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Abstract—We consider a 3D antenna orientation problem
for maintaining connectivity of a wireless network in 3D space
using only directional antennae. Sensors are located at points
in 3D space and are equipped with directional antennae. The
strong connectivity antenna orientation problem is concerned
with deciding whether or not for given solid angleΩ and range
r it is possible to orient the antennae so as to ensure that the
sensor network resulting from the induced transmissions is
strongly connected. In this paper we 1) present an algorithm
ensuring optimal antenna range for the case whenΩ ≥ 18π

5 ,
2) show that determining whether or not there exists a strong
orientation of directional sensors of solid angleΩ< π−ε having
optimal range is NP-complete, for anyε > 0, and 3) provide
an algorithm for approximating the antennae range so as to
ensure strong connectivity of the resulting graph, provided the
solid angle of the antennae is2π ≤ Ω < 18π

5 . In addition, we
study the effect of replacing omnidirectional antennae with
directional antennae on the hop stretch factor of the resulting
network of directional antennae and present some simulation
results on the variation of hop stretch factor with different
network sizes and solid angles of directional antennae. This
is the first paper concerning the strong connectivity antennae
orientation problem in 3D space.

Keywords-Algorithm, Directional Antenna, Kissing number,
MST, Orientation, Sensor Network, Tammes Problem.

I. I NTRODUCTION

Directional antennae are being used in wireless networks
not only for reducing energy consumption and interference,
but also for improving routing efficiency and security. Sen-
sors rely on the use of antennae to configure and operate
an ad hoc network. Numerous types of antennae are in
practical use in various settings today. In our subsequent
analysis it will suffice to compare two types of antennae.
Omnidirectionalantennae which transmit the signal in all
directions in the three-dimensional space anddirectional
antennae which can transmit the signal towards a specific
direction. Omnidirectional antennae usually incur more in-
terference than directional antennae thus hampering nodes
from receiving data from other transmitters and causing
overall performance degradation of the sensor network.

Sensor networks using directional antennae not only can
have extended life-time since the consumption of energy in
each antenna is proportional to the volume covered by the
transmitting antennae, but also using a small antenna spread
prevents unwanted nodes from listening to the communi-
cation and therefore, improving the overall security of the
network. Hence, it is desirable to reduce not only the range,
but also the angle of an antenna.

In this paper we consider a 3D antenna orientation
problem for maintaining connectivity of a wireless network
in 3D space using only directional antennae. Sensors are
located at points in 3D space and are equipped with direc-
tional antennae. Thestrong connectivity antenna orientation
problem is concerned with deciding whether or not for a
given solid angleΩ and ranger it is possible to orient
the antennae so as to ensure that the sensor network result-
ing from the induced transmissions is strongly connected.
We model three-dimensional directionalantennae using a
spherical circular sector ofsolid angleor spherical beam
width Ω. The term solid angle and spherical beam width are
used interchangeably. We propose algorithms for orienting
the sensors inthree dimensionalspace so as to maintain
connectivity. In particular, we determine an upper bound on
the increase in range required for maintaining connectivity
in this case and show that there is a tradeoff between the
increase in range required and solid angle of thedirectional
antennae used.

A. Related Work

There is extensive theoretical literature documenting the
performance improvements on a wireless network when
using directional antennae. Motivated from the studies in
[8] concerning the capacity and throughput of wireless
networks the papers [15] and [20] investigate performance
improvements when using directional antennae. There has
also been some recent research concerning the advantages of
using directional antennae. For example, in [14] they study
the energy consumption of networks of omnidirectional



antennae and compare it to the consumption of networks
of directional antennae intwo dimensionalnetworks. They
have modelled atwo dimensionaldirectional antennae using
a circular sector of angleα and shown that in this case the
range of antennae increases by a factor of

√

2π/α. Related
studies can also be found in [2], [3]. It is also worth noting
that directional antennae can improve security because the
narrower beam width of the directional antennae guarantees
less exposure of the signal to adversaries during transmission
[10].

Closely related to our work are topology control issues in
wireless sensor networks, e.g., [9], [11] and [13], and is also
directly related to the problem of understanding the trade-
offs between antenna range and beam-width for attaining
network connectivity. In particular, the problem of replacing
omni-directional antennae with directional antennae while
maintaining connectivity has been considered in the two
dimensional space. In [4], the authors have modelled the
directional antennae in two dimensional space as a circular
sector of angleφ. The authors have proposed a polyno-
mial time approximation algorithm for orienting antennae
in sensor networks when the sector angleφ ≥ π while
maintaining connectivity. They have also determined that
the optimal range of an omni-directional antennae network
is sufficient for maintaining connectivity in the directional
antennae network as well, provided that the sector angle
satisfiesφ ≥ 8π

5 . Further, they have proved that the problem
of orienting directional antennae in two dimensional space
while maintaining connectivity is NP-complete for sector
anglesφ < 2π/3− ε, for any ε > 0. Similarly, in [7] the
authors give an analysis of antennae range for attaining
strong connectivity when each sensor is equipped withk
antennae, for a given value of 1≤ k≤ 5.

Observe that in a real setting, the two dimensional model
used in [4] may result in a network that is not strongly con-
nected due to distinct altitudes. To overcome this deficiency,
we propose a 3 dimensional model to address the orientation
problem having one antenna at each sensor. Thus, this work
indeed generalizes the results given in [4].

B. Preliminaries and Notation

In this section, we will introduce the model for the
directional antennae and some definitions which will be used
throughout the paper. For any two pointsu,v let us represent
the distance between the pointsu and v as d(u,v). Given
a set of sensorsS equipped with omnidirectional antennae,
we define theUnit Ball Graph (UBG) G as the graph whose
vertex set is the setS of sensors in the three dimensional
space and the edge set is defined as follows: ifd(u,v) is
less than or equal tounity, then the straight line segment
betweenu andv forms an edge in the unit ball graph. Here,
without loss of generality, we assume that the range of an
omnidirectionalantennae isnormalizedto unity.

We model athree dimensionaldirectional antenna as a
spherical sector of solid angleΩ (see Definition 1) and
depicted in Figure 1. Adirectionalantennae is characterized
by its solid angleand range.

Definition 1: The solid angle of a solid spherical sector
is defined as the ratio of the area of the spherical surface
and the square of the radius of the sphere of which it forms
part. It is usually represented byΩ.

Figure 1: 3D directional antenna of solid angleΩ = 2π(1−
cosθ).

Definition 2: The apex angle of a spherical sector with
solid angle Ω is defined as the maximum planar angle
between any two generatrices of the spherical sector. It is
usually represented by 2θ.

Using the well-known relation of Archimedes, we note
that the apex angle 2θ and the solid angleΩ are related by
the following identity.

Ω = 2π(1−cosθ) (1)

Definition 3: Consider a setSof sensors located at points
in 3D space. The optimal range of the set of sensorsShaving
unit ball graphG is defined as the maximum length of an
edge of the minimum spanning treeT of G and is denoted
by rMST(S).

An interesting question relating to our analysis was pro-
posed by the botanist Tammes in [18] and concerns “what is
the length of the largest largest diameter ofn equal circles
that can be placed on the surface of the unit sphere without
overlap” (see Figure 2). This is made precise in the following
definition.

Definition 4: The Tammes’ radius of the unit sphere for
n circles is defined as the maximum radius ofn equal
non-overlapping circles on the surface of the sphere and is
denoted byRn.



α
Rn

Figure 2: Tammes’ problem.

The problem of finding the Tammes’ radius for different
values ofn has been studied thoroughly in the literature.
In [19], Tarnai et al. have found the values of the Tammes’
radius for n ≤ 12 andn = 24 in terms of the angleα it
subtends at the center as shown in Figure 2.

Recall that in a graphG, a minimum spanning tree MST
or minimum weight spanning tree is a spanning tree whose
weight is less than or equal to the weight of every other
spanning tree. When the weights are the Euclidean distances
then it is called the Euclidean MST. In general the maximum
degree of the Euclidean MST onG is bounded by theKissing
number [16], [17], [6] which is defined as the maximum
number of disjoint unit spheres that can be simultaneously
tanget to a given unit sphere. Hence, the maximum degree
of a Euclidean MST in 3D is bounded by 12.

C. Outline and results of the Paper

In this paper, we provide a set of results for the problem
of maintaining connectivity in wireless networks in 3D using
directional antennae. In summary, we

1) present an algorithm ensuring optimal antenna range
for the case whenΩ ≥ 18π

5 ,
2) show that determining whether or not there exists a

strong orientation of directional sensors of solid angle
Ω < π− ε having optimal range is NP-complete, for
any ε > 0, and

3) provide an algorithm for approximating the antennae
range so as to ensure strong connectivity of the result-
ing graph, provided the beam width of the antennae is
2π ≤ Ω < 18π

5 .

An outline of the paper is as follows. In Section II, we
give a lower bound on the solid angle of the directional

antennae for the case where the optimal range for networks
of omnidirectional antennae is sufficient for maintaining
connectivity. In this section, we also present a simple
algorithm for orienting the antennae. In Section IV, we
determine an upper bound on the increase in range required
for maintaining connectivity when the solid angle is less than
that found in Section II. In this section, we also present a
simple polynomial time algorithm for orienting the antennae
in such a way that the resulting graph remains connected.
In Section III, we use the results of [7] and prove that
the problem of maintaining connectivity in the transmission
graph when solid angle is less thanπ is NP-Hard. In
Section V, we study the effect of replacingomnidirectional
antennae withdirectional antennae on thestretch factorof
the resulting network of directional antennae and present
some simulation results on the variation of hop stretch factor
with different network sizes and solid angles of directional
antennae. We conclude with a discussion of possible exten-
sions and interesting open problems in Section VI.

II. L OWER BOUND ON SOLID ANGLE AND OPTIMAL

RANGE

In this section, we will derive a lower bound on the solid
angle of the antennae for which optimal range (as defined
in Definition 3) is sufficient for maintaining connectivity.

Theorem 5:Given a set of pointsS in the three dimen-
sional space and a spherical angleΩ ≥ 18π

5 , there exists a
polynomial time algorithm that computes a strong orienta-
tion of three dimensional antennae of spherical sector with
solid angleΩ and having optimal range.

Proof: Let T be a minimum spanning tree onS and
rMST(S) be the longest edge of minimum spanning treeT.
For each pointp of Swe will show how to orient the antenna
at p. Consider the sphereBp centered atp of minimum
radius rp that covers all the neighbors ofp in T. Observe
that rp ≤ rMST(S). For each neighboru of p in T, let u′ be
the intersection pointu′ of Bp with the ray emanating from
p toward u. Let NBr (p) be the set of points projected on
the surface ofBp. Since p has maximum degree 12 inT,
|NBr (p)| ≤ 12 . Let DTp be the Delaunay Triangulation of
NBr (p) on the surface ofBp. Consider the largest triangle
tp of DTp (In case of a tie, break it arbitrarily.) Orient the
antenna atp with range rp in such a way thattp is not
covered. This can be done by orienting the antennae toward
the opposite direction to the center oftp .

To prove the lower bound on the solid angle at each point
p, observe that every edge ofDTp has length at least twice
the Tammes’ radius R12 which corresponds to the kissing
number in 3D [17]. Therefore, every circumcircle is at least
of radiusa= 2R12/

√
3 (see Figure 3) and the planar angle

α at the center of the sphereBp is at least arcsin(a). From



[5][Problem D7, pages 114-116], it is known that

R12 = sin

(

63◦26
′

2

)

.

Therefore, using Equation 1 we can calculate the solid angle
of the antennae as follows:

Ω = 4π−2π(1−cos(α))
= 2π(1+cos(α))

= 2π
(

1+cos

(

arcsin

(

2R12√
3

)))

<
18π
5

,

where the last inequality is obtained after numerical calcula-
tion. It is easy to see that the resulting transmission graphis
strongly connected sinceT is connected and all the edges of
T are covered by exactly two antennae at opposite endpoints.
This completes the proof of the theorem.

2R12

a

a

2π/3

a

2R12

2R12

Figure 3: A circumcircle and the Tammes radiusR12.

Observe that Theorem 5 relies on the construction of the
MST in 3D which takesO((nlog(n))4/3) expected time [1].
Further every other step can be done in constant time.
Therefore, if we do not insist on guaranteeing optimal range
the algorithm can be implement in distributed manner to
run in constant time by considering thek-Local MST of
a connected UBG ofS at distance 1 and doing only local
computation.

III. T HE COMPLEXITY OF THE3D CASE

In this section, we will prove that when the solid angle
of the directional antennae is less thanπ− ε, the problem
of finding out an orientation of the sensors such that the

transmission graph is connected is NP-Complete, for any
ε > 0.

Theorem 6:Given a set of pointsS in 3D andΩ < π− ε
for any ε > 0, determining whether there exists a strong
orientation of directional sensors of solid angleΩ having
optimal range is NP-Complete.

Proof: It is easy to see that the problem is in the class
NP. We prove the NP-Hardness by using a result known
for the 2D case. In [4], they have proved that in case of
directional antennae in 2D, modelled as a circular sector,
when the sector angle is less thanπ− ε, the problem of
maintaining connectivity is NP-Complete, for anyε > 0.

Consider a setS of points in the plane. We will prove
that the 2D problem is equivalent to the 3D problem.
From Definition 2 and Archimedes’ relation, any plane
that cuts the coverage area of any 3D directional antennae
through the apex with angleΩ has plane angle satisfying
cos(θ) ≤ 1− Ω

2π . Thereforeθ ≤ 2π/3 if and only if Ω ≤ π.
Assume a strong orientation of the planar directional antenna
of S with angle at most 2π/3. Clearly, we can orient the 3D
directional antennae with angleπ in such a way that it covers
the planar angle. Similarly, If there exists an algorithm that
creates a strong orientation of the 3D directional antenna of
Swith angleπ then we can strongly orient the 2D directional
antenna ofS with angle 2π/3. This completes the proof of
the theorem.

IV. A PPROXIMATION ALGORITHM AND UPPERBOUND

In this section, first we will propose a linear algorithm
for orienting the directional antennae when the solid angle
is within a specified range. Following this we will prove that
the transmission graph generated is strongly connected.

Theorem 7:Given a setS of n points in 3D and a solid
angleΩ such that 2π ≤ Ω < 18π

5 , it is possible to orient the
antennae at each sensor with solid angleΩ and ranger(Ω)
in O((nlog(n))4/3) time so that the transmission graph is
connected, where

r(Ω) =

√

Ω(4π−Ω)

π
· rMST(S) (2)

Proof: Let T be a minimum spanning tree onS and
rMST(S) be the longest edge of minimum spanning treeT.
We will use directional antennae with solid angleΩ and
range,

r(Ω) = rMST ·
√

Ω(4π−Ω)

π
for constructing the transmission graph.

Consider a matchingM of T with the following property:
every internal node ofT is incident to an edge inM. The
matchingM can be constructed as follows. Initially,M is
empty. We rootT at an arbitrary non-leaf nodes. We pick
an edge betweens and one of its children and insert it toM.
Then, we visit the remaining nodes ofT in a BFS (Breadth



First Search) manner. When visiting a nodeu, if u is either
a leaf-node or a non-leaf node such that the edge between
it and its parent is inM, we do nothing. Otherwise, we pick
an edge betweenu and one of its children and insert it to
M.

We say that the endpoints of an edge inM form a couple.
We use sectors of solid angleΩ and radiusr(Ω) at each
point and orient them as follows: At each nodeu ∈ S not
incident to an edge ofM, the sector is oriented so that it
induces the directed edge fromu to its parent inT in the
corresponding transmission graph. For each pair of pointsu
andv forming a couple, we orient the sector atu so that it
contains all pointsp at distancer(Ω) from u for which the
counter-clockwise angle∠vup is in [0,2θ] where 2θ is the
apex angle of the directional antenna. See Figure 4.

v u

2θ

2θ

Figure 4: Orientation of antennae atu andv such that(u,v)
is in the matchingM.

Now, we will prove that the resulting transmission graph is
connected. To prove this, we first prove that the transmission
graph has the following property(P):

for each pair of pointsu andv forming a couple,
the transmission graphG contains two opposite
directed edges betweenu and v and for each
neighbor w of either u or v in T, it contains a
directed edge from eitheru or v to w.

Consider a pointw corresponding to a neighbor ofu in T
(the argument for the case wherew is a neighbor ofv is
symmetric). Letθ be the apex angle ofΩ. Clearly, w is
at distanced(u,w) ≤ rMST from u. Since Ω ≤ 18π

5 , using
Equation 2, we have the antenna range,r(Ω) ≥ 6/5 · rMST.
Hence,w is contained in the spherical sector ofu if the
counter-clockwise planar angle∠vuw is at mostθ. Now,
assume that the angle∠vuw> θ. By the law of cosines in
the triangle defined by pointsu,v andw, we have thatd(v,w)
is equal to

√

d(v,w)2+d(u,v)2−2d(u,v)d(u,w)cos(∠vuw)

It follows that

d(v,w) ≤ rMST ·
√

2−2cos(2θ)
or d(v,w) ≤ rMST · |2sin(θ)|

or d(v,w) ≤ rMST ·
∣

∣

∣

∣

2
√

1−cos2(θ)
∣

∣

∣

∣

or d(v,w) ≤ rMST ·

∣

∣

∣

∣

∣

∣

2

√

1−
(

1− Ω
2π

)2
∣

∣

∣

∣

∣

∣

or d(v,w) ≤ rMST ·
√

Ω(4π−Ω)

π
,

since the apex angle satisfies 2θ > π, for all Ω ≥ 2π. Hence,
in the above argument, either∠vuw or ∠uvw is definitely
less thanπ which means the transmission graph contains an
edge from eitheru or v to w. This completes the proof of
propertyP.

To proof that the resulting transmission graph is strongly
connected we will show that for any two neighborsu andv in
T, there exists a directed path fromu to v and a directed path
from v to u in unit ball graphG. Without loss of generality,
assume thatu is closer to the roots of T than v. If the
edge betweenu and v belongs toM, i.e. u and v form a
couple), property (P) guarantees that there exist two opposite
directed edges betweenu andv in the transmission graphG.
Otherwise, letw1 be the node with whichu forms a couple.
Sincev is a neighbor ofu in T, there is either a directed
edge fromu to v in G or a directed edge fromw1 to v in
G. Then, there is also a directed edge fromu to w1 in G
which means that there exists a directed path fromu to v.
If v is a leaf, then its sector is oriented so that it induces a
directed edge to its parentu. Otherwise, letw2 be the node
with which v forms a couple. Sinceu is a neighbor ofv in T,
there is either a directed edge fromv to u in G or a directed
edge fromw2 to u in G. Then, there is also a directed edge
from v to w2 in G which means that there exists a directed
path fromv to u.

Regarding the complexity, the construction of the min-
imum spanning tree can be done inO((nlog(n))4/3) time
(see [1]). It is not difficult to see that all the rest of the steps
can be implemented in linear time. This completes the proof
of theorem 7.

V. SIMULATION RESULTS

In this section, we study the impact of replacing 3D
omnidirectional antennae with 3D directional antennae. In
our experiments we randomly generate sets ofn points in the
three dimensional space. For each instanceS we construct
the directional spanner, sayG, with antenna beam-width
Ω according to Theorem 7 as well as the unit ball graph
UBG(rMST(S)). We then compare the average minimum path
length ofG with that of UBG(rMST(S)).

In the first simulation we fixΩ to 13π/5 and vary the
number of vertices from 30 to 100 in increments of 10. We



ran 30 times each value ofn and plot the ratio with the box-
diagram as depicted in Figure 5. Observe that in all the cases
the third quantile of the ratio is less than one and just a few
values are greater than one. Thus, in general we can conclude
that with Ω = 13π/5 the directed network behaves better
than the UBG(rMST(S)). A possible explanation is because
the radius of the 3D directional antennae is greater than
rMST(S) and UBG(rMST(S)) has optimal range.

Figure 5: Direced Spaner/Unit Ball Graph varyingn.

In the second simulation we fixn to 70 and consider
distinct values of the solid angleΩ in the range(2π, 18π

5 ). We
ran 30 times each value ofn and plot the ratio with the box-
diagram as depicted in Figure 6. Similarly, in all the cases
the third quantile of the ratio is less than one. However, it
seems that whenΩ grows, the ratio also increases. Thus,
we can conclude that whenΩ is small, the directed network
behaves better than the UBG(rMST(S)). A possible reason for
the phenomenon is that whenΩ increases,r(Ω) converges
to the optimal value.

VI. EXTENSIONS AND OPEN PROBLEMS

In this paper we have considered connectivity trade-offs
in 3D wireless sensor networks using directional antennae.
In addition to improving the results presented in previous
sections, several interesting questions remain open. For once,
very little is known when the spherical antenna beamΩ
is in the rangeπ ≤ Ω < 2π. Another question, related to
the Tammes’ radius and Kissing number, is concerned with
angle/range trade-offs when each sensor is equipped with a
given numberk of antennae, where 1≤ k ≤ 12. This last
problem is also related to the work (in the plane) in [12],

Figure 6: Direced Spaner/Unit Ball Graph varyingΩ.

[7] on strong connectivity with multiple directional antennae
per sensor.
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Traveaux Botaniques Ńeerlandais, 27:1–84, 1930.
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