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Main Question

• Given a set of sensors with omnidirectional antennae forming a

connected network:

Question: How can omnidirectional antennae be

replaced with directional antennae in such a way that

the connectivity is maintained while the angle and range

being used are the smallest possible?
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Outline

• Motivation

• Orientation Problem

– In 1D.

– In 2D.

∗ Complexity.

∗ Optimal Range Orientation.

∗ Approximate Range Orientation.

– In 3D.

∗ Complexity.

∗ Optimal Range Orientation.

∗ Approximate Range Orientation.

• Variations of the Antenna Orientation Problem.
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Motivation
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Reasons for Replacing Antennae

• Energy Consumption

• Network Capacity
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Energy

• The energy necessary to transmit a message is proportional to

the coverage area.

– An omnidirectional antenna with range r consumes energy

proportional to πr2.

– A directional antenna with angle ϕ and range R consumes

energy proportional to ϕR2/2.

r
ϕ

R
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Connectivity

• With the same amount of energy, a directional antenna with

angle α can reach further.

1 2 43

1 2 43
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Capacity of Wireless Networks

• Consider a set of sensors that transmit W bits per second with

antennae having transmission beam of width α and a receiving

beam width of angle β.

Sender Receiver

Omnidirectional Directional (β)

Omnidirectional
√

1
2πW

√
n [1] -

Directional (α)
√

1
αW
√
n [2]

√
2π
αβW

√
n [2]

• References:

1. Gupta and Kumar. The capacity of wireless networks. 2000.

2. Yi, Pei and Kalyanaraman. On the capacity improvement

of ad hoc wireless networks using directional antennas. 2003.
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Capacity with Directional Antennae

• Consider a set of sensors that transmit W bits per second with

antennae having transmission beam of width α and a receiving

beam width of angle β.

• Assume that

– sensors are placed in such a way that the interference is

minimum, and

– traffic patterns and transmission ranges are optimally

chosen.

• Then the network capacity (amount of traffic that the network

can handle) is at most
√

2π
αβW

√
n per second.
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Enhancing Security with Directional Antennae

• The use of directional antennae enhances the network security

since the radiation is more restricted.

– Hu and Evansa designed several authentication protocols

based on directional antennae.

– Lu et alb employed the average probability of detection to

estimate the overall security benefit level of directional

transmission over the omnidirectional one.

– Imai et alc examined the possibility of key agreement using

variable directional antennae.
aHu and Evans. Using directional antennas to prevent wormhole attacks.

2004
bLu, Wicker, Lio, and Towsley. Security Estimation Model with Directional

Antennas. 2008
cImai, Kobara, and Morozov. On the possibility of key agreement using

variable directional antenna. 2006
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Antenna Orientation

Problem in the Line
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Antenna Orientation Problem in the Line

• Given a set of sensors in the line equipped with one directional

antennae each of angle at most ϕ ≥ 0.

• Compute the minimum range r required to form a strongly

connected network by appropriately rotating the antennae.

1 2 43
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Antenna Orientation Problem in the Line

• Given ϕ ≥ π. The orientation can be done trivially with the

same range required when omnidirectional antennae are used.

φ

x

φ φ φφ

• Given ϕ < π. The strong orientation can be done with range

bounded by two times the range required when omnidirectional

antennae are used.

x x x x xx
6321 4 5

.....
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Antenna Orientation

Problem in the Plane
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Antenna Orientation Problem

• Given a set of identical sensors in the plane equipped with

one directional antenna each of angle at most ϕ.

• Compute the minimum range such that by appropriately

rotating the antennae, a directed, strongly connected network

on S is formed.

u

v
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Example: Sensors in the Plane

Consider n sensors in the plane.
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Example: Directional Antennae Affect Connectivity
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Connectivity Issues

• When replacing omnidirectional with directional antennae the

network topology changes!

• How do you maintain connectivity in a wireless network when

the network nodes are equipped with directional antennae?

• Nodes correspond to points on the plane and each uses a

directional antenna (modeled by a sector with a given angle

and radius).

• The connectivity problem is to decide whether or not it is

possible to orient the antennae so that the directed graph

induced by the node transmissions is strongly connected.
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Four sensors: Connectivity Example

Left: using omnidirectional antennae they form an underlying

complete network on four nodes.

Right: using directional antennae they form an underlying cycle

on four nodes.
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Connectivity Problem

• We consider the problem of maintaining connectivity using the

minimum possible range for a given angular spread.

• More specifically,

For a set of sensors located in the plane at established

positions and with a given angular spread we are

interested in providing an algorithm that minimizes the

range required so that by an appropriate rotation of each

of the antennae the resulting network becomes strongly

connected.
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Antenna Orientation Problem: Distances

• Given n (identical) sensors in the plane with omnidirectional

antennae, the optimal range can be computed in polynomial

time.

r

• Why?

• Try all possible (at most n2) distances.
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Antenna Orientation Problem: MST

• The sensors already form an omnidirectional network.

r

r

• Actually, the longest edge of the MST is the optimal range.

• Why?
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Antenna Orientation Problem: Angle (1/2)

• Given a directional antenna with angle α.

r

r1
α

• What is the minimum radius r1 to create a strongly connected

network?
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Antenna Orientation Problem: Angle (2/2)

• Given a directional antenna with angle β.

r1

α

r r2

β

• What is the minimum radius r2 to create a strongly connected

network?
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Upper Bound
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Optimal Range Orientation (1/3)

• What is the minimum angle necessary to create a strongly

connected network if the range of the directional antennae is

the same as the omnidirectional antenna?

• Consider an MST T on the set of points.

• If the maximum degree of T is 6, by a simple argument we can

find an MST with the same weight and maximum degree 5.
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Optimal Range Orientation (2/3)

• If the proximity graph is not connected, then clearly no

orientation of the sectors that defines a strongly connected

transmission graph can be found.

• If the proximity graph is connected, consider a MST.

• Since the edge costs are Euclidean, each node on this spanning

tree has degree at most 5.
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Optimal Range Orientation (3/3)

• For each node u, there are two consecutive neighbors v, w in

the spanning tree so that the angle ∠(vuw) is at least 2π/5.

α

u

v

w

• Theorem 2. There exists an orientation of the directional

antennae with optimal range when the angles of the antennae

are at least 8π/5.
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Antenna Orientation With Approximation Range

• Theorem 3. (Caragiannis et ala.) There exists a polynomial

time algorithm that given an angle ϕ with π ≤ ϕ < 8π/5 and a

set of points in the plane, computes a strong orientation with

radius bounded by 2 sin(ϕ/2) times the optimal range.

aCaragiannis, Kaklamanis,Kranakis, Krizanc and Wiese. Communication in

Wireless Networks with Directional Antennae. 2008
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Proof (1/10)

• Consider a Minimum Spanning Tree on the Set of Points.

r(MST )
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Proof (2/10)

• Let r∗(ϕ) be the optimal range when the angle of the antennae

is at most ϕ.

• Let r(MST ) be the longest edge of the MST on the set of

points.

• Observe that for ϕ ≥ 0, r∗(ϕ) ≥ r(MST ).
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Proof (3/10)

• Find a maximal matching such that each internal vertex is in

the matching.

• This can be done by traversing T in BFS order.
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Proof (5/10)

• Orient unmatched leaves to their immediate neighbors.

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 34

Proof (6/10)

• Consider a pair of matched vertices
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Proof (7/10)

• Let {u, v} be an edge in the matching.

u
v

• Consider the smallest disks of same radius centered at u and v

that contain all the neighbors of u and v in the MST.
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Proof (8/10)

• Orient the directional antennae at u and v with angle ϕ in such

a way that both disks are covered.

u
v

ϕ

ϕ

• What is the smallest radius necessary so that the union of the

discs centered at u, v is covered “completely” by the directional

antennae at u, v, respectively?
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Proof (9/10)

• To calculate this smallest radius necessary to cover both disks,

consider the triangle uvw.

u
v

ϕ

w

r

• What is an upper bound on r?

• Observe that without loss of generality we can assume

|uv| = |uw| = 1.
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Proof (10/10)

• Recall the trigonometric identity

sin(α) =

√
1− cos(2α)

2
(1)

• From the law of cosines we can determine an upper bound on r.

r ≤
√
|uv|2 + |uw|2 − 2|uv||uw| cos(2π − ϕ)

=
√

2− 2 cos(2π − ϕ) (since |uv| = |uw| = 1)

= 2 sin( 2π−ϕ
2 ) (by Equation (1))

= 2 sin(π − ϕ/2)

= 2 sin(ϕ/2)
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Lower Bound
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Related Work

• When the angle is small, the problem is equivalent to the

bottleneck traveling salesman problem (BTSP) of finding the

Hamiltonian cycle that minimizes the longest edge.

• A 2-approximation (on the antenna length) is given by Parker

and Rardina.

• For which angles are the two problems equivalent?

aParker and Rardin. Guaranteed performance heuristics for the bottleneck

traveling salesman problem. 1984

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 41

Complexity

• HCBPG

Hamiltonian Circuit Bipartite Planar Grid:

– Input: Bipartite planar grid graph G of degree at most 3.

– Output: Does G have a Hamiltonian circuit?

• HCBPG is NP-Completea.

• By reduction to the problem HCBPG, it can be proved that the

problem is NP-Complete when the angle is less than π/2 and

an approximation range less than
√

2 times the optimal range.

• We can prove something stronger.

aItai, Papadimitriou, and Szwarcfiter. Hamilton Paths in Grid Graphs. 1982
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Computational Complexity

• Theorem 1 (Caragiannis et ala.) Deciding whether there

exists an orientation of one antenna at each sensor with angle

less that 2π/3 and optimal range is NP-Complete. The

problem remains NP-complete even for approximation range

less than
√

3 times the optimal range.

• By reduction to the problem of finding Hamiltonian circuit in

bipartite planar graphs of maximum degree 3. b

• Given a bipartite planar graph G = (V0 ∪ V1, E) of degree ≤ 3

with n nodes, we construct an ε-hexagon graph H (together

with its embedding) which has a hamilton circuit if and only if

G has a hamilton circuit.

aCaragiannis, Kaklamanis,Kranakis, Krizanc and Wiese. Communication in

Wireless Networks with Directional Antennae. 2008
bItai, Papadimitriou, and Szwarcfiter. Hamilton Paths in Grid Graphs. 1982
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Main Idea: ε-Hexagon Graphs

• Let ε > 0. An ε-hexagon graph G = (V,E) is a bipartite planar

graph of maximum degree 3 which has an embedding on the

plane with the following properties:

1. Each node of the graph corresponds to a point in the plane.

2. The euclidean distance between the points corresponding to

two nodes v1, v2 of G is in [1− ε, 1] if (v1, v2) ∈ E and larger

than
√

3− 3ε otherwise.

3. The angle between any two line segments corresponding to

edges adjacent to the same node of G is at least 2π/3− ε/2.

• An ε-hexagon graph is the proximity graph for an instance of

the problem and any orientation of sector of radius 1 and angle

φ = 2π/3− ε that induces a strongly connected transmission

graph actually corresponds to a hamiltonian circuit of the

proximity graph, and vice versa.
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Meta Vertices/Edges

• (Meta vertex:) Replace every vertex by a diamond (three

hexagons)

e1

e2

e3

• (Meta edge:) Replace every edge by a necklace (path of

hexagons)

e′1 e′2
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Hamiltonian Paths

• The meta vertices and necklaces have the following

Hamiltonian paths.

e1

e2

e3

e′1 e′2

e′1 e′2
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Necklaces, Cross and Return Paths (Examples)

• Top to bottom: 1) Orientation of a necklace, 2) cross path, 3)

return path, and 4) representation of the necklace using

irregular hexagons of sides between 0.95 and 1 and with angles

between sides from 115o to 125o.
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Diamonds and Necklaces

• Left to Right: A diamond (left) and its connection to necklaces

when it corresponds to a node of V0 (middle) or V1 (right).
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Embedding

• A bipartite planar graph of maximum degree 3, its embedding

on the rectangular grid, and corresponding ε-hexagon graph.
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Summary

• We can summarize known antenna angle/range tradeoffs as

follows:

Angle Approximation Complexity Reference

φ < 2π
3

√
3− ε NP-C This talk

π
2 ≤ φ ≤ 2π

3 4 cos(φ/2) + 3 Polynomial To appear

2π
3 ≤ φ ≤ π 2 cos(φ/2) + 2 Polynomial To appear

2π
3 ≤ φ ≤ 4π

3 2 sin(φ/2) Polynomial This talk

4π
3 ≤ φ 1 (optimal) Polynomial To appear
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Antenna Orientation

Problem in 3D Space
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Sensors in 3D Space

• Due to the fact that sensors may lie in distinct altitudes, the

previous algorithms do not work correctly in 3D space.

• We model an antenna in 3D space with solid angle Ω as a

spherical sector of radius one.

• An omnidirectional antenna has solid angle 4π.
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Sensors in 3D Space

• The apex angle θ of a spherical sector (with solid angle Ω)

is the maximum planar angle between any two generatrices of

the spherical sector.

θ

• Their relation is given by Archimedes formula

Ω = 2π(1− cos θ)
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Complexity of the Antenna Orientation Problem in 3D Space

• Theorem 4. Deciding whether there exists a strong

orientation when each sensor has one directional antenna with

solid angle less than π and optimal range is NP-Complete.a

aE. Kranakis, D. Krizanc, A. Modi, O. Morales Ponce. Connectivity Trade-

offs in 3D Wireless Sensor Networks Using Directional Antennae. In proceedings

of IPDPS 2011, May 16-20, 2011.
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Proof

• Consider a set S of n points in the plane.

• From Archimedes relation, any plane that cuts the coverage

area of any 3D directional antennae through the apex with

angle Ω has plane angle that satisfies cos(θ) ≤ 1− Ω
2π .

• Therefore θ < 2π/3 if and only if Ω < π.

• A strong orientation of the directional antennae with angle less

than 2π/3 in 2D implies a strong orientation of directional

antennae with angle less than π in 3D.

• The opposite is also true.
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Tammes’ Radius

• The Tammes radius is the maximum radius of n equal

non-overlapping circles on the surface of the sphere.

α
Rn

• We denote it by Rn.
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Kissing Number and Tammes’ Radius

• The Kissing number is the number of balls of equal radius that

can touch an equivalent ball without any intersection,
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Kissing Number and Tammes’ Radius

• In particular, the Tammes’ Radius is equivalent to the kissing

number when all the balls have the same radius.

• The maximum degree of an MST is equal to the kissing

number.

• In 3D it is 12.
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Optimal Range Orientation in the Space

• Theorem 5. There exists an orientation of the directional

antennae in 3D with optimal range when the solid angles of the

antennae are at least 18π/5.
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Proof (1/4)

• Let T be an MST on the points.

• Let Bp be the sphere centered at p of minimum radius that

covers all the neighbors of p in T .

• For each neighbor u of p in T , let u′ be the intersection point of

Bp with the ray emanating from p toward u
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Proof (2/4)

• Thus, we have an unit sphere with at most 12 points.

• Compute the Delauney Triangulation on the points of the

sphere.

• Orient the antenna in opposite direction of the center of largest

triangle.
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Proof (3/4)

• Observe that every edge of the Delaunay Triangulation has

length at least twice the Tammes’ Radius R12 = sin 63o26
2 .

• Thus, every triangle is greater than the equilateral triangle of

side 2R12.

2R12

a

a

2π/3

a

2R12

2R12
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Proof (4/4)

• It follows that

R12 = sin

(
63o26′

2

)
a = R12/

√
3

α ≤ arcsin(a)

• and therefore

Ω ≥ 4π − 2π(1− cos(α))

= 2π(1 + cos(α))

= 2π

(
1 + cos

(
arcsin

(
2R12√

3

)))
≥ 18π

5
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Antenna Orientation With Approximation Range

• Theorem 6. Given a solid angle ϕ with 2π ≤ ϕ < 18π/5 and a

set of points in the space, there exists a polynomial time

algorithm that computes a strong orientation with radius

bounded by

√
Ω(4π−Ω)

π times the optimal range.
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Proof (1/3)

• Let T be the MST on the set of points.

• Consider a maximal matching such that each internal vertex is

matched.

• Orient unmatched leaves to their immediate neighbors.

• Let {u, v} be an edge in the matching. Consider the smallest

sphere of same radius centered at u and v that contain all the

neighbors of u and v in the MST.
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Proof (2/3)

• Orient the directional antennae at u and v with plane angle 2θ

in such a way that both spheres are covered.

v u
2θ

2θ

w
r
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Proof (3/3)

• From the law of cosine we can determine r.

• Let θ be the apex angle of Ω.

• Observe that

r =
√
|uv|2 + |uw|2 − 2|uv||uw| cos(2θ)

≤
√

2− 2 cos(2θ)

= 2 sin(θ)

= 2
√

1− cos2(θ)

= 2
√

1− (1− Ω
2π )2

=

√
Ω(4π−Ω)

π
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Summary of the Antenna Orientation Problem

2D 3D

Angle Range Solid Angle Range

ϕ < 2π
3 NP-C Ω < π NP-C

2π
3 ≤ ϕ < π Open π ≤ Ω < 2π Open

π ≤ ϕ < 8π
5 2 sin(ϕ/2) 2π ≤ Ω < 18π

5

√
Ω(4π−Ω)

π

ϕ ≥ 8π
5 1 Ω ≥ 18π

5 1
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