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Some Ideas

on Coverage and Routing
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Outline

• Coverage

– Static case

– Dynamic case

• Routing

– Stretch factor
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Coverage: Static Case
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Outline

• How do you replace omnidirectional antennae with directional

antennae?

• What are the range/angle/coverage tradeoffs?
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From Omnidirectional to Directional Antennae (1/4)

• Should we consider two points at a time?

• What is the appropriate range for directional antennae?
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• Distance and Angle Matter!
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Omnidirectional to Directional (2/4)

• Should we consider two points at a time?

• What is the appropriate range for directional antennae?
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• Distance and Angle Matter!
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Omnidirectional to Directional (3/4)

• Should we consider three points at a time?

• What is the appropriate range for directional antennae?
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• Distance and Angle Matter!
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Omnidirectional to Directional (4/4)

• Should we consider four points at a time?

• What is the appropriate range for directional antennae?
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• Distance and Angle Matter!
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Coverage: Dynamic Case
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Outline

• Antennae themselves may rotate

• Antennae rotate at a constant speed

• How do you cover a given domain under continuous rotation?
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On a Line

• n directional antennae on a line rotate at constant identical

speeds

• What are the angle/range tradeoffs?
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Two Directional Antennae

• 2 antennae rotate at constant identical speeds

• What is the min angle required to cover the whole plane?
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Three Directional Antennae

• 3 antennae rotate at constant identical speeds
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• What is the min angle required to cover the whole plane?
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Four Directional Antennae

• 4 antennae rotate at constant identical speeds

• What is the min angle required to cover the whole plane?
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Antennae in Convex Position

• n antennae (in convex position) rotate at constant identical

speeds

• What is the min angle required to cover the whole plane?
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Routing
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Graphs of Directional Antennae

• Consider a set P of n points in the plane and assume that the

Unit Disk Graph U := U(P, 1) (with radius 1) is connected.

• Consider (φ, r)-directional antennae of angle φ and radius r ≥ 1

and assume that k such antenna can be placed per point p ∈ P ,

for some k ≥ 1.

• Let G(k, φ, r) be the class of all possible directed strongly

connected graphs arising under all possible rotations of the

antennae.

• Note that G(k, φ, r) may be empty for a given integer k ≥ 1,

angle φ and radius r.

• Similarly, since there is always a MST of max degree at most 5

on the set P of points it is easy to see that G(5, 0, 1) 6= ∅.
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Connectivity Range: Problem

• Given angle φ the connectivity range r(φ) is the smallest radius

r > 0 such that there is an orientation of (φ, r)-antennae on the

set P of points which results in a strongly connected graph, i.e.,

r(k, φ) := min{r > 0 : G(k, φ, r) 6= ∅}.

• An algorithm A which rotates the antennae so that the

resulting graph is strongly connected produces a graph, say

GA, such that GA ∈ G(k, φ, r), for some r ≥ 1.

• Let rA(k, φ) be the radius of the antennae used in GA.
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Connectivity Range

• Consider the class A(k, φ, P ) of all such orientation algorithms

on the set P of points above.

Problem 1 We are given a set P of n points in the plane such

that the Unit Disk Graph U := U(P, 1) is connected. Let φ ≥ 0

be any angle and k ≥ 1 an integer.

1. Give an algorithm A ∈ A(k, φ, P ) for orienting the antennae

and which achieves the optimal range r(k, φ) for antennae

of angle φ.

2. If there is no algorithm attaining the optimal range, then

give an algorithm A ∈ A(k, φ, P ) which attains the best

approximation to r(k, φ).
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(Hop) stretch factor

• For any graph G on the set P of points and any two points

s, t ∈ P let dG(s, t) denote the (hop) distance between s and t.

• The (φ, r)-antenna (hop) stretch factor of a graph

G ∈ G(k, φ, r) is defined by

σG(φ, r) := max

{
dG(s, t)

dU (s, t)
: s 6= t

}
,

where dU (s, t) is the hop distance between s, t in the graph U .

• The (φ, r)-antenna (hop) stretch factor for k antennae per

point is defined by

σ(k, φ, r) := min {σG(φ, r) : G ∈ G(k, φ, r)}
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(Hop) stretch factor

• Clearly, σ(k, φ, r) = +∞ when G(k, φ, r) = ∅. The φ-antenna

(hop) stretch factor for k antennae per point is defined by

σ(k, φ) := min{σ(k, φ, r) : G(k, φ, r) 6= ∅, for some r ≥ 1}

= min
G∈G(k,φ,r)

max
s6=t

dG(s, t)

dU (s, t)

• An algorithm A which rotates the antennae so that the

resulting graph is strongly connected produces a graph, say

GA, such that GA ∈ G(k, φ, r), for some r ≥ 1.

• Let dA(s, t) be the hop-distance between s, t in the graph GA.
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(Hop) stretch factor

• The stretch factor of algorithm A is defined by

σA(φ) := max
s6=t

dA(s, t)

dU (s, t)
.

• Problem 2 We are given a set P of n points in the plane such

that the Unit Disk Graph U := U(P, 1) is connected. Let φ be

an angle and k ≥ 1 an integer.

1. Give an algorithm A ∈ A(k, φ, P ) for orienting the antennae

and which achieves the optimal stretch factor for antennae

of angle φ.

2. If there is no algorithm attaining the optimal stretch factor,

then give an algorithm A ∈ A(k, φ, P ) which attains the best

approximation to σ(k, φ).
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