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Introduction
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Goals

• Investigate the complexity of discovering neighbors in a setting

of rotating antennae:

– What knowledge is required?

– How long does it take?

– What protocols are possible?

– How does it compare to the omnidirectional setting?
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Communication Models with Directional Antennae

• (O,O) model: two sensors can communicate if they are within

transmission range of each other,

• (D,O) (respectively, (O,D)) model: the sender (respectively,

receiver) must turn its antenna so as to reach its neighbor, and

• (D,D) model: both sender and receiver must direct their

antennae towards each other at the same time.

This is the model we look at!
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Neighbor Discovery Process

• Usually entails the exchange of identities (e.g., MAC addresses)

between two adjacent nodes.

• It will be sufficient to assume that this is a one step process

whereby one sensor sends its identity and the other

acknowledges by sending back its own.

• We assume that the sensors have distinct identities but their

corresponding locations (i.e., (x, y)-coordinates) in the plane

are not known to each other.

• There is a vertex coloring χ : V → {0, 1, . . . , c− 1}
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Parameters of the Directional Antennae Model

• For simplicity, for each node u assume an angle (or beam

width) φu = 2π
ku

, for some integer ku.

u
φ

u

Figure 1: An antenna at u rotating counter-clockwise.

• Sensor network is synchronous
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Deterministic

Algorithms
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Deterministic Algorithms

• Lower Bound: Ω(kukv) time steps, for two sensors u, v within

communication range of each other.

• Upper Bounds

Antenna at u Knowledge Running Time Theorems

2π/k Identical O(kc−1) Theorem 1

2π/k Identical O(k(c ln c)3) Theorem 2

Table 1: Theorems and running times of deterministic algo-

rithms.

• Recall our basic assumption that there is a coloring

χ : V → {0, 1, . . . , c− 1} of the vertices of the sensor network

using c colors.
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Lower Bound

• Consider two sensors u, v within communication range of each

other and respective antenna beam widths 2π
ku

and 2π
kv

,

respectively. If the sensors do not know each other’s location

then any algorithm for solving the neighbor discovery problem

in the (D,D) communication model requires at least Ω(kukv)

time steps.

• This is because, for a successful communication to occur each

sensor must be within the beam of the other sensor’s antenna

at the same time. Since the sensors do not know each other’s

location they must attempt transmissions in all their respective

sectors.
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Communicating Position

1. Sensors must be within range of each other.

Figure 2: Directional antennae in communicating position.

(a) An antenna at u with

sectors counted counter-

clockwise.

u

North

South

West East

(b) Neighbor discovery for sen-

sors u, v.

u

φ
u

φ
v

v

2. Directional antennae must be facing each other.
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Communication Failure of Deterministic Algorithms

• Not every deterministic algorithm would work!

• Example: Sensor u employs delay du = 2 and sensor v delay

dv = 1, under which sensors with directional antennae will

never be able to communicate as illustrated in Figure 3.

u 0

3

1

2 0

3

1

2 v

Figure 3: Neighbor discovery for sensors u, v is not possible.
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(Basic) Antenna Rotation Algorithm (with Delay)

• For each sensor u, let du be an integer delay parameter and k

be defined so that φ = 2π
k

Algorithm 1: Antenna Rotation Algorithm ARA(du, ku)

1 Start at a given orientation;

2 while true do

3 for i← 0 to du − 1 do

//For du steps stay in chosen sector

4 Send message to neighbor(s);

5 Listen for messages from neighbor(s) (if any);

6 Rotate antenna beam one sector counter-clockwise;

//rotate by an angle equal to φ
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A Simple Choice of Delays

• A simple theorem is the following:

• Theorem 1 Consider a set of sensors in the plane with

identical antenna beam widths equal to φ = 2π
k . For each sensor

u let the delay be defined by du := kχ(u). If each sensor u

executes algorithm ARA(du, k) then every sensor in the

network will discover all its neighbors in at most kc−1 time

steps.

• Running time can be improved by choosing delays

appropriately!
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Improving on Delay

Theorem 2 Consider a set of sensors in the plane such that the

antenna beam width of sensor u is equal to φ = 2π
k . Assume the

sensor network is synchronous. Suppose that the delays du at the

nodes are chosen so that

1. gcd(k, du) = 1, for all u, and

2. if u, v are adjacent then gcd(du, dv) = 1.

If each sensor u executes algorithm ARA(du, k) then every sensor

in the network will discover all its neighbors in at most

O
(
(k(maxu du)3

)
time steps.

In addition, the delays du can be chosen so that every sensor in the

network will discover all its neighbors in at most O(k(c log c)3 time

steps.

In particular, this is at most O
(
(c ln c)3

)
time steps, if k ∈ O(1).
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Proof (1/2)

• Without loss of generality assume that

1. u and v are in horizontal position and sensor u is to the left

of sensor v, and

2. that both antennae orientations are initially set to East.

• u, v can communicate when v’s antenna is facing West which is

sector bk2 c.

• Since gcd(du, dv) = 1, by Euclid’s algorithm there exist integers

0 < au < du, 0 < av < dv such that

audu = avdv + 1. (1)

• Lets look at sensor u first. After duk steps sensor u will be in

its starting position and, clearly, the same applies for any time

duration that is a multiple of duk. Thus sensor u is in its initial

position (facing East) at time jauduk, for any j > 0.
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Proof (2/2)

• Multiply both sides of Equation audu = avdv + 1 by jk to

obtain jauduk = javdvk + jk

• So at time t = jauduk sensor u is facing East. If there is a j

such that jk = bk2 cdv + r for 0 ≤ r < dv, then sensor v is facing

West and therefore the sensors u, v can discover each other.

• Find a j such that,

jk ≤
⌊
k

2

⌋
dv < jk + k (2)

which means that jk + k = bk2 cdv + r, with r ≤ k < dv.

• A simple modification of the proof will prove the result when

the two sensors are not necessarily on a horizontal line.

• # of rotations required is jauduk, where j satisfies

Inequality (2).
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Randomized

Algorithms
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Randomized Neighbor Discovery Algorithms

• Upper Bounds

Antenna at u Knowledge Running Time Theorems

2π/k Identical knO(1) Theorem 3

2π/k Identical O(k2 log n) Theorem 4

2π/ku maxu ku ≤ k O(k4 log n) Theorem 5

Table 2: Theorems and running times of randomized algorithms.
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Randomized Neighbor Discovery Algorithm (1/4)

Algorithm 2: Randomized Antenna Rotation Algorithm

RARA(du, k)

1 Select du ← RANDOMPRIME(k..R);

2 Execute ARA(du, k);

Theorem 3 Consider a set of sensors in the plane such that the

antenna beam width of sensor u is equal to φ = 2π
k . Assume the

sensor network is synchronous. If each sensor u executes algorithm

RARA(k;R), where R = nO(1) and n is an upper bound on the

number of sensors, then every sensor in the network will discover

all its neighbors in at most knO(1) expected time steps, with high

probability.
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Randomized Neighbor Discovery Algorithm (2/4)

• For every node u, let N(u) denote the neighborhood of u and

deg(u) the degree of u.

• Let D = maxu deg(u) denote the maximum degree of a node of

the sensor network.

• By the prime number theorem, the number of primes ≤ R and

> k is approximately equal to R
lnR −

k
ln k and therefore the

probability that the primes chosen by two adjacent nodes, say

u and v, are different is 1− 1
R

lnR−
k

ln k

.

• Let Eu be the event that the prime chosen at u is different

from all the primes chosen by its neighbors.
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Randomized Neighbor Discovery Algorithm (3/4)

• It is easily seen that

Pr[Eu] = 1− Pr[¬Eu]

= 1− Pr [∃v ∈ N(u)(du = dv)]

≥ 1−
∑

v∈N(u)

Pr [du = dv]

≈ 1− deg(u)
1

R
lnR −

k
ln k

≥ 1−D 1
R

lnR −
k

ln k

.
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Randomized Neighbor Discovery Algorithm (4/4)

• Similarly, we can prove that

Pr

[⋂
u

Eu

]
= 1− Pr

[⋃
u

¬Eu

]
≥ 1−

∑
u

Pr[¬Eu]

≥ 1− nD 1
R

lnR −
k

ln k

≥ 1− 1

n
.

• By choosing R in nO(1) and recalling that D ≤ n we see that

all the primes chosen by all the nodes in the network are

pairwise distinct, with high probability.
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Additional Algorithms

• Theorem 4 Consider a set of n sensors in the plane with

identical antenna beam width equal to φ = 2π
k . Assume the

sensor network is synchronous. There is an algorithm so that

every sensor in the network will discover all its neighbors in at

most O(k2 log n) expected time steps, with high probability.

• Theorem 5 Consider a set of n sensors in the plane such that

sensor u has antenna beam width equal to φu = 2π
ku

. Assume

the sensor network is synchronous and that an upper bound k is

known to all sensors so that maxu ku ≤ k. There is an

algorithm so that every sensor in the network will discover all

its neighbors in at most O(k4 log n) expected time steps, with

high probability.
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Conclusions

• Interesting Problem: Efficiency of broadcasting

1. in the single channel UDG model, i.e., there is a single

send/receive channel and multiple transmissions on the

same node produce packet collisions, and

2. a link between two sensors u, v exists if and only if

d(u, v) ≤ 1.

• If broadcasting time with omnidirectional antennae without

collisions is B then the result of Theorem 3 indicates that

broadcasting in the directional antennae model can be

accomplished in time O(B(c ln c)3), where c is the number of

colors of a vertex coloring of the sensor network. The main

question arising is whether we can improve on this time bound

when using directional antennae.

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 26

Additional Work

• J. Du, E. Kranakis, O. Morales Ponce, S. Rajsbaum, Neighbor

Discovery in a Sensor Network with Directional Antennae. In

proceedings of Algosensors 2011, Saarbruecken, Germany,

September 08-09, 2011.

ICDCN, Jan 3, 2012


