduy are far (b) uy and u, are far and (c) u1 and uy are far and
(up,u) is in the orientation (u,up) is in the orientation
of G of G

Fig. 5: Depicting the inductive step wherhas four neighbors it \ T’ (The dashed edge
{up, u} indicates that it does not exist @ but exits inG’, the angular sign depicts an angle
of size greater thar/2 and the dotted curve is used to separate theTtté®m T.)

This completes the proof of the theorem. O

2.3. Maximum Out-Degree 2

Theorem 2.6. Given an A-Tree T, there exists a spanning grapk GV3 and its ori-
entation G which is strongly connected afd (G) < 2. Moreover, for each leaf u of T,
dé(u) < 1, and either the edge incident to u is in G or u has two otherirsjsl (one im-
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mediately preceding it and other immediately followingnithhe embedding of T) and u is
adjacent to both in G.

Before proving Theorem 2.6, we need to introduce a defingiosh two lemmas which
provide information on the proximity of two vertices with ammmon parent.

In the rest of this section we say that two neighbors of a xextecloseif the distance
between them is at most3. Otherwise we say that they dee.

Lemma 2.7. Let u and v be two consecutive siblings in an A-Tree with compaoent p
such thata = Z(upv) < 2r/3 and v is at distance one from p. Then, a childfv with
angleZ(pwV) <yis close to u; where:

—2aiff<a<y
<o
=5

y=1% if f<a< +arccos< )

51t 2T[
5 if T 5T arccos( <%

Proof. We prove each case separately:

(1) Consider afixed angle < a < 7. Observe that 2cda) < d(u, p) <1, since from
definition of A-Tree,u ¢ D(v;d(v, p)). Consider the intersection ardaamong
all the disk of radiusy/3 centered at each pointwith angle Z(upv) = a and
2coga) < d(u,p) < 1 as depicted in Figulld 6. Observe that each neighber of
inside I is close tau. It is sufficient to calculate the minimum angle with apex at
that coversl. Observe that it is determined Byu; v/3) whered(u, p) = 2coga).
Fix u at distance 2 cds) from pand angle/(upv) = a. Lety € C(u;v/3) NC(v; 1)
be the intersection point ih. Let Z(pvy) = Z(pvu) + Z(uvy). Itis easy to see that
Z(pvu) = m1— 2a and from the Law of cosine in the triangley, (uvy 2r/3
sinced(u,y) = v/3, andd(u,v) = d(v,y) = 1. Therefore /(pvy) < y= 3 —2a.

Fig. 6: Depicting the case whey3 < a < 1/2

(2) Consider afixed angl < o < n/6+arccos{2—$§). Sincea > J,0< d(u,p) < 1.
Consider the intersection aréaamong all the disk of radiug’3 centered at each
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pointu with angleZ/(upv) = a and 0< d(u, p) < 1 as depicted in Figufd 7. Ob-
serve that each neighbor winside I is close tou. It is sufficient to calculate the
minimum angle with apex at that coversi. Considery € C(p;+/3) NC(u,v/3))
be the intersection nearwhered(p,u) = 1 andv’ € C(p,1) NC(y,1) be the in-
tersection point furthest from If a < Z(upV), then the minimum angle is deter-
mined byD(p,+/3). Using the Law of cosine impyand pVy, Z(upV) = 11/6 +
arccos{z—\l/g) sinced(u, p) =d(p,V) = d(Vy) = 1 andd(u,u) = d(p,y) = v/3. Let

y € C(p;+/3) NC(v; 1) be the intersection point in. Hence,/(pvy) <y = 21/3.

Fig. 7: Depicting the case wher/2 < a < 11/6 + arcco$1/2v/3)

(3) Consider a fixed anglg+ arccos(z—\lﬁ) <a< %” Sincea > T, 0<d(u, p) <1.

Consider the intersection aréamong all the disk of radiug’3 centered at each
pointu with angleZupv= a at distance in the intervdD, 1] from p as depicted

in Figure[T. Observe that each neighbowafiside I is close tou. It is sufficient

to calculate the minimum angle with apexwthat covers/. However, from the
previous case, it is determined Byu, v/3) whered(u, p) = 1. Moreover, the an-

gle decreases whamincreases. Therefore, the minimum angle is reached when
thea = 21/3. Thus, fixa = 21/3. Lety € C(v, 1) NC(u,+/3) be the intersection
point in I as depicted in Figurgl 8. From the law of cosine in the triangig
Z(pvu) = 11/6 sinced(u, p) = d(p,Vv) = 1. Similarly, by law of cosine in the tri-
angleuvy, Z(uvy) = arcco$2—\1/§) sinced(v,y) = 1 andd(u,y) = d(u,v) = /3.

Therefore /(pvy) < g+arcco$2—\1/§) > %ﬂ_ 0

Lemma 2.8. Let u v and w be three consecutive siblings with parent p in an & Tresuch
that Z(upv) + Z(vpw) < TU

(1) Ifd(v) =3 and the only two children of v are far, then at least one of tieeoiose
to either u or w.

(2) Ifd(v) =4 and each pair of consecutive children of v are close, theeatt one
of them is close to either u or w.

(3) If d(v) = 4, two consecutive children of v are far and all children of \e at
distance at least/3— 1 of v, then one child of v is close to u and another child of
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Fig. 8: Depicting the case wher/6+arccogl/2v/3) < a < 21/3

v is close to w.

(4) 1fd(v) = 4, two consecutive children of v are far and one child x of v idistance
at mosty/3— 1 of v, then at most one child of v different from x are far fronmd a
W.

(5) If d(v) =5, then at least one child of v is close to either u or w.

Proof. Leta = Z(upv) andP = Z(vpw). We first prove the particular cases wrees =1t
andd(p,v) = 1. After that, we prove the general case wigép,v) < 1 and/ora + 3 < Tt

Without loss of generality, considey/3 < o < 1/2. Letp = t— a. Using Lemma& 217
we divide the circle into three different regions; 2 and £ as depicted in Figurgl 9 in
such away thatZ ¢ > 3' — 2a and ifa < 51/6— arccoesz—\l/g), thenZD > 3. Otherwise,
/D =21/3.Let/(E) < 2n— (L(C)+ Z(D)).i.e., ifa < 5Tr/6—arcco$2—\1/§) < 3 then
Z(E) < 20— & < 291/45. Otherwise/(E) < &'. Observe that the neighbors\winside
C are close ta and the neighbors afinside D are close tav and the neighbors afinside
E are (possibly) far fronu or w.

w

Fig. 9: Coneg’, D, ‘E with apex atv

Letvp = p,v1,---,Vc the neighbors o¥ in clockwise order. Now, we prove each case

of Lemmd2.8.
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d(v) = 3 andv; is far fromv,. At most one child o¥ can be inE, since/(E) is
less than 2/3 andZ(vqvv2) > 211/3.

If d(v) = 4 and each pair of consecutive childrenvadre close. Since the mini-
mum distance among childrentg3 and /() < 2m/3, at most two children of
v can be inE.

If d(v) = 4, two consecutive children of are far and all children o¥ are at
distance at leasy3 — 1 fromv. Since two children are far,(vivv3) > Tt Hence,
whena > 5m/6 — arcco$1/2v/3), Z(C) > 2m/3 and Z(D) = 2m/3. Therefore,
vi € C andv € D. It remains to prove the case whenc 51/6+arccogl/2y/3).
Assume without loss of generality thatis close tau. ¢, From Definition of A-Tree
and the hypothesis,¢ D(v1;1) UD(v;1) andvy ¢ D(v;v/3—1). Lety € C(u;1)N
C(v;v/3—1) be the intersection point farthest fromas depicted in Figure10.
Therefore Z(pvw) > Z(pvy) = Z(pvu) + Z(uvy). We will prove that/(pvy) >
411/9 and since two consecutive children are faiwvys) < 2m— (Z(pvw) +T11) <
511/9. In consequence; € D. ¢ From the Law of cosine vy, Z(uvy) > 171/45
sinced(u,y) > 1, d(u,v) > 1 andd(v,y) = v/3— 1. Further,/(pvu) > 11— 20 >
21/15 sincea < 511/6 -+ arcco$1/2v/3) Therefore,/(pvy) > 411/9.

Depicting whel(v) = 4, two consecutive children efare far and all the children

are at distance at leagf3— 1 fromv

(4)

(%)

If d(v) = 4, two consecutive children ofare far and one child of is at distance
at mosty/3— 1 fromv. Notice that ifv, is at distance at most3 — 1 fromv, then
vy is close tov, andvs is close tovs. Thereforeys is at distance at least3 — 1
from v and eitherv; or vz is at distance,/3 — 1 fromv. Assume without loss of
generality that/ is at distance at most3— 1 fromv. Thereforeys is far fromvs
and only one of them can be insidesince/(‘£) is less than &/3.

d(v) = 5. At most two children ofr can be inE, because/(£) is less than /3
and two children are at distance at leags.

This proves the case whetip,v) = 1. To prove the case whet(p,v) < 1, consider
the intersection point’ with C(p,1) and the ray emanating from towardv. Therefore,
d(p,v) <d(p,V) andd(u,v) < d(u,V). If we move all children ofs towardV, the distance
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from u to them will increase. Hence, the solution fibp,v) = 1 covers all cases in line
segmenp, V.

Now we prove the case when+ 3 < 1t Consider the line segmentw and its inter-
section poing’ with the edge{p, v}. Notice that by replacing with p’ we geta’ +p' =1t
such thaton < a’ and < B'. Hence, the solution in the case+ = Ttis also a solution
whena + B < 1. This completes the proof of LemrhaPR.7. O

Proof of Theorem[Z.8. The proof is by induction on the diameteof T. First, we do the
base case< 2. If| <1, letG =T and the result follows trivially.

If I =2, thenT is an A-Tree which is a star with 2 d <5 leaves, respectively. Four
cases can occur:

(1) d=2.LetG=T and orient every edge in both directions. This results inangly
connected digraph which trivially satisfies the hypothe$ihe theorem.

(2) d = 3. Letu be the center of . SinceT is a star, two consecutive neighbors, say
u; andus are close. Le6G =T U{{u1,u}} and orient edges db as depicted in
Figure[1TAh. It is easy to check thgt satisfies the hypothesis of the Theorem.

(3) d = 4. Letu be the center off andus,uy,us,us be the four neighbors af in
clockwise order around starting at any arbitrary neighbor af Observe that at
most two consecutive neighborswére far sincd is a star and the angle between
two nodes with a common parent is at lemg8. Assume without loss of generality
thatus andu; are far. LetG =T U {{ug,u2},{us,us}} and orient edges db as
depicted in FigurEI1b. Thug satisfies trivially the hypothesis of the Theorem.

(4) d = 5. Letu be the center off anduy,u»,us,us,us be the five neighbors of
u in clockwise order around starting at any arbitrary neighbor af Observe
that all consecutive neighbors are close sifices a star and the angle be-
tween two nodes with a common parent is at legS. LetG =T \ {u,us} U
{{u1,u2},{us,us}, {ug,us}} and orient edges @ as depicted in Figurl%llc. Ob-
serve that/(usuus) < 1T OrientationG is strongly connected ami (G) < 2.
Moreover,dé(u) <1, alledges oT except{u,us} are contained i and{us, us }
and{us,us} are contained i®.

v w U1 U2 Uy U2
u u Us us
Uy 3 Uy
(& T has three (b) T has four leaves (c) T has five leaves

leaves

Fig. 11:T is a tree with diametdr= 2 (The heavy arrows represent the newly added edges,
the angular sign with a dot depicts an angle of size at nmé3 2nd dashed edge indicates
that it exists inT but not inG.)
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Next we continue with the inductive step. Assuine 3 and that the theorem is valid
for any A-Tree of diametex |. Let T be an A-Tree of diametdr ConsiderT’, the
tree obtained fronT by removing all leaves. Since removal of leaves does noatéahe
property of being an A-Tre€el’ is also an A-Tree and has diameter less thahhus,
by inductive h)ﬁgothesis there exis® C T'V3 and its orientatiora which is strongly
connectedA™ (G') < 2. Moreover, for each leaf of T, dé(u) < 1, and either the edge

incident tou is in G’ or u has two other siblings (one immediately preceding it an@ioth
immediately following it in the embedding df') andu is adjacent to both .

Now we add all the removed leaves back to T and const®ufiom G’ as well as
corresponding orientatioﬁ. We will add all removed vertices at once for each leaff
T’. As before, we describe this process only for fixedBy the way how we modifyG'
and since the diameter df is at least three, all these modifications are independent so
well defined. After we add all removed vertices the resultingphG will be a spanning
subgraph off V3 and its orientatiorB will have all the required properties. Following is
the required modification for a fixed leafof T'. Let ug be the neighbor ofi in T’ and
ui,...,Uc be thec neighbors ofu in T\ T’ in clockwise order around starting fromuo.
Four cases can occur:

(1) uhas one neighborif\T’. LetG= G U{{u,u1}} and orientit in both directions.
Itis easy to see thak satisfies the inductive hypothesis.

(2) uhastwo neighbors iif \ T'. We consider two cases. In the first case suppose that
u; andu; are close. LeG = G' U {{u,u1},{u,uz},{u1,uz}} and orient edges of
G as depicted in Figule_IPa. In the second casendu, are far. Again we need
to consider two cases:

(@) {uo,u} is in G'. Eitherup andu; are close ou, andug are close. Without
loss of generality assume that andug are close. LeG = {G'\ {up,u}} U
{{u,ur},{u,uz}, {uo,u1}}. If (Up,u) is in 67 then orient edges @& as de-
picted in Figuré 12b. Otherwise orient edge<adis depicted in Figufe IPc.
Thus,a is strongly connected amd*(é) < 2. Moreover, the leavag and
u of T have degree one and the edged dhcident to them are contained
in G.

(b) {uo,u} is not in G’ By inductive hypothesisy is connected to its two sib-
lings v andw in G'. Thus, by Lemmd_2]8, eithar; or u, are close to
v or w. Without loss of generality assume that and vgre close. Let
G = (G'\ {v,u}) U {{u,u},{uz,u},{v,u1}}. If (vu)is in G/, then orient
edges ofG as depicted in Figure_IBa. Otherwise orient edge§ afs de-
picted in Figuré 13b. Thug is strongly connected amd*(e) < 2. More-
over, the leaves; andu, of T have degree one and the edged dfhcident
to them are contained iB.

(3) uhas three neighbors ih\ T’. Two cases can occur:

(@) {up,u} isinG'. At most two neighbors af are far. First, suppose thag and
Up are far (This case is equivalent to the case wheandu, are far.) Let
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(a) up and up are close (b) up andu; are far and (c) up andu;y are far and
{up,u} (u,up) is in the orienta- (u,up) is in the orienta-
tion of G/ tion of G/

Fig. 12: Depicting the inductive step wharhas two neighbors ifi \ T’ (The dashed edge
{up, u} indicates that it does not exist (B but exists inG’ and the dotted curve is used to

separatd’ fromT.)

(@) (up,u) is in the (b) (u,up) is in the
orientation ofG’' orientation ofG’

Fig. 13: Depicting the inductive step wherhas two neighbors it \ T/, up andu; are far
and{up,u} is not in G’ (The dashed edggv,u} indicates that it does not exist @ but
exists inG, the dash dotted eddelp, u} indicates that it exists it but not inG’ and the
dotted curve is used to separdtefrom T.)

G= {_()3/ \ {uo,u}} U{{uz,u},{uz,u}, {us,u}, {us,uo}, {uz,us}}. If (Up,u)

is in G/, then orient edges d® as depicted in Figufe_Tha. Otherwise orient
edges ofG as depicted in Figure_T#b. Thué is strongly connected and
A*(a) < 2. Moreover, the leaves;, u; andugz of T have degree one and
the edges off incident to them are contained {&. By symmetry, we can
prove the case wheam andug are far oru, andus are far.

(@) (up,u) is in the (b) (u,up) is in the
orientation ofG’ orientation ofG’'

Fig. 14: Depicting the inductive step wharas three neighbors ih\ T’, u; andu, are far
and{up,u} is in G’ (The dashed edggio,u} indicates that it does not exist & but exists
in G’ and the dotted curve is used to sepaiidtélom T.)
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(b) {uo,u}isnotinG'. By inductive hypothesis is connected to its two siblings
vandw in G'. Three cases can occur.

i. uy is close tou, andu, is close tous. By LemmalZ.8B, eithew; or
us is close to eithew or w. Assume thav andu; are close. LetG =
{_EE’ \{v,u}} U{{ug,u}, {uz,u},{us,u},{v,us}, {uz,us}}. If (v,u)isin
G/, then orient edges db as depicted in Figule_Iba. Otherwise orient
edges ofG as depicted in Figurie_Ibb. Thug is strongly connected
andA*(a) < 2. Moreover, the leaves;, u, anduz of T have degree
one and the edges d@fincident to them are contained G

(@) (vu) is in the (b) (u,v) is in the
orientation ofG’ orientation ofG’

Fig. 15: Depicting the inductive step wherhas three neighbors if\ T, u; andu, are
far and{uop,u} is not inG’ (The dashed edgpy, u} indicates that it does not exist @& but
exists inG/, the dash dotted eddelp, u} indicates that it exists ifi” but not inG’ and the
dotted curve is used to separdtefrom T.)

ii. Either uy is far fromu, or uy is far fromuz anduy,u, andus are at
distance greater thay{3 — 1 from u. By Lemma 2.8y, is close to one
sibling of u, sayv andus is close to another sibling af, sayw. With-
out loss of generality assume that uz are close andp,u; are close.
Observe that this case is identical to the case i.

iii. Either uy is far fromuy or uy is far fromuz and at least one child af

is at distance less thayi3 — 1. Without loss of generality assume that
uy is far fromuy. Therefored(u,u;) > v/3—1 andd(u,uz) < v/3— 1.
Observe thatiz is close tou; andu,. By Lemmd 2.8 eithen; or u, are
close tov or w. Thus, ifvis close tous, then we can apply case i.\f
is close toup, then letu] = up, U, = u; anduj = uz and we can apply
case i again.

(4) uhas four neighbors it \ T’. Two cases can occur:

(@) {up,u}isinG'. Let
G= {G/ \ {UO’ U}} U {{u17 U}, {UZ’ U}, {U4, U}, {u1> UO}’ {Uz, U3}, {U3, U4}}.

%
If (up,u) isinG’, then orient edges @ as depicted in Figufe Tba. Otherwise
orient edges o6 as depicted in Figufe_I6b. Thua is strongly connected
andAﬂg

) < 2. Moreover, the leaves;, up, uz andus of T have degree
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one, the edges ofF incident tous,u, anduy are contained irG andus is
adjacent tai; anduy in G. Observe that/(uuug) < T1/2.

(@) (uo,u) is in the ori- (b) (u,up) is in the ori-
entation ofG’ entation ofG’

Fig. 16: Depicting the inductive step wherhas four neighbors it \ T’, {up,u} is in G’
(The dashed edgfup,u} indicates that it does not exist @ but exists inG/, the dotted
curve is used to separafé from T and the dash dotted edde, us} indicates that it exists
in T but not inG.)

(b) {ug,u} is not in G'. By inductive hypothesial is connected to its two

siblingsv andw in G'. By Lemmal2.8 eithew; or us is close tov or

w. Without loss of generality assume that and v are close. LetG =
{G/ \iv’ U}} U {{U]_, U}, {UZ’ U}, {U4, U}, {V7 U1}7 {Uz, Ug}, {U3, U4}}. If (Va U)

is in G, then orient edges d as depicted in Figule_Il7a. Otherwise orient
edges ofG as depicted in Figure_1Vb. Thug is strongly connected and
A*(@) < 2. Moreover,uy, U, uz andus have degree one, the edgesTof
incident tous, up anduy are contained il andug is adjacent tai, anduy

in G.

(@) (vu) is in the (b) (u,v) is in the
orientation ofG’ orientation ofG’

Fig. 17: Depicting the inductive step wharhas four neighbors it \ T" and{up, u} is not
in G’ (The dashed edde, u} indicates that it does not exist@but exists inT’, the dotted
curve is used to separaté from T, the dash dotted eddelp, u} indicates that it exists in
T’ but not inG’ and the dash dotted edde, us} indicates that it exist ifT but not inG.)

This completes the proof of the theorem. m|
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2.4. Algorithm

In this section we present AlgoritHnh 1 that constructs amgfipconnected spanning graph
with max out-degree £ k <5 and range bounded byﬂn(ﬁnl) times the optimal. It uses
the recursive Procedutntennae when X k < 5 and the recursive Procedure TwoAn-
tennae whelk = 2. See the detailed algorithms for these two procedurelsdubtelow.

It is not difficult to see that Algorithrll1 runs i®(n) time. The correctness of the

algorithm is derived from Theorerhs P[4.12.5 2.6.

Algorithm 1: Strongly connected spanning graph with max out-degred 2 5 and
edge length bounded by Qin(ﬁnl)

input : T, k; whereT is an MST with max length 1 arklan integer in2,5].
output: Strongly connected spanning gra@twith max out-degre& and range
bounded by 2sin (1)
1 Letu be any leaf ofTf andv its neighbor inT;
2 LetG+ {(vu),(u,v)};
3 if k=2then TwoAntennae@, T,V u);
4 if 3< k< 5then kAntennaeG,T,v,u,k);

3. NP hardness

In this section we give the proof of the NP hardness resultWorantennae.

Proof of Theorem[L.2. It is done by reduction from the well-known NP-hard problefn o
existence of a Hamiltonian cycle in 3-regular planar gra@ansider a 3-regular planar
graphG = (V. E) and replace each vertexby a vertex-graph (meta-verteg), shown in
Figure[18h. Furthermore, replace each eelge(V;, vj) of G by an edge-graph (meta-edge)
Ge shown in Figuré_18b.

Each meta-vertex has three parts connected in a cycle, waith gart consisting of a
pair of vertices (calledonnecting verticgxonnected by two paths. Each meta-eGgdas
a pair of connecting vertices at each endpoint: these esrtioincide with the connecting
vertices in the corresponding parts of the meta-vert@gsindG,;. This means that after
each vertex and each edge is replaced, each connecting igeofadegree 4.

Take the resulting grap@ and embed it in the plane in such a way that:

(1) the distance (in the embedding) between neighbou®s is at most 1,
(2) the distance between non-neighbour&irns at leask, and
(3) the smallest angle between incident edge@'iis at least.

Let us call the resulting embedded graph Note that such an embedding always exists,
see[[3]: We have a freedom to choose the length of the patli®imeta-graphs the way
we need as we can stretch the configurations apart to fit éegyin without violating the
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ProcedurekAntennaeG, T, u, w, k)

© 0 N o g b~ W N P

e i i =
aua b~ W N B O

16
17
18
19
20
21
22

Letup =W, Uz, -+, Ug)—1 b€ the neighbors af € T in clockwise order around,
if d(u) <kthen Add toG a bidirectional arc for eacty such thai > 0;
else ifd(u) = k+1then
Letu;, Ui 1 be the consecutive neighborwfvith smallest angle;
if i=0o0ri+1=0then
ifi=0then Leti+1;
if (u,up) € Gthen LetG + {G\ {(u,uo)}}U{(u,u), (uj,up)};
else Let G + {G\ {(uo,u) } } U {(uo, i), (uj,u)};
end
else Let G+ GU{(u,u;), (U, Ui+1), (Ui11,U) };
Add to G a bidirectional arc for eachy; such thatj ¢ {0,i,i+1};
end
else ifd(u) = k+ 2 then
Letu;, Ui 1 be the consecutive neighborsiwofvith longest angle;
ifi=0o0r i=2o0r i =4then Let
G+ GU{(u,uy), (uz,uz), (uz,u), (u,us), (us,us), (Ug,u) };
else
if (u,up) € Gthen LetG «+ {G\ {(u,uo)}}U{(u,uz),(u1,up)};
else Let G + {G\ {(uo,u)} } U{(uo,u1), (uz,u)};
Let G + GU{(u,uz), (uz,u3), (uz,u), (u,ua), (Ug,u)};
end
end
for i+ 1tod(u)—1doif d(u) > 1then G+ kAntennaéG,T,u;,u,k) ;

~

(a) Vertex graph (The dotted ovals (b) Edge graph (The connecting vertices are
delimit the three parts.) black.)

Fig. 18: Meta-vertex and meta-edge for the NP hardness proof

embedding requirements. The only constraining placesarmmidpoints of the meta-edges
and the three places in each meta-vertex where the partermmeated to each other. These
can be embedded as shown in the right part of Figure 19. Natétth need to embed these
parts without violating embedding requirements gives tisthe equations definingand
o (see Figur€9). This completes details of the main contsmnic |
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Procedure TwoAntennaeG, T, u, w)

Letup =W, Uy, -+, Ug)—1 be the neighbors af € T in clockwise order around;
if d(u) =2then LetG+«+ GU{(u,uz),(uz,u)};
if d(u) =3then

10

1
2
3
4 if uy is close to g then Let G+ GU{(u,u1), (uz,u2), (Uz,u)} ;
5 else

6

if (u,up) € Gor (up,u) € Gthen Letv <+ upandVv be the closest neighbor
to up andx be the neighbor ofi € T different tov andyv;

else Letv be the sibling ofsin T closest to a neighbaf # ug of u andx be
the neighbor ofi € T different tov' anduo;

if (vu) € Gthen LetG+«+ {G\{(vu)}}U{(v,V),(V,u)};

else Let G+ {G\ {(u,v)}}U{(u,Vv),(V,v)};

Let G+ GU{(u,x),(x,u)};

11 end

12 end

13 if d(u) =4 then
14 if (u,up) € Gor (up,u) € Gthen

15
16

if Ug is far to Uz or uy is far to W then Letv < ug,V < Ug, X < Up, X' < Ug;
else LetVv < Up,V < Uz, X < Ug, X < Uy;

17 end
18 | else Letvbe the sibling oliin T closest to a neighbaf # up of u and andx, X

be the closest neighbors ofifferent tov anduy;

19 if (v,u) € Gthen LetG+«+ {G\{(vu)}}U{(v,V),(V,u)};
20 else Let G+ {G\ {(u,v)}}U{(u,V), (V,v)};
21 Let G < GU{(u,x), (x,X)(X,u)};

22 end
23 else

24 if (u,up) € Gor (Up,u) € Gthen Letv <« U,V < Uy, j <+ 2;
25 else Letv be the sibling ofsin T closest to a neighbaf # ug of uand and

Uj,Uj+1,Uj42 be the three consecutive neighboraiaifferent tov' andu;

26 if (v,u) € Gthen LetG+«+ {G\{(vu)}}U{(v,V),(V,u)};
27 else Let G+ {G\ {(u,v)}}U{(u,Vv),(V,V)};
28 | LetG<« GU{(u,uj),(Uj,uj11), (Uj11,Uj42), (Uj+2,U) };

29 end

30 for i+ 1tod(u)—1doif d(u) > 1then G=TwoAntantenngé,T,u;,u);

The proof of the Theorem is based on the following claim:

Claim 3.1. There is a Hamiltonian cycle in G if and only if there existsamsignment of
two antennae with sum of angles less tlimand range less than x to the vertices df G
such that the resulting connectivity graph is strongly cectad.
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r=1+2cosa
o =2sina/2
i S/l
a2

Fig. 19: Connecting meta-edges with meta-vertices. Théethevals show the places
where embedding is constrained.

Proof. First we show that ifG has a Hamiltonian cycle then there exists the assignment
of such antennae that makes the resulting connectivityhgodys” strongly connected.
Figure[20 shows antenna assignments in the meta-edgesmamcéng to edges used and
not used by the Hamiltonian cycle, respectively. Fidure l&iws the antenna assignments
in a meta-vertex. Since each vertex@has one incoming, one outgoing and one unused
incident edge, and each edge is either used in one directiomt used at all, this provides
the full description of antenna assignment&ih

Vja

Fig. 20: Left: antenna assignments in a meta-edges comdsmpto an edge used in the
Hamiltonian cycle fromy; to vj. Right: antenna assignments in a meta-edge corresponding
to an unused edge.

Observe that the connecting pair of vertices at the met@xerses two antennae to-
wards the meta-edge it is connected to if and only if this reekge is outgoing; otherwise
only one antenna is used towards the meta-edge and anotieddowards the next part
of the meta-vertex. It is easy to verify that the resultingroectivity graph is strongly con-
nected:

(1) if the edgee= <Vi7VJ'> is not used in the Hamiltonian path in the direction fram
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outgoing edge

“unused edge
O -

re-of The ve’r‘te)‘(‘graphl

Fig. 21: Antenna assignments at the meta-vertex and incideta-vertices.

incoming edge

the connecting part of the meta-vertgy, form ajstrjongly connected subgraph,
(2) in each meta-vertex the part corresponding to the ontpedge is reachable from
the part corresponding to the unused edge, which is in tachagble from the part
corresponding to the incoming edge, and
(3) all vertices of a meta-edge corresponding to an outgeiigga<vi,vj> are reach-
able from eithewj; or vi; furthermore the destination verticeg andvj, are
reachable from all these vertices.

tovj, then the near half of the meta-edge(i.e. v}, vj, m, andry,) together with

Combining these observations with the fact that the Hamidio cycle spans all vertices
yields that the resulting graph is strongly connected.

Next we show that if it is possible to orient the antenna&fnsuch that the resulting
graph is strongly connected then there exists a Hamiltooyate in G. Recall thatG” is
constructed in such a manner that no antenna of range lesx tnad angle less tham
can reach two neighbouring vertices, and that no antennaezah a vertex that is not a
neighbor inG".

Assume an orientation of antennae such that the resultaqghgs strongly connected.
First, consider a pair of connecting vertiogs andvi2. Since both pathr,, and,, are
connected only to thenvj; andvi, must together use at least two antennae towards these
two paths.

Let us call a meta-edge corresponding to eégew} directedif in the connectivity
graph there is an ediex@v’j > Without loss of generality assume the direction is frgm

toVj, i.e. V| used an antenna to reaep Sincev/’ is reachable only fronv; (and hence
V| used its second antenna ®f), this means that there is no antenna pointing frgm
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towards the paths, andry,. Therefore, the only way for the vertices of these two paths t
be reachable is to have both connecting vertices (whichifioplecity we call vi1 andviz,
respectively) use an antenna towards these paths. Sincaltkady used two antennae to
ensure reachability of,; andT,> are reachable, they have no antenna left to connect to
another part of the meta-vertex.

Consider now the other half of the meta-edge. Observe thaEylj must use one
antenna orv{, it can use at most one antenna towards the pa()‘]handr(jj. Hence, either
Vj1 Or vj2 must use an antenna towards one of these paths. Since thiésesvmust use
two more antennae to ensure that the paﬂpﬁandmjz are reachable, only one antenna is
left for connecting to other parts of the meta vertex. Not this argument holds both for
receiving ends of directed meta-edges, as well as for nacigid meta-edges.

However, this means that in a meta-vertex there can be atonesbutgoing directed
meta-edge — otherwise there is no way to make the meta-vatarected. Since each meta-
vertex must have at least one outgoing directed meta-ediger(ase the rest of the graph
would be unreachable) and at least one incoming directed-euige (otherwise it would
not be reachable from the rest), from the fact that the whodplyis strongly connected
it follows that each meta-vertex must have exactly one ewntidd meta-edge, one directed
incoming meta-edge and one directed outgoing meta-edgeo@iby, these correspond to
unused/incoming/outgoing edges in the original gréphvith the directed edges forming
the Hamiltonian cycle. O

4. Conclusion

We have provided an algorithm which, when given as input @fetpoints (representing
sensors) in the plane and an integex k < 5, produces a strongly connected spanning
graph so that each sensor uses at rkabitectional antennae of angle 0 and range at most
2-sin (@"1) times the optimal. We also show that the problem of approtimgahe optimal
range is NP-hard for 2 antennae, some approximation faatasum of antennae angles.

Interesting open problems include looking at tradeoffs mtie angle of the antennae
is ¢ > 0 as well as deriving better lower bounds.
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