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Overview

• Introduction

• Multiple Antennae Orientation Problem: Angle/Range

Tradeoffs

– Upper Bounds

– Lower Bounds/NP-Hardness

– Toughness of UDGs and Robust Antennae Range

• Minimum Number of Antennae Orientation Problem

• Conclusions/Open Problems
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Introduction
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Orientation Problem

• Given a set S of sensors. Assume that each sensor has k > 1

directional antennae such that the sum is at most ϕ.

What is the minimum range necessary to create a

strongly connected network by appropiatly rotating the

antennae?

• Two variants: Transmission angle (spread) is limited to ϕ,

where ϕ is

– either the sum of angles for antennae in the same node, or

– the maximum transmission angle of the antennae.
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The Setting

• Set of sensors represented as a set of points S in the 2D plane.

• Each sensor has k directional antennae.

• All antennae have the same transmission range r.

• Each antenna has a max transmission angle, forming a

coverage sector up to distance r.

• Typically, we fix k and ϕ and try to minimize r for a given

point set S.
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Transmission Range

• r(k,ϕ)−OPT (S) denotes the optimal (shortest) range for which a

solution exists.

• rMST (S) is the shortest range r such that UDG(S, r) is

connected.

– obviously, rMST (S) ≤ r(k,ϕ)−OPT (S)

• As establishing r(k,ϕ)−OPT might be NP-hard, we will compare

the radius r produced by a solution to rMST .

– for simplicity, we re-scale S to get rMST = 1

– later, we will discuss comparing to r(k,ϕ)−OPT
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Angle/Range Tradeoffs:

Minimize Sum of Angles
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Basic Observations

• Angle between (any two) incident edges of an MST is ≥ π/3.

• For every point set there exists an MST of maximal degree 5.

• All angles incident to a vertex of degree 5 of the MST are

between π/3 and 2π/3 (included).

• Observation: with k ≥ 5 antennae, each of spread 0, there

exists a solution with range 1.

• Main method: Locally modify the MST, using various

techniques when k is smaller than the degree of the node in the

MST to (locally) ensure strong connectivity: Use

1. antenna spread to cover several neighbors by one antenna,

2. neighbour’s antennae to locally ensure strong connectivity
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Upper Bounds: Sum of Angles

# Antennae Spread Antennae Range Paper

1 0 ≤ ϕ < π 2 [4]

1 π ≤ ϕ < 8π/5 2 sin(ϕ/2) [2]

1 8π/5 ≤ ϕ 1 [2]

2 2π/3 ≤ ϕ < π 2 cos(ϕ/4) [1]

2 π ≤ ϕ < 6π/5 2 sin(2π/9) [1]

2 6π/5 ≤ ϕ 1 [1]

3 4π/5 ≤ ϕ 1 [1]

4 2π/5 ≤ ϕ 1 [1]
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Antenna Range 1

• Theorem. For any 1 ≤ k ≤ 5, there exists a solution with

1. range 1, and

2. sum of angles ≤ 2(5−k)π
5 .

• Why?

• Here is the reason, briefly:

– Consider the MST.

– Take any vertex of degree 5 (other cases are similar).

– Exclude k incident (consecutive) angles with sum ≤ 2kπ/5.

– What is left can be covered with an antenna of angle

≤ 2(5−k)π
5 and k − 1 antennae of angle 0 each.
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Two Antennae, ϕ ≥ π, Range 2 sin(2π/9)

• A vertex p is a nearby target vertex to a vertex v ∈ T if

d(v, p) ≤ 2 sin(2π/9) and p is either a parent or a sibling of v in

T .

• A subtree Tv of T is nice iff for any nearby target vertex p the

antennae at vertices of Tv can be set up so that the resulting

graph (over vertices of Tv) is strongly connected and p is

covered by an antenna from v.

• Theorem. There is a way to set up 2 antennae per vertex,

with antenna spread (i.e., sum of antenna angles) of π and

range 2 sin(2π/9) in such a way that the resulting graph is

strongly connected.

– Proof: By proving that Tv is nice for all v, by induction on

the depth of Tv.

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 12

Induction: Case Analysis on the Number of Children of u

The length 2 sin(2π/9) arises from the fact that

min{∠(u(1)uu(2)),∠(u(2)uu(3)),∠(u(3)u(4))} ≤ 4π
9
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Angle/Range Tradeoffs:

Minimize Max Range
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Main Theorem (Upper Bound)

• Consider a set S of n sensors in the plane and suppose each

sensor has k, 1 ≤ k ≤ 5, directional antennae.

– Then the antennae can be oriented at each sensor so that

the resulting spanning graph is strongly connected and the

range of each antenna is at most

2 · sin
(

π

k + 1

)
times the optimal.

– Moreover, given a MST on the set of points the spanner can

be constructed with additional O(n) overhead.
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Main Steps: Angle 0

• The more antennae per sensor the easier the proof.

• Algorithm is in three steps.

1. 4 Antennae: Spread 0, Range 2 sin(π/5)

2. 3 Antennae: Spread 0, Range 2 sin(π/4)

3. 2 Antennae: Spread 0, Range 2 sin(π/3)

• Details of complete algorithm too technical to present here!

• Lets outline the ideas for the proof of Item 1.
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Main Idea: Angle 0

• Idea:

The basic antenna orientation algorithm;

– By induction on the depth of the MST T ;

– We avoid connecting child solutions to the parent, instead

1. remove all leaves,

2. apply induction hypothesis to the resulting tree,

3. return back the leaves and show how to connect them to

the original structure.

• NB:

Since the spread is 0, a solution can be represented as a

directed graph
−→
G with maximum out-degree k and edge

lengths at most 2 sin( π
k+1 ).
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Example: 4 Antennae, Spread 0, Range 2 sin(π/5)

Induction hypothesis: Let T be an MST of a point set of radius

at most x. Then, there exists a solution
−→
G for T such that:

• the out-degree of u in
−→
G is one for each leaf u of T

• every edge of T incident to a leaf is contained in
−→
G
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Base step

uw

v
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Inductive Step: 4 antennae, spread 0

uu0
u2

u3

T ′ Tu1

uu0
u2

u3

T ′ T

u4

u1

uu0

u1

T ′ T
u2

u3

u4

uu0

u1

T ′ T

u2

u3

u4

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 20

Summary of Complete Picture: Upper Bounds

# Antennae Spread Antennae Range Paper

1 0 ≤ ϕ < π 2 [4]

1 π ≤ ϕ < 8π/5 2 sin(π − ϕ/2) [2]

1 8π/5 ≤ ϕ 1 [2]

2 0 ≤ ϕ < 2π/3
√

3 [3]

2 2π/3 ≤ ϕ < π 2 sin(π/2− ϕ/4) [1]

2 π ≤ ϕ < 6π/5 2 sin(2π/9) [1]

2 6π/5 ≤ ϕ 1 [1]

3 0 ≤ ϕ < 4π/5
√

2 [3]

3 4π/5 ≤ ϕ 1 [1]

4 0 ≤ ϕ < 2π/5 2 sin(π/5) [3]

4 2π/5 ≤ ϕ 1 [1]
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Lower Bounds
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Is the Result Optimal?

• Consider a regular k + 1-star.

– With angle less then 2π
k+1 , the central vertex cannot reach

all leaves using k antennae, hence a leaf must connect to

another leaf, using range at least 2 sin( π
k+1 ).

– Hence results for spread 0 are optimal . . .

– . . . with respect to rMST .

• But what about r(k,ϕ)−OPT ?

• In regular k + 1-star also r(k,ϕ)−OPT is large!
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Main Theorem (Lower Bound)

• For k = 2 antennae.

– Let x and α be the solutions of equations

x = 2 sin(α) = 1 + 2 cos(2α)

(Note: x ≈ 1.30, α ≈ 0.45π.)

– If the angular sum of the antennae is less then α then it is

NP-hard to approximate the optimal radius to within a

factor of x.

• The proof is by reduction from the problem of finding

Hamiltonian cycles in degree three planar graphs.
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Key Gadgets

Take a degree three planar graph G = (V,E) and replace each

vertex vi by a vertex-graph (meta-vertex) Gvi shown in Figure 1a.

Furthermore, replace each edge e = 〈vi, vj〉 of G by an edge-graph

(meta-edge) Ge shown in Figure 1b.

vi1

vi2

ui1

ui2

wi2wi1

(a) Vertex graph (The dotted

ovals delimit the three parts.)

v′i

v′j

v′′j

v′′i

vj1

vj2

vi1

vi2

π′
vi

π′′
vi

π′
vj

π′′
vj

(b) Edge graph (The connecting

vertices are black.)

Figure 1: Meta-vertex and meta-edge for the NP completeness proof
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Embed Resulting Graph in the Plane:

1) Distance (in the embedding) between neighbours in G′ is ≤ 1, 2)

the distance between non-neighbours in G′ is ≥ x, and 3) the

smallest angle between incident edges in G′ is ≥ α.

v′i
v′′i

vi1vi2

π′
viπ′′

vi

πvi1

πvi2

x

x

xx

x = 1 + 2 cosα

x = 2sin(α/2)

α

α

α

α

α/2

α/2

1

1

1

1

Figure 2: Connecting meta-edges with meta-vertices (The dashed

ovals show the places where embedding is constrained. )
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Key Observations

• Each meta-vertex must have at least incoming and one

outgoing meta-edge

• Each meta-vertex can have at most one outgoing meta-edge

• Hence each meta-vertex has exactly one outgoing and one

incoming meta-edge
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What we know so far

Out Lower Upper Approx. Complexity

degree Bound Bound Ratio

4 rMST 2 sin(π/5)rMST 2 sin(π/5) Polynomial

3 rMST 2 sin(π/4)rMST

√
2 Polynomial

2 rMST 2 sin(π/3)rMST

√
3 Polynomial

2 - - ≤ 1.3 NP-Complete
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Toughness of Antennae

and Robust Range

(Cases k = 3, 4)
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Lower Bounds for k = 3 and k = 4: Main Idea

• For a pointset P : How robust is the radius r to point deletions?

• For S ⊆ P , let rk(S) := “smallest radius r s.t, UDG(P \ S, r)
does not contain a (k + 1)|S| connected components”.

• Obviously, rk(S) ≤ r(k,0)−OPT (S). Is rk(S) = r(k,0)−OPT (S)?

• r3(S) < r(3,0)−OPT (S)! E.g., take S = {u1, u2, u3}.

u1

u2

u3

• How about r4(S) = r(4,0)−OPT (S)?
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Tougness of UDGs

• The concept of toughness of a graph as a measure of graph

connectivity has been extensively studied in the literature.

• Intuitively, graph toughness measures the resilience of the

graph to fragmentation after subgraph removal.

• A graph G is t-tough if |S| ≥ tω(G \ S), for every subset S of

the vertex set of G with ω(G \ S) > 1.

• The toughness of G, denoted τ(G), is the maximum value of t

for which G is t-tough (taking τ(Kn) =∞, for all n ≥ 1).

• We are interested in the toughness of UDGs over a given point

set P , and in particular how does the toughness of U(P, r)

depends on the radius r.
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New Concept: Robust Range

Definition 1 [Strong and Weak t-robustness for UDG radius] Let

P be a set of points in the plane.

1. A subset S ⊆ P is called t-tough if ω(U(P \ S; r)) ≤ |S|/t.
Similarly, a point u is called t-tough if the singleton {u} is

t-tough.

2. The strong t-robustness of the set of points P , denoted by

σt(P ), is the infimum taken over all radii r > 0 such that for

all S ⊆ P , the set S is t-tough for the radius r.

3. The weak t-robustness of the set of points P , denoted by αt(P ),

is the infimum taken over all radii r > 0 such that for all

u ∈ P , the point u is t-tough for the radius r.
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Main Result

• Theorem. We have

1. σ1/k(P ) ≤ rk(P ), for all k.

2. For any set P of points, α1/4(P ) = σ1/4(P ).

3. For every point of P , weak 1/i-robustness, for 1 ≤ i < 5,

can be computed in time O(|P | log |P |).

• In particular,

1. the optimal range for the 4 antennae orientation problem

(strong connectivity) can be solved in O(n log n) time,

2. a 2 sin(2π/9) approximation to the optimal range for the 3

antennae orientation problem can be solved in O(n log n)

time.
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Summary of Results

Out Lower Upper Approx. Complexity

degree Bound Bound Ratio

4 σ1/4 α1/4 1 O(n log n)

3 σ1/3 2 sin(2π/9)α1/3 ≤ 2 sin(2π/9) O(n log n)
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Conclusions/Open Problems

• There are still gaps between the lower and upper bounds,

especially for non-zero ϕ

• The x and ϕ in the NP-hardness results might possibly be

improved

• Consider different model variants

– directional receivers

– temporal aspects (antennae steering, ...)

• and different problems...
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Minimum Number of

Antennae
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Antenna Orientation Problem

• Given a connected network formed by a set of sensors with

omnidirectional antennae and an angle ϕ ≥ 0.

Compute the minimum number of arcs in the network in

such a way that the resulting network is strongly

connected and the stretch factor does not depend on the

size of the network.

• Two variants:

– Notice that you must respect the underlying network.

– Can consider angle/range tradeoffs.
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Orienting Edges of Undirected Graph with Original Range

• Orient every edge in both directions

– stretch factor 1 but 2|E| arcs

• Orient edges along a Hamiltonian cycle (if it exists)

– |V | arcs but unbounded stretch factor

• (Roberts, 1935) Strong Orientation Procedure

1. label vertices 1..n according to DFT T

2. orient ij as i→ j iff ij ∈ T and i < j

3. orient ij as i→ j iff ij 6∈ T and i > j

• (Robbins, 1939) G has a strong orientation iff it is connected

and 2-edge connected.

• (Nash-Williams, 1960) Every G has an orientation D so

that ∀u, v ∈ V , λD(u, v) ≥ b 12λG(u, v)c, where λ(u, v) is the

number of u− v paths
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Strong Orientation Algorithms

Can give algorithms to strongly orient a given (planr) graph

G = (V,E) fora

• More than |E| edges

• Exactly |E| edges

• Less than |E| edges

aE. Kranakis, O. Morales Ponce, L. Stacho. Strong Orientations of Planar

Graphs with Bounded Stretch Factor. In proceedings of 17th SIROCCO (Collo-

quium on Structural Information and Communication Complexity) 2010. LNCS

6058 Springer.
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Orientation Algorithms (More than |E| Edges)

• Theorem. Let G = (V,E) be a plane 2-edge connected graph

with a face λ-coloring. Then it has a strong orientation with at

most (
2− 4λ− 6

λ(λ− 1)

)
· |E|

arcs and stretch factor at most φ(G)− 1, where φ(G) = max

number of edges of a face of G.
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Orientation Algorithms (Exactly |E| Edges)

• Theorem. Let G = (V,E) be a plane 2-edge connected graph

with a face λ-coloring. Then it has a strong orientation with

exactly |E| arcs and stretch factor at most

(φ(G)− 1)d
λ+1
2 e.
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Orientation Algorithms (Less than |E| Edges)

• Theorem. Let G = (V,E) be a plane 3-edge connected graph.

Then it has a strong orientation with at most(
1− k

10(k + 1)

)
· |E|

arcs and stretch factor at most φ(G)2 · (φ(G)− 1)2k+4, for any

k ≥ 1.
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