
Neighbor Discovery in a Sensor Network with
Directional Antennae

Jingzhe Du1, Evangelos Kranakis2, Oscar Morales Ponce3, and Sergio Rajsbaum4

1 School of Computer Science, Carleton University, K1S 5B6, Ottawa, Ontario, Canada.
Research supported in part by NSERC.

2 School of Computer Science, Carleton University, K1S 5B6, Ottawa, Ontario, Canada.
Research supported in part by NSERC and MITACS grants.

3 School of Computer Science, Carleton University, K1S 5B6, Ottawa, Ontario, Canada.
Research supported in part by Conacyt and NSERC.
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Abstract. Consider a network of n directional antennae in the plane.
We consider the problem of efficient neighbor discovery in a (synchronous)
network of sensors employing directional antennae. In this setting sensors
send messages and listen for messages by directing their antennae towards
a specific direction (which is not necessarily known in advance). In our
model the directional antennae can be rotated by the sensors as required
so as to discover all neighbors in their vicinity. In this paper we will limit
ourselves to the (D,D) communication model whereby sensors employ
directional antennae with identical transmission/reception beam widths.
Our methodology is based on techniques for symmetry breaking so as
to enable sender/receiver communication. We provide 1) deterministic
algorithms that introduce delay in the rotation of the antennae and
exploit knowledge of the existence of a vertex coloring of the network,
and 2) randomized algorithms that require knowledge only of an upper
bound on the size of the network so as to accomplish neighbor discovery.
In both instances we study tradeoffs on the efficiency of the algorithms
proposed.
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1 Introduction

Directional antennae are known to reduce energy consumption because they
can reach further for the same amount of energy consumed. However, unlike
sensors with omnidirectional antennae sensors with directional antennae take
longer to discover their neighbors. This is due to the fact that although sensors
may be within transmission range the sender (respectively, receiver) sensor may
not necessarily be located within the given sector determined by the beaming
antenna of the transmitting sensor. This raises the question of what algorithms
to employ so as to attain efficient communication (e.g., routing, broadcasting,
etc.) using only directional antennae. This approach can be particularly beneficial
in delay tolerant sensor networks, for example, whereby sensors may be able to



take advantage of opportunistic appearances of sensors due to mobility and other
factors.

For a given radius r > 0, assume that a given sensor, say S, can reach all
other sensors within the disc having centre S and radius r. There are several
directional antenna models, but for our study it will suffice to consider the
following directional antenna model. We assume that either 1) the sensors are
standing on a swivel and can rotate in any desired direction or 2) the sensors’
coverage area can be divided into non-overlapping sectors that can be activated
by an antenna switch so as to reach other sensors within a particular region.
It is clear that in the former mode of operation the rotation of the antenna
is continuous around the circle while in the latter the circular sectors are in
discrete predefined sectors around the circle. We will not elaborate further in
this paper the differences and similarities between these two modes of operation
for directional antennae.

1.1 Preliminaries and notation

In this subsection we discuss several related antenna models that are related to
our study.

Communication Models with Directional Antennae. Several communica-
tion models are possible for a pair of sensors with omnidirectional and directional
antennae. Consider the pair (X,Y ), where the first parameter X indicates the
capability of the sender sensor and the second parameter Y the capability of
the receiver sensor. To be more precise, X,Y may take either of the values O,D,
where O means omnidirectional and D directional antenna. Thus, the (X,Y )
communication model for a pair of communicating sensors means that the sender
uses antenna of type X and the receiver of type Y . We also assume a duplex
communication model whereby sensors can send and receive messages at the
same time ignoring collisions. It is clear from the previous discussion that

– in the (O,O) model two sensors can communicate if they are within trans-
mission range of each other,

– in the (D,O) (respectively, (O,D)) model, the sender (respectively, receiver)
must turn its antenna so as to reach its neighbor, and

– in the (D,D) model both sender and receiver must direct their antennae
towards each other at the same time.

More specifically, in all four models the sensors must be within range of each
other so as to communicate. However, in the (D,O) and (O,D) models the sensor
with the directional antenna must also turn its antenna toward the other sensor,
while in the (D,D) model both sensors’ antennae must face against each other.
Therefore it follows that (D,D) is the weakest and (O,O) is the strongest among
the four communication models.

More general models are also possible whereby a sensor’s transmission beam
width is not necessarily the same with its reception beam width. To simplify
notation and terminology, in this paper we will limit ourselves to the (D,D)
communication model with identical transmission/reception beam widths. Our
results generalize without much difficulty to this more general setting.



The neighbor discovery process usually entails the exchange of identities (e.g.,
MAC addresses) between two adjacent nodes. It will not be necessary to go into
the details of such an exchange and for our purposes it will be sufficient to assume
that this is a one step process whereby one sensor sends its identity and the other
acknowledges by sending back its own. Throughout this paper we will assume
that the sensors have distinct identities but their corresponding locations (i.e.,
(x, y)-coordinates) in the plane are not known to each other.

Antenna Models. The transmission area of an omnidirectional antennae is
modelled by a circular disk in the plane while the transmission area of a directional
antennae is modelled by a circular sector in the disk. We assume that sensors
have the capability to rotate their directional antenna and change sectors. so as
to establish communication.

Consider a set of n sensors in the plane. Each sensor u is equipped with a
directional antenna having beam width φu. Further we will assume that φu = 2π

ku
,

for some integer ku.5 In particular, if ku = 1 then we have an omnidirectional
antenna at u. The sensors are synchronous and can rotate their antennae counter-
clockwise (see Figure 1). Assume that the UDG formed by the sensors is connected

u
φ

u

Fig. 1: An antenna at u rotating counter-clockwise.

and c-colorable, i.e., there is a coloring of its vertices χ : V → {0, 1, . . . , c− 1}
such that if sensors u, v are adjacent in the UDG then u and v have different
colors, i.e., χ(u) 6= χ(v). Observe any “integer based” identity scheme, e.g., the
n sensors are numbered 0, 1, 2, . . . , n− 1, that provides different numbering to
different sensors satisfies this property (albeit it is not efficient).

1.2 Related Work

There are protocols using directional antennas in neighbor discovery processes. In
[4], the authors proposed the gradual increase of directional communication range
levels for neighbor discovery purposes. Nearby neighbors are discovered first and
faraway neighbors will be discovered at later stages. Directional transmission
and reception are used in this work. In [5], a direct discovery protocol and a
gossip based neighbor discovery protocol using directional antennas in a static

5 It turns out that this assumption is not required for the subsequent results; we use it
because it makes the proofs simpler.



wireless network were proposed. During direct discovery process, a node discovers
a neighbor node only when information is received from this neighbor, while
nodes exchange their neighbors’ location information to enable faster discovery in
gossip based algorithm. The protocol tries to optimize the discovery probability
in a randomized neighbor discovery process using directional transmission and
reception. In [1], a neighbor discovery protocol which considers node movements
was proposed where directions with less possibility of discovering new nodes will be
bypassed during neighbor scanning and neighbor discovery frequency is adjusted
according to node mobility. It uses directional antenna for transmissions and
omnidirectional antenna for receptions. In [6], two Scan Based Algorithms (SBA-
D, SBA-R) and one Completely Random Algorithm (CRA-DD) were proposed,
which use only directional antennae. In SBA-D, a node decides whether to scan or
listen depending on node ID, while a node transmits at one direction or receives at
the opposite direction with probability 1

2 in SBA-R. SBA-D and SBA-R algorithms
require perfectly synchronized antenna rotation direction, time and instantaneous
antenna rotation to any direction, which are very strong assumptions. In CRA-DD,
at each time slot, nodes decide whether to transmit/receive and which direction
to transmit/receive completely randomly, which is the simplest algorithm one
can imagine and it also requires instantaneous antenna rotation to any direction.
In [3], an analytical model was proposed for synchronized 2D neighbor discovery
protocols. The model is based on directional transmission and directional reception
and a node transmits in one direction and receives in the opposite direction
simultaneously.

1.3 Outline and results of the paper

In this paper, we propose novel neighbor discovery algorithms in a (D,D) com-
munication model whereby sensors employ directional antennae with identical
transmission/reception beam widths and each sensor has only one directional
antenna. Our methodology is based on techniques for symmetry breaking so as to
enable sender/receiver communication. We provide 1) deterministic algorithms
that introduce delay in the rotation of the antennae and exploit knowledge of
the existence of a vertex coloring of the network, and 2) randomized algorithms
that require knowledge only of an upper bound on the size of the network so as
to accomplish neighbor discovery. In both instances we study tradeoffs on the
efficiency of the algorithms proposed. Through experimentation, we also show
that the algorithms achieve desirable neighbor discovery delays with efficiency in
energy consumption. Details can be found in the full version of the paper [2].

The rest of the paper is organized as follows. Deterministic algorithms on
neighbor discovery are presented in Section 2. As an alternative scenario, Section 3
gives out the randomized algorithm and its analysis. We conclude with possible
future directions in Section 4.

2 Deterministic Algorithms for Neighbor Discovery

In this section we give algorithms for neighbor discovery in the (D,D) communi-
cation model and analyze their complexity. First we give a simple lower bound
that indicates the complexity of the neighbor discovery problem.



In all the results below as measure of complexity for neighbor discovery we
will use the time required for sensors to discover each other and we will ignore
collisions during simultaneous transmissions. For two sensors, this is the number
of steps until the first successful send/receive exchange. For a sensor network,
this is the minimum for any algorithm taken over the maximum time required
for any two adjacent sensors in the network to communicate.

2.1 Lower bound

In a setting whereby two adjacent sensors know each other’s location all they
need to do is turn their antennae towards each other in the specified locations.
Therefore the observation below is useful when sensors do not know each other’s
location.

Theorem 1. Consider two sensors u, v within communication range of each
other and respective antenna beam widths 2π

ku
and 2π

kv
, respectively. If the sensors

do not know each other’s location then any algorithm for solving the neighbor
discovery problem in the (D,D) communication model requires at least Ω(kukv)
time steps.

Proof. For a successful communication to occur each sensor must be within the
beam of the other sensor’s antenna at the same time. Since the sensors do not
know each other’s location they must attempt transmissions in all their respective
sectors. This completes the proof of Theorem 1.

2.2 Antenna rotation algorithms

Given these preliminary definitions we consider the following class of antenna
rotation algorithms. For each sensor u, let du be an integer delay parameter and
ku be defined so that φu = 2π

ku
. Given u, du, ku the sensor executes the following

algorithm.

Algorithm 1: Antenna Rotation Algorithm ARA(du, ku)

1 Start at a given orientation;
2 while true do
3 for i← 0 to du − 1 do

//For du steps stay in chosen sector
4 Send message to neighbor(s);
5 Listen for messages from neighbor(s) (if any);
6 Rotate antenna beam one sector counter-clockwise;

//rotate by an angle equal to φu

Remarks and Observations on the ARA Algorithm. There are several
issues concerning interpretations of the execution of the rotation algorithm which
are worth discussing.



– In Step 1 the initial antenna orientation is selected. There are many consistent
ways to define this but for simplicity in this paper it is taken to be the bisector
of the angle which defines the antenna beam. Also, if the sensors are equipped
with a compass then we may assume that they all start with identical
orientations, say East (see Figure 2a). Otherwise, the initial orientation may

u

North

South

West East

(a) An antenna at u with sectors
counted counter-clockwise.

u

φ
u

φ
v

v

(b) Neighbor discovery for sensors u, v.

Fig. 2: Directional antennae.

be chosen in an arbitrary manner. It turns out that our analysis is valid in
this more general setting.

– The main neighbor discovery algorithm is executed in Step 2. We are interested
in measuring the number of steps until all (available) neighbors are discovered.
For the duplex communication model being considered here, it is clear that
two sensors u, v will be able to discover each other if (see Figure 2b)
1. each sensor is within each other’s range, and
2. the corresponding antennae of the two sensors are oriented so that each

sensor is within the other sensor’s beam at the same time.
These are the basic requirements we employ in order to prove the correctness
and running time of our algorithm.

– In Step 3, the algorithm imposes a rotation delay, i.e., for du (equal to
the delay imposed) steps the sensor sends messages and also listens for



messages from neighbors. The delay imposed in Step 3 is required so as to
break symmetry and ensure that neighboring sensors’ antennae are within
each other’s beam range and will eventually communicate using the (D,D)
communication model. There are several possibilities here. The sensor may
elect to send/receive messages 1) at each step during the delay interval
[0, du − 1], 2) select a time within the delay interval [0, du − 1] at random. In
our analysis we will assume the former.

– Step 6 involves rotation of the antenna by φu which is also equal to the beam
width of the antenna. This ensures that after each rotation a new region
(located counter-clockwise from the old region) is covered. Several possibilities
exist, for example 1) allow overlap between the new and old antenna beaming
location, 2) select the new antenna beaming location at a sector chosen at
random among the ku possible sectors in the disk.6

2.3 Complexity of deterministic antenna orientation algorithm

Now we consider the complexity of the various antenna orientation algorithms.
Assume the sensor network is synchronous. Recall our basic assumption that
there is a coloring χ : V → {0, 1, . . . , c− 1} of the vertices of the sensor network
using c colors. Table 1 summarizes the results of this section.

Antenna at u Knowledge Running Time Theorems

2π/k Identical O(kc−1) Theorem 2
2π/k Identical O(k(c ln c)3) Theorem 3

Table 1: List of theorems and running times of deterministic algorithms.

The simplest possible delay model is for a sensor to wait “sufficient amount
of time” so as to send to (receive from) the desired node.

However, there are choices of delay under which sensors with directional
antennae will never be able to communicate as illustrated in Figure 3.

Example 1. Assume the antenna beam width is 2π
4 = π

2 and the four sectors are
labelled 0, 1, 2, 3. Both sensors depicted in Figure 3 start beaming East. Sensor u
employs delay du = 2 and sensor v delay dv = 1. Sensors can communicate only
if u’s antenna faces East and v’s antenna faces West at the same time. Observe
that sensor u faces East only at time t = 0, 1, 8, 9, 16, 17, . . . while sensor v faces
West only when t = 2, 6, 10, . . .. Therefore u, v can never communicate.

The previous example indicates that sensor delays must be chosen judiciously
so as to enable communication. The first theorem considers the simplest model
whereby a sensor delays the rotation of its antenna sufficient time so as to allow
all its neighbors’ antennae to perform a complete rotation.

6 The point of these assumptions is to consider collision models. In this paper we
assume that the sensors send/receive messages at each step during the delay interval.
Further, if we were to analyze a collision model we would have to assume that the
corresponding intervals of adjacent nodes are disjoint.
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Fig. 3: Neighbor discovery for sensors u, v is not possible.

Theorem 2. Consider a set of sensors in the plane with identical antenna beam
widths equal to φ = 2π

k . For each sensor u let the delay be defined by du := kχ(u).
If each sensor u executes algorithm ARA(du, k) then every sensor in the network
will discover all its neighbors in at most kc−1 time steps.

Proof. Consider two adjacent sensors u, v. Clearly, χ(u) 6= χ(v) since they must
have different colors. By assumption, du = kχ(u) and dv = kχ(v). Without loss of
generality assume that χ(u) < χ(v). Observe that for each chosen sector the sensor
v beams its antenna in this sector for kχ(v) steps. But kχ(v) = kχ(v)−χ(u)kχ(u)

and hence kχ(v) is a multiple of kχ(u). In particular, while sensor v waits in a
given sector the other sensor u will execute kχ(v)−χ(u) rotations around the circle
before returning to its original sector. It follows that sensors u, v will discover
each other within the specified number of steps. This completes the proof of
Theorem 2.

The running time of the algorithm depends on the coloring being used in The-
orem 2. If no knowledge on the network is available then any integer identity
scheme will work, however this will typically be of size Ω(n) thus giving an
exponential running time kΩ(n). If the sensor network is bipartite (e.g., tree)
then it is easy to see that c = 2 is sufficient. For random UDGs with range at the
connectivity threshold the number of colors required is c = Θ(log n) in which case
the running time of the algorithm is about klogn = nlog2 k, which is polynomial
in n with exponent log2 k (In many applications a typical value of k is 6.)

Nevertheless we would be interested to provide algorithms with running time
not dependent on the size n of the network but rather on the number of colors of
a vertex coloring. Indeed, this is the case as shown by the next theorem.

Theorem 3. Consider a set of sensors in the plane with identical antenna beam
widths equal to φ = 2π

k . Assume the sensor network is synchronous. Suppose that
the delays du at the nodes are chosen so that

1. gcd(k, du) = 1, and du > k, for all u, and
2. if u, v are adjacent then gcd(du, dv) = 1.

If each sensor u executes algorithm ARA(du, k) then every sensor in the network
will discover all its neighbors in at most O

(
k(maxu du)3

)
time steps. In addition,



the delays du can be chosen so that every sensor in the network will discover all
its neighbors in at most O(k(c ln c)3) time steps. In particular, this is at most
O
(
(c ln c)3

)
time steps provided that k ∈ O(1).

Proof. Without loss of generality, in the proofs below we assume that the sensors
can determine a fixed starting antenna sector facing East, say (see Figure 2a).
Proofs carry over to the more general case and the necessary modifications are
omitted. Consider two adjacent sensors u, v. Without loss of generality assume
that

1. sensor u is to the left of sensor v, and
2. that both antennae orientations are initially set to East, say.

First we consider the case when the line segment connecting u to v is horizontal.
Observe that u, v can communicate when v’s antenna is facing West which is
sector bk2 c. Since gcd(du, dv) = 1, by Euclid’s algorithm there exist integers
0 < au < du, 0 < av < dv such that

audu = avdv + 1. (1)

Lets look at sensor u first. Recall that because of the delay constrains of the
algorithm, the sensor stays in the same sector for du steps before it rotates its
antenna. After duk steps sensor u will be in its starting position and, clearly, the
same applies for any time duration that is a multiple of duk. Thus sensor u is
in its initial position (facing East) at time jauduk, for any j > 0. If we multiply
both sides of Equation audu = avdv + 1 by jk we have that

jauduk = javdvk + jk

It follows that at time t = jauduk the sensor at u is facing East. If there is a
j such that jk = bk2 cdv + r for 0 ≤ r < dv, then sensor v is facing West and
therefore the sensors u, v can discover each other. Starting from j = 1, with
k ≤ bk2 cdv, we can find a j such that,

jk ≤ bk
2
cdv < jk + k (2)

which means that jk + k = bk2 cdv + r, with r ≤ k < dv. A simple modification
of the proof will prove the result when the two sensors are not necessarily on a
horizontal line.

The number of rotations required is jauduk, where j satisfies Inequality (2).
Since jauduk ≤ k(maxu du)3 it follows that k(maxu du)3 is an upper bound on
the time required by all pairs of sensors to discover each other.

If k ∈ O(1) (this is a reasonable assumption since in practice k = 6) then we
can satisfy the conditions of Theorem 3 by choosing the dus to be prime numbers.
Since the number of colors is c, we will need c prime numbers (one for each color
class of vertices of the graph). Hence by the prime number theorem the largest
prime needed in order to define the delays {du : u ∈ V } will be in the order of the
c-th prime number, which is in O(c ln c). Therefore every sensor in the network
will discover all its neighbors in at most O

(
(c ln c)3

)
time steps. This completes

the proof of Theorem 3. ut



Theorem 3 can be improved further with only slight modifications in the proof
even in the case where 2π

φ is not necessarily an integer. To this end define k := b 2πφ c.
We can modify algorithm ARA(du, k) to a new algorithm ARA′(du, φ) as follows:
we still have k sectors and we can modify Step 6 in algorithm ARA(du, k) so
that the antenna at u rotates along the corresponding sectors 0, 1, . . . , k− 1 (thus
there is overlap between the new and the old sector). It is easy to prove the
following generalization of Theorem 3.

Theorem 4. Consider a set of sensors in the plane such that the antenna beam
width of sensor u is equal to φ. Define k := b 2πφ c Assume the sensor network is

synchronous. Suppose that the delays du at the nodes are chosen so that

1. gcd(du, k) = 1 and du > k, for all u, and
2. if u, v are adjacent then gcd(du, dv) = 1.

If each sensor u executes algorithm ARA′(du, φ) then every sensor in the network

will discover all its neighbors in at most k (maxu du)
3

time steps. In addition,
the delays du can be chosen so that every sensor in the network will discover all
its neighbors in at most O(k(c ln c)3) time steps. In particular, this is at most
O
(
(c ln c)3

)
time steps provided that k ∈ O(1).

Proof. With some simple modifications, this is identical to the proof of Theorem 3.
Details are left to the reader.

Observe that for a random UDG at the connectivity threshold we have that
c = Θ(lnn) and therefore the running time of the algorithms in Theorems 3 and 4
will be O((lnn ln lnn)3).

3 Randomized Neighbor Discovery Algorithms

In this section we consider several randomized algorithms. The main advantage
of the algorithms in Theorems 5 and 6 is that no a priori knowledge of coloring
or of any proper identity scheme is required; just an upper bound n on the size
of the network. Moreover, the algorithm in Theorem 7 requires only a bound on
the antennae beam widths. Table 2 summarizes the results of this section.

Antenna at u Knowledge Running Time Theorems

2π/k Identical knO(1) Theorem 5
2π/k Identical O(k2 logn) Theorem 6
2π/ku maxu ku ≤ k O(k4 logn) Theorem 7

Table 2: List of theorems and running times of randomized algorithms.

3.1 Deterministic algorithm with selection of random delay

In this algorithm each sensor u selects a random prime number as delay du (in a
range k..R to be specified) and runs the deterministic algorithm ARA(du, k).



Algorithm 2: Randomized Antenna Rotation Algorithm RARA(du, k)

1 Select du ← RANDOMPRIME(k..R);
2 Execute ARA(du, k);

Theorem 5. Consider a set of sensors in the plane such that the antenna beam
width of sensor u is equal to φ = 2π

k . Assume the sensor network is synchronous.

If each sensor u executes algorithm RARA(k;R), where R = nO(1) and n is
an upper bound on the number of sensors, then every sensor in the network
will discover all its neighbors in at most knO(1) expected time steps, with high
probability.

Proof. For every node u, let N(u) denote the neighborhood of u and deg(u) the
degree of u. Further, let D = maxu deg(u) denote the maximum degree of a node
of the sensor network. By the prime number theorem, the number of primes ≤ R
and > k is approximately equal to R

lnR −
k

ln k and therefore the probability that

the primes chosen by two adjacent nodes, say u and v, are different is 1− 1
R

lnR−
k

ln k

.

Let Eu be the event that the prime chosen at u is different from all the primes
chosen by its neighbors. It is easily seen that

Pr[Eu] = 1− Pr[¬Eu]

= 1− Pr [∃v ∈ N(u)(du = dv)]

≥ 1−
∑

v∈N(u)

Pr [du = dv]

≈ 1− deg(u)
1

R
lnR −

k
ln k

≥ 1−D 1
R

lnR −
k

ln k

.

Similarly, we can prove that

Pr

[⋂
u

Eu

]
= 1− Pr

[⋃
u

¬Eu

]
≥ 1−

∑
u

Pr[¬Eu]

≥ 1− nD 1
R

lnR −
k

ln k

≥ 1− 1

n
.

By choosing R in nO(1) and recalling that D ≤ n we see that all the primes
chosen by all the nodes in the network are pairwise distinct, with high probability.
The claim concerning the expected number of time steps follows immediately
from the analysis of the antenna rotation algorithm in Theorem 3. This completes
the proof of Theorem 5.



3.2 Algorithm with random selection of rotation mechanism

In the algorithms below we assume that the antenna beam width of u is equal to
2π
k . In the main algorithm a sensor chooses a “rotation mechanism” between two

given rotation mechanisms independently at random. In the first mechanism, the
antenna cycles k rounds with no sector delay, while in the second the antenna
cycles only one round but with delay k per sector. The two rotation mechanisms
can be described formally as follows.

Algorithm 3: Rotate with no Sector Delay Mech0(k, d)

//Cycle k rounds with no sector delay
1 for j ← 1 to d do
2 for i← 0 to k − 1 do
3 Send message to neighbor(s) in sector i;
4 Listen for messages from neighbor(s) (if any) in sector i;
5 Rotate antenna one sector;

Algorithm 4: Rotate with Delay k per Sector Mech1(k, d)

//Cycle one round with delay k per sector
1 for i← 0 to k − 1 do
2 for j ← 0 to d do
3 Send message to neighbor(s) in sector i;
4 Listen for messages from neighbor(s) (if any) in sector i;
5 Rotate antenna one sector;

Algorithm 5: Random Selection Rotation Mechanism Algorithm
RSRMA(k)

//Choose rotation mechanism at random.
1 Select bit← RANDOM({0, 1});
2 if bit = 0 then Execute Mech0(k, k) ;
3 if bit = 1 then Execute Mech1(k, k) ;

Thus algorithm RSRMA(u, k) selects the rotation mechanism at random.
We can prove the following theorem.

Theorem 6. Consider a set of n sensors in the plane with identical antenna
beam width equal to φ = 2π

k . Assume the sensor network is synchronous. If each
sensor u executes algorithm RSRMA(u; k) for O(log n) times then every sensor
in the network will discover all its neighbors in at most O(k2 log n) expected time
steps, with high probability.

Proof. The proof of correctness is not difficult. The sensor flips a coin. If the
outcome is bit = 0 (Step 2) then it rotates the antenna k rounds around the
circle; in each round it rotates the antenna with no delay and sends messages and
listens for messages. However, if the outcome is bit = 1 (Step 3) then it rotates



the antenna once around the circle; in each sector it sends messages and listens
for messages k times and then rotates the antenna one sector. Now consider two
sensors u, v within range of each other and assume, without loss of generality,
that u is to the left of v (The same proof will work regardless of the direction
of the line segment uv connecting u to v). Both sensors start beaming East.
We know that a necessary and sufficient condition to establish communication
is for u’s antenna to beam East and v’s antenna to beam West at the same
time. If both sensors’ coin-flips give the same bit then the sensors will select
the same rotation mechanism and their antennae will not face “against” each
other. However, if their coin-flips give different bits then it is clear that their
corresponding antennae will face East and West, respectively, at the same time.

Let m = 3 log n and suppose that all sensors run algorithm RSRMA(k) for
m times. The only case that two adjacent sensors u, v cannot communicate in
m steps is that the coin flips yield identical outcomes m times. In particular we
have two random binary strings of length m each one drawn from u and another
from v. The probability that the strings are identical is equal to 2−m = n−3 since
m = 3 log n.

Finally, we can prove the main result of the theorem. Let Eu,v denote the
event that sensors u, v can communicate (at some time). Consequently, from the
discussion above we conclude that

Pr[¬Eu,v] ≤ n−3, for any pair u, v of sensors. (3)

Therefore we obtain that the probability that any two adjacent sensors commu-
nicate is at least

Pr[∀u, vEu,v] = 1− Pr[¬(∀u, vEu,v)]
= 1− Pr[∃u, v¬Eu,v]

= 1− Pr

[⋃
u,v

¬Eu,v

]
≥ 1−

∑
u,v

Pr[¬Eu,v]

≥ 1− n2 1

n3

= 1− 1

n
.

This proves our assertion and completes the proof of Theorem 6.

3.3 Algorithm if bound on antenna beam widths is known

We now indicate how to extend Theorem 6 to the case of sensors with arbi-
trary antenna beam widths. First of all, we modify the rotation mechanisms by
introducing the delay as a parameter.

Following the proof of Theorem 6, observe that if two adjacent sensors u, v
execute the following algorithm for m = 3 lnn times then they will discover each
other with high probability.



Algorithm 6: Random Selection Rotation Mechanism Algorithm
RSRMA′(ku, d)

//Choose rotation mechanism at random
1 Select bit← RANDOM({0, 1});
2 if bit = 0 then Execute Mech0(ku, d);
3 if bit = 1 then Execute Mech1(ku, d);

This idea is for each sensor to use the neighbor sensor’s antenna beam width
to determine an appropriate delay. However, this will not work because sensor u
(respectively, v) does not necessarily know the beam width of v’s (respectively,
u’s) antenna. However, this difficulty is easy to resolve if an upper bound, say k,
on max{ku, kv} is known by both u and v. Namely, sensor u executes algorithm
RSRMA′(k′u, k

′
v) and sensor v executes algorithm RSRMA′(k′v, k

′
u), for all pairs

(k′u, k
′
v) such k′u, k

′
v ≤ k. To maintain synchronicity all k2 pairs of algorithms are

executed in the same lexicographic order by all pairs of sensors each algorithm
for m = 3 lnn times. Clearly, the running time of the algorithm is O(k4 log n)
with high probability.

Putting these ideas together and repeating the proof of Theorem 6 it is easy
to prove the following theorem.

Theorem 7. Consider a set of n sensors in the plane such that sensor u has
antenna beam width equal to φu = 2π

ku
. Assume the sensor network is synchronous

and that an upper bound k is known to all sensors so that maxu ku ≤ k. If each
sensor u executes algorithm RSRMA′(a, b), for each pair (a, b), with a, b ≤ k,
for O(log n) times then every sensor in the network will discover all its neighbors
in at most O(k4 log n) expected time steps, with high probability. ut

4 Conclusion and Open Problems

An interesting class of problems arises in considering the efficiency of broadcasting
in the single channel UDG model, i.e., if first there is a single send/receive channel
and multiple transmissions on the same node produce packet collisions, and
second a link between two sensors u, v exists if and only if d(u, v) ≤ 1. In general,
broadcasting with omnidirectional antennae requires scheduling of transmissions
(typically using group testing techniques) so as to avoid collisions. Clearly, if
broadcasting time with omnidirectional antennae without collisions is B then
the result of Theorem 3 indicates that broadcasting in the directional antennae
model can be accomplished in time O(B(c ln c)3), where c is the number of colors
of a vertex coloring of the sensor network. The main question arising is whether
we can improve on this time bound when using directional antennae.
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