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Abstract—We consider a 3D antenna orientation problem  Sensor networks using directional antennae not only can
for maintaining connectivity of a wireless network in 3D space  have extended life-time since the consumption of energy in
using only directional antennae. Sensors are located at points  g4ch antenna is proportional to the volume covered by the
in 3D space and are equipped with directional antennae. The ¢ it t but al . Il ant &
strong connectivity antenna orientation problem is concerned ransmitung antennae, but also US'II'lg asma antenna prela
with deciding whether or not for given solid angleQ and range ~ Prevents unwanted nodes from listening to the communi-

r it is possible to orient the antennae so as to ensure that the cation and therefore, improving the overall security of the

sensor network resulting_ from the induced transmission_s is  network. Hence, it is desirable to reduce not only the range,

strongly connected. In this paper we 1) present an aIgorilgm but also the angle of an antenna.

ensuring optimal antenna range for the case wherQ > 5, In thi id 3D t ientati

2) show that determining whether or not there exists a strong n this paper we consider a antenna orientation

orientation of directional sensors of solid angleQ < T—¢ having ~ Problem for maintaining connectivity of a wireless network

optimal range is NP-complete, for anye > 0, and 3) provide in 3D space using only directional antennae. Sensors are

an algorithm for approximating the antennae range so as to  |ocated at points in 3D space and are equipped with direc-

ensure strong connectivity of the resulting graph, provided the 531 antennae. Thstrong connectivity antenna orientation

solid angle of the antennae i< Q < =£°. In addition, we . : .

study the effect of replacing omnidirectional antennae with p_roblem IS concerned with deC'd'_”g_ Wheth_er or not_for a

directional antennae on the hop stretch factor of the resulting ~ given solid angleQ and ranger it is possible to orient

network of directional antennae and present some simulation the antennae so as to ensure that the sensor network result-

results on the variation of hop stretch factor with different  jng from the induced transmissions is strongly connected.

network sizes and solid angles of directional antennae. This \\e modelthree-dimensional directionaintennae using a

is the first paper concerning the strong connectivity antennae - . . -

orientation problem in 3D space. spherlcal circular seqtor asolid angleor_spherlcal b_eam
width Q. The term solid angle and spherical beam width are
used interchangeably. We propose algorithms for orienting
the sensors irthree dimensionabpace so as to maintain

connectivity. In particular, we determine an upper bound on

the increase in range required for maintaining connegtivit

Directional antennae are being used in wireless networkm this case and show that there is a tradeoff between the
not only for reducing energy consumption and interferenceincrease in range required and solid angle ofdhectional
but also for improving routing efficiency and security. Sen-antennae used.
sors rely on the use of antennae to configure and operate
an ad hoc network. Numerous types of antennae are i Related Work
practical use in various settings today. In our subsequent There is extensive theoretical literature documenting the
analysis it will suffice to compare two types of antennae.performance improvements on a wireless network when
Omnidirectionalantennae which transmit the signal in all using directional antennae. Motivated from the studies in
directions in the three-dimensional space afitectional [8] concerning the capacity and throughput of wireless
antennae which can transmit the signal towards a specifinetworks the papers [15] and [20] investigate performance
direction. Omnidirectional antennae usually incur more in improvements when using directional antennae. There has
terference than directional antennae thus hampering nodegso been some recent research concerning the advantages of
from receiving data from other transmitters and causingusing directional antennae. For example,[in] [14] they study
overall performance degradation of the sensor networkthe energy consumption of networks of omnidirectional

Keywords-Algorithm, Directional Antenna, Kissing number,
MST, Orientation, Sensor Network, Tammes Problem.

I. INTRODUCTION



antennae and compare it to the consumption of networks We model athree dimensionatirectional antenna as a
of directional antennae itwo dimensionahetworks. They spherical sector of solid angl® (see Definition[ll) and
have modelled &wo dimensionatlirectional antennae using depicted in Figurg]l. Alirectionalantennae is characterized
a circular sector of angla and shown that in this case the by its solid angleandrange
range of antennae increases by a factor\/m. Related Definition 1: The solid angle of a solid spherical sector
studies can also be found inl [2[] [3]. It is also worth noting is defined as the ratio of the area of the spherical surface
that directional antennae can improve security because thend the square of the radius of the sphere of which it forms
narrower beam width of the directional antennae guarantegsart. It is usually represented I§y.
less exposure of the signal to adversaries during trangmiss
[10].
Closely related to our work are topology control issues in
wireless sensor networks, e.@., [9].]11] and|[13], and$® al
directly related to the problem of understanding the trade
offs between antenna range and beam-width for attainini
network connectivity. In particular, the problem of reptag
omni-directional antennae with directional antennae evhil
maintaining connectivity has been considered in the twc
dimensional space. Iri][4], the authors have modelled th Q
directional antennae in two dimensional space as a circule _—
sector of anglep. The authors have proposed a polyno-
mial time approximation algorithm for orienting antennae
in sensor networks when the sector angle> 1 while
maintaining connectivity. They have also determined tha
the optimal range of an omni-directional antennae networl
is sufficient for maintaining connectivity in the directan
antennae network as well, provided that the sector angl
satisfiesp > %“. Further, they have proved that the problem
of orienting directional antennae in two dimensional spacerigure 1: 3D directional antenna of solid ange= 2m(1—
while maintaining connectivity is NP-complete for sector cosh).
anglesg < 2r/3—¢, for any € > 0. Similarly, in [7] the
authors give an analysis of antennae range for attaining Definition 2: The apex angle of a spherical sector with
strong connectivity when each sensor is equipped With solid angle Q is defined as the maximum planar angle
antennae, for a given value of<lk <5. between any two generatrices of the spherical sector. It is
Observe that in a real setting, the two dimensional modelisually represented by92
used in[[4] may result in a network that is not strongly con- Using the well-known relation of Archimedes, we note
nected due to distinct altitudes. To overcome this defigienc that the apex anglet2and the solid angl€ are related by
we propose a 3 dimensional model to address the orientaticthe following identity.
problem having one antenna at each sensor. Thus, this work Q = 21(1 - cosd) 1)

indeed generalizes the results givenlih [4].
Definition 3: Consider a se$ of sensors located at points

in 3D space. The optimal range of the set of senSdraving
unit ball graphG is defined as the maximum length of an

In this section, we will introduce the model for the edge of the minimum spanning trdeof G and is denoted
directional antennae and some definitions which will be usedy rys7(S).
throughout the paper. For any two pointy let us represent An interesting question relating to our analysis was pro-
the distance between the poinisand v as d(u,v). Given  posed by the botanist Tammes|in][18] and concerns “what is
a set of sensorS equipped with omnidirectional antennae, the length of the largest largest diameternogéqual circles
we define theJnit Ball Graph (UBG) G as the graph whose that can be placed on the surface of the unit sphere without
vertex set is the seb of sensors in the three dimensional overlap” (see Figurgl2). This is made precise in the follgwin
space and the edge set is defined as followsl(if,v) is  definition.
less than or equal tonity, then the straight line segment  Definition 4: The Tammes’ radius of the unit sphere for
betweenu andv forms an edge in the unit ball graph. Here, n circles is defined as the maximum radius fequal
without loss of generality, we assume that the range of amon-overlapping circles on the surface of the sphere and is
omnidirectionalantennae isiormalizedto unity. denoted byR,.

B. Preliminaries and Notation



antennae for the case where the optimal range for networks
of omnidirectional antennae is sufficient for maintaining
connectivity. In this section, we also present a simple
algorithm for orienting the antennae. In Sectionl IV, we
determine an upper bound on the increase in range required
for maintaining connectivity when the solid angle is lessth
that found in Sectiofll. In this section, we also present a
simple polynomial time algorithm for orienting the anteana

in such a way that the resulting graph remains connected.
In Section[Tll, we use the results of[1[7] and prove that
the problem of maintaining connectivity in the transmissio
graph when solid angle is less thamis NP-Hard. In
Section ¥, we study the effect of replaciognnidirectional
antennae wittdirectional antennae on thetretch factorof

the resulting network of directional antennae and present
some simulation results on the variation of hop stretchofact
with different network sizes and solid angles of directiona
antennae. We conclude with a discussion of possible exten-

Figure 2: Tammes'’ problem. sions and interesting open problems in Secfiioh VI.
The problem of finding the Tammes’ radius for different Il. LOWERBOUND ON SOLID ANGLE AND OPTIMAL
values ofn has been studied thoroughly in the literature. RANGE
In [19], Tarnai et al. have found the values of the Tammes’
radius forn <12 andn =24 in terms of the angler it In this section, we will derive a lower bound on the solid
subtends at the center as shown in Fiddre 2. angle of the antennae for which optimal range (as defined

Recall that in a grapks, a minimum spanning tree MST in Definition[3) is sufficient for maintaining connectivity.
or minimum weight spanning tree is a spanning tree Whose Thaqrem 5:Given a set of pointsS in the three dimen-
weight is less than or equal to the weight of every othergjjn| space and a spherical angle> 187, there exists a
spanning tree. When the weights are the Euclidean diSta”C%%Iynomial time algorithm that comButgs a strong orienta-

theniitis called thg Euclidean MST' In general the rna_ximumtion of three dimensional antennae of spherical sector with
degree of the Euclidean MST @is bounded by th&issing  ¢,ig angleQ and having optimal range.

number[1§], [I7], [6] which is defined as the maximum Proof: Let T be a minimum spanning tree d®and

number of disjoint unit spheres that can be simultaneousl¥ e .
tanget to a given unit sphere. Hence, the maximum degreé"ST(S) be the longest edge of minimum spanning flee
of a Euclidean MST in 3D is bounded by 12. or each pqlnp of Swe will show how to orient thg r?mtenna
at p. Consider the spher8, centered atp of minimum
C. Outline and results of the Paper radiusrp that covers all the ngighbors qf ?n T. Observe
_ ] thatrp < rust(S). For each neighboun of pin T, let u’ be
In this paper, we provide a set of results for the problemy,q intersection point/’ of B, with the ray emanating from

of maintaining connectivity in wireless networks in 3D ugin p toward u. Let N, (p) be the set of points projected on
directional antennae. In summary, we the surface oBp. Since p has maximum degree 12 i,

1) present an algorithm ensuring optimal antenna rangéNg, (p)| < 12 . LetDT, be the Delaunay Triangulation of
for the case whei® > % Ng, (p) on the surface oBp. Consider the largest triangle

2) show that determining whether or not there exists &, of DT, (In case of a tie, break it arbitrarily.) Orient the
strong orientation of directional sensors of solid angleantenna atp with ranger, in such a way that, is not
Q < mt—¢ having optimal range is NP-complete, for covered. This can be done by orienting the antennae toward
anye >0, and the opposite direction to the center tgf.

3) provide an algorithm for approximating the antennae 1o prove the lower bound on the solid angle at each point
range so as to ensure strong connectivity of the resultp, observe that every edge BfT, has length at least twice
ing graph, provided the beam width of the antennae ishe Tammes’ radius R which corresponds to the kissing
n< Q< number in 3D[[1V]. Therefore, every circumcircle is at least

An outline of the paper is as follows. In Sectibi II, we of radiusa = 2R;»/+v/3 (see Figuré]3) and the planar angle

give a lower bound on the solid angle of the directionala at the center of the sphei, is at least arcsifa). From




[5l[Problem D7, pages 114-116], it is known that transmission graph is connected is NP-Complete, for any

/ £>0.
Ry = sin (63026> ) Theorem 6:Given a set of point§in 3D andQ < t—¢
2 for any € > 0, determining whether there exists a strong
grientation of directional sensors of solid anglehaving
optimal range is NP-Complete.
Proof: It is easy to see that the problem is in the class

Therefore, using Equatidd 1 we can calculate the solid ang|
of the antennae as follows:

Q = 4n—-2m(1-coqa)) NP. We prove the NP-Hardness by using a result known
= 2m(1+coqa)) for the 2D case. In []4], they have proved that in case of
. (2Rq2 directional antennae in 2D, modelled as a circular sector,
= 2n(1+cos<arcsm<\/§>)> when the sector angle is less than- €, the problem of
181 maintaining connectivity is NP-Complete, for aay- 0.
< — Consider a se6 of points in the plane. We will prove

. ° _ . ) that the 2D problem is equivalent to the 3D problem.
where the last inequality is obtained after numerical dalcu g, Definition 2 and Archimedes’ relation, any plane
tion. It is easy to see that the resulting transmission giaph (hat cyts the coverage area of any 3D directional antennae
strongly connected sincEk is connected and all the edges of through the apex with angl@ has plane angle satisfying

T are covered by exactly two antennae at opposite endpointéoie) <1- 2 Therefore < 21/3 if and only if Q < Tt

; 2
This completes the proof of the theorem. Assume a strong orientation of the planar directional ardgen

of Swith angle at most /3. Clearly, we can orient the 3D
directional antennae with angiein such a way that it covers
the planar angle. Similarly, If there exists an algorithratth
creates a strong orientation of the 3D directional anterina o
Swith anglertthen we can strongly orient the 2D directional
antenna ofS with angle 21/3. This completes the proof of
the theorem.

a ]

2R a IV. APPROXIMATION ALGORITHM AND UPPERBOUND

In this section, first we will propose a linear algorithm
21/3 for orienting the directional antennae when the solid angle

is within a specified range. Following this we will prove that
the transmission graph generated is strongly connected.

Theorem 7:Given a setS of n points in 3D and a solid
angleQ such that 2< Q < %”, it is possible to orient the
antennae at each sensor with solid ar@land range (Q)
in O((nlog(n))*3) time so that the transmission graph is
connected, where

Figure 3: A circumcircle and the Tammes radRs. —

rQ) = w Twst(S) @)
[ | - .

Observe that Theorefd 5 relies on the construction of the Proof: Lhet 'll' be a m|n|mufm spanning tree .C& and
MST in 3D which take<O((nlog(n))#/3) expected timel]1]. fus(S) be the longest edge of minimum spanning tiee
Further every other step can be done in constant time\.Ne will use directional antennae with solid angle and

. T . . range,
Therefore, if we do not insist on guaranteeing optimal range
the algorithm can be implement in distributed manner to r(Q) =rmsr-
run in constant time by considering theLocal MST of

a connected UBG o8 at distance 1 and doing only local for constructing the transmission graph.
computation. Consider a matchiniy! of T with the following property:

every internal node of is incident to an edge iM. The

Ill. THE COMPLEXITY OF THE3D CASE matchingM can be constructed as follows. Initiallyy) is

In this section, we will prove that when the solid angle empty. We roofT at an arbitrary non-leaf node We pick
of the directional antennae is less thar- €, the problem an edge betweesand one of its children and insert it I.
of finding out an orientation of the sensors such that thelhen, we visit the remaining nodes ®fin a BFS (Breadth

Q(4n—Q)
Tt



First Search) manner. When visiting a nagdf u is either It follows that

a leaf-node or a non-leaf node such that the edge between

it and its parent is itM, we do nothing. Otherwise, we pick dvw) < rust-v/2-2c020)
an edge between and one of its children and insert it to ord(v,w) < ryst-|2sin9)|

M.

We say that the endpoints of an edgeMrform a couple. ord(vw) < Twst- '2\/ 1= co§(e)’
We use sectors of solid ange and radiusr(Q) at each >
point and orient them as follows: At each node= S not ord(v,w) < rmsr-|2(/1— <1_ Q)
incident to an edge oM, the sector is oriented so that it 2n
induces the directed edge fromto its parent inT in the

- - - . Q(4n—Q)
corresponding transmission graph. For each pair of paints ord(v,w) < ryst- Y——-—2,
andv forming a couple, we orient the sectorwato that it n

contains all pointgp at distance (Q) from u for which the  since the apex angle satisfie8 2 1, for all Q > 2. Hence,
counter-clockwise angle’'vupis in [0,26] where B is the in the above argument, eithefvuw or Zuvw is definitely
apex angle of the directional antenna. See Fiflire 4. less tharrt which means the transmission graph contains an
edge from eithen or v to w. This completes the proof of
propertyP.
To proof that the resulting transmission graph is strongly
connected we will show that for any two neighbarandv in
T, there exists a directed path framto v and a directed path
from v to u in unit ball graphG. Without loss of generality,
assume that is closer to the roos of T thanv. If the
edge betweemnu and v belongs toM, i.e. u andv form a
couple), property (P) guarantees that there exist two afgos
directed edges betweernandv in the transmission grap®.
Otherwise, letv; be the node with whiclu forms a couple.
Sincev is a neighbor ofu in T, there is either a directed
edge fromu to v in G or a directed edge fromv; to v in
G. Then, there is also a directed edge fronto w; in G
which means that there exists a directed path froho v.
Figure 4: Orientation of antennae aandv such that(u,v)  If vis a leaf, then its sector is oriented so that it induces a
is in the matchingM. directed edge to its parent Otherwise, letw; be the node
with which v forms a couple. Sinceis a neighbor of/in T,
there is either a directed edge fronto u in G or a directed
edge fromw, to u in G. Then, there is also a directed edge
from v to wo in G which means that there exists a directed
path fromv to u.

Now, we will prove that the resulting transmission graph is
connected. To prove this, we first prove that the transmissio
graph has the following propertyP):

for each pair of points andv forming a couple, Regarding the complexity, the construction of the min-
the transmission grapf® contains two opposite imum spanning tree can be done @(nlog(n))*/3) time
directed edges between and v and for each (see[1)). It is not difficult to see that all the rest of thepste
neighborw of eitheru or v in T, it contains a can be implemented in linear time. This completes the proof
directed edge from eithar or v to w. of theorentY. -

Consider a pointv corresponding to a neighbor ofin T

(the argument for the case whewneis a neighbor ofv is V. SIMULATION RESULTS

symmetric). Let® be the apex angle of2. Clearly, w is In this section, we study the impact of replacing 3D

at distanced(u,w) < ryst from u. Since Q < 18, using  omnidirectional antennae with 3D directional antennae. In

Equation[2, we have the antenna rang@) > 6/5-rvyst.  our experiments we randomly generate sets pdints in the
Hence,w is contained in the spherical sector ofif the  three dimensional space. For each instaBcge construct
counter-clockwise planar anglévuw is at most6. Now, the directional spanner, sa@, with antenna beam-width
assume that the anglevuw> 6. By the law of cosines in  Q according to Theorer] 7 as well as the unit ball graph
the triangle defined by pointsv andw, we have thad(v,w) UBG(rumst(S)). We then compare the average minimum path
is equal to length of G with that of UBG{msT(9)).

In the first simulation we fixQ to 13r/5 and vary the
\/d(V,W)2+d(U,V)2— 2d(u, v)d(u,w) cog £ vuw) number of vertices from 30 to 100 in increments of 10. We




ran 30 times each value afand plot the ratio with the box-
diagram as depicted in Figuré 5. Observe that in all the case
the third quantile of the ratio is less than one and just a few
values are greater than one. Thus, in general we can conclus
that with Q = 13r1/5 the directed network behaves better
than the UBGi(usT(S)). A possible explanation is because
the radius of the 3D directional antennae is greater tha
rust(S) and UBG(msT(S)) has optimal range.

Directed Spanner / Unit Ball Graph
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Figure 5: Direced Spaner/Unit Ball Graph varying

In the second simulation we fir to 70 and consider
distinct values of the solid angf® in the range2rt, 1 =L &m). we
ran 30 times each value afand plot the ratio with the box-

diagram as depicted in Figuké 6. Similarly, in all the cases
the third quantile of the ratio is less than one. However, it

seems that whef) grows, the ratio also increases. Thus,
we can conclude that whe@ is small, the directed network
behaves better than the UBGgT(S)). A possible reason for
the phenomenon is that whe® increasesy(Q) converges
to the optimal value.

VI. EXTENSIONS AND OPEN PROBLEMS

In this paper we have considered connectivity trade-offs
in 3D wireless sensor networks using directional antennae.
In addition to improving the results presented in previous [4] 1.

sections, several interesting questions remain open.rea, 0
very little is known when the spherical antenna be@m
is in the rangernt < Q < 21 Another question, related to

the Tammes’ radius and Kissing number, is concerned with

angle/range trade-offs when each sensor is equipped with
given numberk of antennae, where € k < 12. This last
problem is also related to the work (in the plane)[inl[12],

Directed Spanner / Unit Ball Graph
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[[7] on strong connectivity with multiple directional anteae
per sensor.
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