## Some Ideas

## on Coverage and Routing

## Outline

- Coverage
- Static case
- Dynamic case
- Routing
- Stretch factor


## Coverage: Static Case

## Outline

- How do you replace omnidirectional antennae with directional antennae?
- What are the range/angle/coverage tradeoffs?


## From Omnidirectional to Directional Antennae (1/4)

- Should we consider two points at a time?
- What is the appropriate range for directional antennae?

- Distance and Angle Matter!


## Omnidirectional to Directional (2/4)

- Should we consider two points at a time?
- What is the appropriate range for directional antennae?

- Distance and Angle Matter!


## Omnidirectional to Directional (3/4)

- Should we consider three points at a time?
- What is the appropriate range for directional antennae?

- Distance and Angle Matter!


## Omnidirectional to Directional (4/4)

- Should we consider four points at a time?
- What is the appropriate range for directional antennae?

(a)

(b)
- Distance and Angle Matter!


## Coverage: Dynamic Case

## Outline

- Antennae themselves may rotate
- Antennae rotate at a constant speed
- How do you cover a given domain under continuous rotation?


## On a Line

- $n$ directional antennae on a line rotate at constant identical speeds

- What are the angle/range tradeoffs?


## Two Directional Antennae

- 2 antennae rotate at constant identical speeds

- What is the min angle required to cover the whole plane?


## Three Directional Antennae

- 3 antennae rotate at constant identical speeds

- What is the min angle required to cover the whole plane?


## Four Directional Antennae

- 4 antennae rotate at constant identical speeds

- What is the min angle required to cover the whole plane?


## Antennae in Convex Position

- $n$ antennae (in convex position) rotate at constant identical speeds

- What is the min angle required to cover the whole plane?


## Routing

## Graphs of Directional Antennae

- Consider a set $P$ of $n$ points in the plane and assume that the Unit Disk Graph $U:=U(P, 1)$ (with radius 1 ) is connected.
- Consider $(\phi, r)$-directional antennae of angle $\phi$ and radius $r \geq 1$ and assume that $k$ such antenna can be placed per point $p \in P$, for some $k \geq 1$.
- Let $\mathcal{G}(k, \phi, r)$ be the class of all possible directed strongly connected graphs arising under all possible rotations of the antennae.
- Note that $\mathcal{G}(k, \phi, r)$ may be empty for a given integer $k \geq 1$, angle $\phi$ and radius $r$.
- Similarly, since there is always a MST of max degree at most 5 on the set $P$ of points it is easy to see that $\mathcal{G}(5,0,1) \neq \emptyset$.


## Connectivity Range: Problem

- Given angle $\phi$ the connectivity range $r(\phi)$ is the smallest radius $r>0$ such that there is an orientation of $(\phi, r)$-antennae on the set $P$ of points which results in a strongly connected graph, i.e.,

$$
r(k, \phi):=\min \{r>0: \mathcal{G}(k, \phi, r) \neq \emptyset\} .
$$

- An algorithm $A$ which rotates the antennae so that the resulting graph is strongly connected produces a graph, say $G_{A}$, such that $G_{A} \in \mathcal{G}(k, \phi, r)$, for some $r \geq 1$.
- Let $r_{A}(k, \phi)$ be the radius of the antennae used in $G_{A}$.


## Connectivity Range

- Consider the class $\mathcal{A}(k, \phi, P)$ of all such orientation algorithms on the set $P$ of points above.

Problem 1 We are given a set $P$ of $n$ points in the plane such that the Unit Disk Graph $U:=U(P, 1)$ is connected. Let $\phi \geq 0$ be any angle and $k \geq 1$ an integer.

1. Give an algorithm $A \in \mathcal{A}(k, \phi, P)$ for orienting the antennae and which achieves the optimal range $r(k, \phi)$ for antennae of angle $\phi$.
2. If there is no algorithm attaining the optimal range, then give an algorithm $A \in \mathcal{A}(k, \phi, P)$ which attains the best approximation to $r(k, \phi)$.

## (Hop) stretch factor

- For any graph $G$ on the set $P$ of points and any two points $s, t \in P$ let $d_{G}(s, t)$ denote the (hop) distance between $s$ and $t$.
- The $(\phi, r)$-antenna (hop) stretch factor of a graph $G \in \mathcal{G}(k, \phi, r)$ is defined by

$$
\sigma_{G}(\phi, r):=\max \left\{\frac{d_{G}(s, t)}{d_{U}(s, t)}: s \neq t\right\}
$$

where $d_{U}(s, t)$ is the hop distance between $s, t$ in the graph $U$.

- The ( $\phi, r$ )-antenna (hop) stretch factor for $k$ antennae per point is defined by

$$
\sigma(k, \phi, r):=\min \left\{\sigma_{G}(\phi, r): G \in \mathcal{G}(k, \phi, r)\right\}
$$

## (Hop) stretch factor

- Clearly, $\sigma(k, \phi, r)=+\infty$ when $\mathcal{G}(k, \phi, r)=\emptyset$. The $\phi$-antenna (hop) stretch factor for $k$ antennae per point is defined by

$$
\begin{aligned}
\sigma(k, \phi) & :=\min \{\sigma(k, \phi, r): \mathcal{G}(k, \phi, r) \neq \emptyset, \text { for some } r \geq 1\} \\
& =\min _{G \in \mathcal{G}(k, \phi, r)} \max _{s \neq t} \frac{d_{G}(s, t)}{d_{U}(s, t)}
\end{aligned}
$$

- An algorithm $A$ which rotates the antennae so that the resulting graph is strongly connected produces a graph, say $G_{A}$, such that $G_{A} \in \mathcal{G}(k, \phi, r)$, for some $r \geq 1$.
- Let $d_{A}(s, t)$ be the hop-distance between $s, t$ in the graph $G_{A}$.


## (Hop) stretch factor

- The stretch factor of algorithm $A$ is defined by

$$
\sigma_{A}(\phi):=\max _{s \neq t} \frac{d_{A}(s, t)}{d_{U}(s, t)}
$$

- Problem 2 We are given a set $P$ of $n$ points in the plane such that the Unit Disk Graph $U:=U(P, 1)$ is connected. Let $\phi$ be an angle and $k \geq 1$ an integer.

1. Give an algorithm $A \in \mathcal{A}(k, \phi, P)$ for orienting the antennae and which achieves the optimal stretch factor for antennae of angle $\phi$.
2. If there is no algorithm attaining the optimal stretch factor, then give an algorithm $A \in \mathcal{A}(k, \phi, P)$ which attains the best approximation to $\sigma(k, \phi)$.
