
Strongly Connected Spanning Digraphs

with Bounded Edge Length and

Out-Degree

Stefan Dobrev1, Evangelos Kranakis2, Oscar Morales Ponce2, and
Milan Plž́ık3

1 Institute of Mathematics, Slovak Academy of Sciences, Bratislava, Slovak Republic
Stefan.Dobrev@savba.sk

2 School of Computer Science, Carleton University, Ottawa, Canada
kranakis@scs.carleton.ca, omponce@connect.carleton.ca

3 Comenius University, Bratislava, Slovak Republic
milan.plzik@gmail.com

Abstract. We study the following problem: Given a set of points in
the plane and a positive integer k > 0, construct a geometric strongly
connected spanning digraph of out-degree at most k and whose longest
edge length is the shortest possible. The motivation comes from anten-
nae assignment in sensor networks where each sensor has k directional
antennae; the problem is to construct a viable communication network
while minimizing energy costs.
The contribution of this is paper is twofold:
– We introduce a notion of robustness in geometric graphs. This al-

lows us to provide stronger lower bounds for the edge length needed
to solve our problem, while nicely connecting two previously unre-
lated research directions (graph toughness and multiple directional
antennae).

– We present novel upper bound techniques which, in combination
with stronger lower bounds, allow us to improve the previous ap-
proximation results for the edge length needed to achieve strong
connectivity for k = 4 (from 2 sin(π/5) to optimal) and k = 3 (from
2 sin(π

4
) to 2 sin(2π

9
)).

1 Introduction

Consider a set of sensors in the plane such that each sensor has k di-
rectional antennae and the sum of angles covered by these antennae
is at most φ. What is the smallest communication range r such that
there exists an orientation of the antennae such the resulting com-
munication graph is strongly connected? When φ = 0 the problem is
equivalent to the problem of finding spanning digraph of maximum

out-degree k that is strongly connected and minimizes the maximal
edge length used.

Before giving the formal definition of the problem we will in-

troduce the following notation. Let
−→
G denote a weighted directed

geometric graph and let ∆+(
−→
G) denote the maximum out-degree of

−→
G . For any edge (u, v) let w(u, v) denote its weight. We refer to our
problem as the Bottleneck Strongly Connected Spanning Digraph with
Bounded Out-degree(BSCBOD) and define it formally as follows:

Problem 1. Given a weighted complete digraph
−→
G and an integer

k ≥ 1, determine a strongly connected spanning subgraph
−→
H such

that ∆+(
−→
H) ≤ k and the maximum weight is minimum, i.e.,

min{ max
w(u,v)∈

−→
H

:
−→
H is a strongly connected and ∆+(

−→
H) ≤ k}

Recall that the UDG (Unit Disk Graph) of a set of n points P
with parameter r is the geometric graph, denoted by U(P ; r), where
the set of vertices is P and vertices u, v are adjacent (with a straight
line segment) if and only if d(u, v) ≤ r, where d(·, ·) denotes the
Euclidean distance between u and v.

Now we can rephrase our problem in geometric setting as follows:

Problem 2. Given a set of points P and an integer k ≥ 1. Find
the smallest edge length r such that UDG U(P, r) has a strongly

connected spanning directed subgraph
−→
H with ∆+(

−→
H) ≤ k and con-

struct
−→
H .

1.1 Related work

When k = 1 the problem is equivalent to the well-studied problem of
bottleneck traveling salesman problem. Parker and Radin [8] give a
2-approximation when the weights satisfy the triangle inequality and
show that it is not possible to approximate to 2− ε unless P = NP .

In the Euclidean version of the problem, weights are defined by
the Euclidean distance between the two points in R2. Papadim-
itriou [7] shows that in this setting the problem remains NP-Complete.

In the context of sensor networks Caragiannis et al. [2] proposed
the problem of replacing omnidirectional antennae with directional

antennae. They study the setting when each sensor has one direc-
tional antenna of a given angle. They showed that the problem is
NP-hard when the angle is less than 2π/3 and the communication
range is less than

√
3 times the maximum weight of the MST (de-

noted by rMST).
In [4], the authors study the problem in the context of multiple

directional antennae in a wireless sensor network. In this setting,
sensors are equipped with directional antennae of given beam-width
(angle) and range (radius); their goal is to give algorithms for ori-
enting the antennae and study angle/range trade-offs for achieving
strong connectivity. On one hand, when k ≥ 5, the problem is triv-
ially solved by using each edge of the MST in both directions, since
there always exists a MST (Minimum Spanning Tree) on a set of
points with maximum degree five. On the other hand, they show
that the problem is NP-complete when k = 2 even for a scaling fac-
tor of 1.3 and/or sum of angles less than 9π/20. They also give an
algorithm to compute upper bounds for the cases when k = 2, 3, 4.
Table 1 summarizes the results given in [4] relating to our problem.
A comprehensive survey is presented in [6].

Out-degree Lower Bound Upper Bound Approx. Ratio Complexity

4 rMST 2 sin(π/5)rMST 2 sin(π/5) Polynomial

3 rMST 2 sin(π/4)rMST

√
2 Polynomial

2 rMST 2 sin(π/3)rMST

√
3 Polynomial

2 - - ≤ 1.3 NP-Complete

Table 1: Angle/Range tradeoffs given in [4].

Also related problem is the minimum spanning tree with degree
k. In [5] Francke and Hoffmann show that it is NP-Hard to decide
whether a given set S of n points in the plane admits a spanning
tree of maximum vertex four whose sum of edge lengths does not
exceed a given threshold k.

1.2 Results and outline of the paper

This paper contains three major contributions, presented in sections
2, 3, and 4, respectively. In Section 2 we introduce the new concepts

of t-strong robustness (σt) and k-weak robustness (αt) of a UDG
radius, which are closely related to the well studied concept of graph
toughness. The primary motivation comes from the observation that
the 1/k-strong and 1/k-weak robustness provide a more refined and
higher lower bound than the weight of the longest edge of the MST
for the problem we study4.

In Section 3 we present the result that achieves an optimal algo-
rithm for k = 4. In Section 4 we combine the technique used in 3 and
a modified version of the technique from [4]. This allows us to save
one more out-going arc at the cost of having approximation ratio
of 2 sin(2π/9), which is still an improvement over the best previous
results from [4]. Due to space constraints technical proofs are left in
the Appendix as well as the proofs of Section 4.

Table 2 summarizes the main results of Section 4. We conclude

Out-degree Lower Bound Upper Bound Approx. Ratio Complexity

4 σ1/4 α1/4 1 O(n logn)
3 σ1/3 2 sin(2π/9)α1/3 ≤ 2 sin(2π/9) O(n logn)

Table 2: Summary of results obtained in this paper

in Section 5 with a discussion of various related issues and open
problems.

2 Robustness of Unit Disk Graphs

The concept of toughness of a graph as a measure of graph connec-
tivity has been extensively studied in the literature (see the survey
[1]). Intuitively, graph toughness measures the resilience of the graph
to fragmentation after subgraph removal.

As defined in [1], a graph G is t-tough if |S| ≥ tω(G\S), for every
subset S of the vertex set of G with ω(G \ S) > 1. The toughness of
G, denoted τ(G), is the maximum value of t for which G is t-tough
(taking τ(Kn) =∞, for all n ≥ 1).

4 While the strong robustness provides stronger lower bound, the weak robustness is
easier to compute and use.

What we are interested in is the toughness of UDGs over a given
point set P , and in particular how does the toughness of U(P, r)
depend on the radius r. This is expressed in the following definitions:

Definition 1. [Strong and Weak t-robustness for UDG radius] Let
P be a set of points in the plane.

1. A subset S ⊆ P is called t-tough if ω(U(P \ S; r)) ≤ |S|/t. Simi-
larly, a point u is called t-tough if the singleton {u} is t-tough.

2. The strong t-robustness of the set of points P , denoted by σt(P),
is the infimum taken over all radii r > 0 such that for all S ⊆ P ,
the set S is t-tough for the radius r.

3. The weak t-robustness of the set of points P , denoted by αt(P),
is the infimum taken over all radii r > 0 such that for all u ∈ P ,
the point u is t-tough for the radius r.

Note that when P is finite (as in the rest of this paper), it is suffi-
cient to consider only the radii corresponding to pairwise distances
between the points of P ; in such case it is sufficient to consider min-
imum instead of infimum.

As we are interested in solving BSCBOD , we are interested in
the optimal radius that allows achieving strong connectivity for a
given maximum out-degree k.

Definition 2 (Optimal Radius). For k ≥ 1, define rk(P) to be the
minimum radius necessary to construct a strongly connected span-

ning digraph
−→
H such that ∆+(

−→
H) ≤ k.

The following theorem motivates our study of robustness of UDG
radius:

Theorem 1. σ1/k(P) ≤ rk(P)

Proof. By contradiction. Assume there exists P and k such that
rk(P) < σ1/k(P). Therefore, there must exists S ⊆ P such that S
is not 1/k tough for radius rk(P). From the Definition 1 we have
ω(U(P \ S, rk(P))) > k|S|, i.e. removing S creates more than k|S|
connected components. This is in contradiction with the fact that
there exists a solution for BSCBOD with radius rk(P) and maximal
outdegree k, as there are not enough antennae in vertices of S to
reach all components of U(P \ S, rk(P)). ut

Let rMST (P) denote the length of the longest edge of the MST of
P . Observe that for k < 5, Theorem 1 yields stronger lower bound
for rk(P) than rMST (P).

2.1 Efficiently Computing Weak t-robustness

The weak t-robustness αt(P) of a set P of points refers to single
points and as such it can be computed in polynomial time for a set
of n points. A naive algorithm takes O(n4) time: test in O(n2) time
for a given radius, checking each of the O(n2) possible radii given by
distances between pairs of points. However, this is not the case for
the strong t-robustness σt(P) which depends on all subsets S ⊆ P .

As each singleton vertex is also a subset of P , definition 1 directly
yields

Lemma 1. αt(P) ≤ σt(P), for all t.

It is not difficult to see that any connected UDG is at least 1/5-
robust since the removal of any vertex leaves a maximum of five
connected components.

The first important observation is that the 1/4-weak-robustness
and 1/4-strong-robustness of a set of points coincide and as a con-
sequence the 1/4-strong-robustness can be computed efficiently.

Theorem 2. For any set P of points, α1/4(P) = σ1/4(P).

Proof. In view of the observation in Lemma 1 above we only need
to show that α1/4(P) ≥ σ1/4(P). We will show that if for some r the
graph G = U(P ; r) is not 1/4-robust then there exists a vertex v such
that U(P \{v}; r) has 5 connected components. Let S be the set such
that U(P \S; r) has at least 4|S|+1 connected components. Consider
the bipartite graph HS(G) = (S∪PS, ES) defined as follows: PS is the
set of connected components of G \ S, ES = {{u, v} : u ∈ S, v ∈ PS

such that there is an edge in G between u and a vertex from PS}.
Note that the maximal degree of vertices from S is 5: Assume

the converse, i.e. there is a vertex u ∈ S of degree at least 6. This
means there exist edges {u, vi} for i = 1, 2, . . . 6 such that {u, vi} ∈ G
and each vi is from a different connected component of U(P \ S; r).
However, at least one of the angles between these six edges must be
at most π/3 and therefore they cannot all lead to different connected
components.

S

PS

1/3 1/3

1/31/3

Fig. 1: bipartite graph HS(G) = (S ∪ PS, ES).

Let us assign a weight w(e) to each edge as follows: Each vertex
v from PS equally distributes weight 1 among its incident edges, i.e.,
1/deg(v). Since PS is an independent set of HS(G), each edge is given
a unique weight 1/i for some i. Note that∑

u∈S

∑
e={u,·}

w(e) =
∑
v∈PS

∑
e={·,v}

w(e) =
∑
v∈PS

1 = |PS| > 4|S|.

Therefore, there must exist a vertex u from S such that
∑

e=u,·w(e) >
4 However, since the weight of each edge is 1/i for some i and the
maximal degree of vertices in S is at most 5, this is only possible if
at least four edges incident to u have weight 1 and one has weight
greater than 0, i.e., U(P \ {v}; r) has 5 connected components. ut

In fact, 1/4-weak-robustness (and more generally, 1/i-weak-robustness
for i < 5) can be computed much more efficiently than a trivial O(n4)
algorithm. The basic idea is to maintain a tree H of red and black
vertices, where the black vertices represent bi-connected components
(blocks) and the red vertices represent the separator vertices. Each
vertex v of P points (in variable h(v)) to its representative in H.
Furthermore, each red vertex maintains in variable c(v) (separator
degree) the number of components it connects. Initially, H starts as
the MST of P ; subsequently the edges are added according to their
increasing length. The h(·) pointers allow to efficiently determine
whether an edge connects two different vertices of H. If adding an
edge e closes a cycle in H, the separator degrees of the red vertices
(except those incident to e) in this cycle are reduced by one. The
process is repeated by taking progressively longer edges until no red
vertices remain. As the h(·) pointers can be maintained using stan-
dard techniques with the overall cost of O(n log n) and the overall

cost of processing and collapsing created cycles is O(n), the overall
cost if O(|E|+ n log n), where E is the set of processed edges.

The second idea of the algorithm comes from the observation that
only a very limited set of edges of size O(n) will ever be processed.

Theorem 3. For every point of P , weak 1/i-robustness, for 1 ≤ i <
5, can be computed in time O(|P | log |P |).

Algorithm 1 Algorithm Aα1/i

1: Compute the MST T of the point set P .
2: Set the colour of leaves of T to black, colour red the remaining vertices
3: Set H ← T .
4: for each vertex v ∈ T do
5: Set c(v) to the degree of v in T .
6: Set h(v)← v.
7: end for
8: for each edge e = {u, v} /∈ T , processed in the order of increasing length do
9: if h(u) 6= h(v) then

10: Let Ce be the cycle closed by (h(u), h(v)) in H.
11: for each red vertex w ∈ Ce \ {h(u), h(v)} do
12: c(w)← c(w)− 1
13: Output α1/c(w)(w)) = max(rMST , d(u, v))
14: if c(w) = 1 then
15: Set the colour of w to black.
16: end if
17: end for
18: Remove all edges of Ce from H.
19: Add a black vertex xe to H and connect it to all vertices of Ce.
20: Collapse the all-black component of xe into a single black vertex x′e.
21: Unify h(·) for the vertices of the bi-connected component represented by x′e.
22: end if
23: end for

The proof of the theorem will be provided after proving the
following lemmas. Let us denote by TUDG(P, r) the graph T ∪
UDG(P, r), where T is the MST of P .

Lemma 2. Algorithm Aα1/i can be implemented with time complex-
ity O(n log n).

Proof. It is known that the Delaunay triangulation and the MST can
be computed inO(n log n) time [3]. The set of edges in

⋃
w∈P RNGw(P)

to be processed on line 8 is of size O(n) and can be computed from
Del(P). Therefore, it can be computed in O(n log n). We will show
that the cumulative cost of processing on lines 10-21 is O(n log n) as
well.

Everything done on lines 10-20 is linear in the size of the cycle Ce.
We charge the cost of this to the red vertices of Ce. Since there are
no neighbouring black vertices in H, at least half of the vertices in
Ce are red and each one of them will be charged a constant. We show
that each red vertex w is charged constant number of times: a) w will
be charged at most 5 times in cycles where w is not incident to u(u)
or h(v), because in each of those cases, c(w) is decremented. b) the
maximal degree of w in T∪

⋃
w∈P RNGw(P) is constant and therefore

it will be charged constant number of times whenever its c(w) is
not decremented: The sum of two consecutive angles incident to a
vertex must be at least π/3, otherwise there would be two vertices
in S(u, |e|) ∩ S(v, |e|), which we know by Lemma 6 is not possible.

Let us now evaluate the total cost of line 21. The components cor-
responding to the black vertices might have a lot of vertices, leading
to a lot of work changing those h(.) values. What we do is we identify
the largest component and change the h(.) values for all vertices of
the other components. In this way, whenever a vertex changes its
h(.) value, the size of its component at least doubles. The overall
cost of line 21 is therefore O(n log n). ut

Theorem 3 follows directly from Lemma 2 and Lemma 5.

3 Digraph with Max Out-Degree Four

In this section, we prove that given a set of n points in the plane,
there is always a strongly connected spanning digraph with max
out-degree four and optimal length. In fact, it can be constructed in
O(n log n).

Theorem 4. r4 = α1/4.

Proof. Let P be a set of points and T be the MST on P . We may
assume that T has maximum degree five. Consider the set S of ver-
tices of degree five in T . Let r4 be the radius of α1/4 obtained from
Algorithm Aα1/i. For each vertex v ∈ S we compute the set Ev of

shortest edges of length at most r4 that join two distinct compo-

nents of T \ {v}. Let G = T and
−→
G be the strongly connected graph

obtained from orienting in both direction each edge of G. We will
add new edges to G in order to form cycles that include every vertex

in S. Thus, the max out-degree of
−→
G is decreased to four by orient-

ing the cycles in one direction. We will process edges in
⋃

v∈S Ev in
descending order according to the hop-length of the cycle that they
form with the edges of T .

Let {u,w} ∈
⋃

v∈S Ev be the edge that forms the longest cycle
C. We consider two cases:

– |C| > 3. Let S(x, r) denote the open disk centered at x of ra-
dius r. Since {u,w} is the shortest edge, the lune formed by
S(u, d(u,w)) ∩ S(w, d(u,w)) is empty. Therefore, the angle that
{u,w} forms with the edges incident to u and w is at least π/3.
Hence, u and w have degree at most four in T . Add {u, v} to G

and orient C in clockwise order in
−→
G . Since {u, v} is the shortest

edge that forms the longest cycle for each vertex in S∩C, we can
remove from S all the vertices in C, i.e., S = S \C. Observe that

vertices in C have out-degree at most four in
−→
G and the strong

connectivity is not broken.

– |C| = 3. Observe that {u, v}, {w, v} ∈ T . Let v ∈ C \ {u,w}.
Consider the two components Gu, Gw obtained from G \ {v}.
Assume that u ∈ Gu and w ∈ Gw. Since {u,w} creates the
longest cycle, there does not exist an edge distinct to {u,w} in⋃

x∈S\{v}Ex that joins Gu and Gw. However, since {u, v}, {v, w}
are in T , the lune formed by S(u, d(u,w))∩S(w, d(u,w)) contains
v. Therefore, u and w may have degree five in T , since the angle
that {u,w} forms with {u, v} and/or {v, w} is less that π/3.

Consider the cycle vu . . . u′v in Gu ∪{v} and the cycle vw . . . w′v
in Gw ∪ {v}. Let G = G ∪ {u,w} and remove v from S. Re-
move {v, u} from G if u 6= u′. Similarly, remove {v, w} from G if

w 6= w′. Orient the new cycle in
−→
G as vu′ . . . uw . . . w′v. Observe

that v has out-degree at most four in
−→
G and the out-degree of

the vertices in the new cycle does not increase. Furthermore, the
strong connectivity is not broken.

When S is empty,
−→
G will have max out-degree four. The theo-

rem follows since the strong connectivity of
−→
G is never broken. The

pseudocode is given in Algorithm 2. ut

The following Lemma is a simple observation of the construction
given in Theorem 4 and is given without proof.

Lemma 3. Let
−→
G be the digraph obtained from 4. For each vertex

v the angle that v forms between out-going edges is at least π/3 and
the angle that v forms between in-going edges is at least π/3.

Theorem 5. Algorithm 2 can be computed in O(n log n); where n
is the number of points.

Proof. The MST can be computed inO(n log n) time. From Lemma 7,
the number of edges to be processed areO(n). Thus, it takesO(n log n)
time to sort the edges to be processed in line 8. Since every edge is
in at most one cycle and there are O(n) edges, the time to complete
the construction is O(n log n).

4 Digraph with Max Out-Degree Three

In this section, we prove that given a set of n points, there exists a
strongly connected spanning digraph with max out-degree three and
length bounded by 2 · sin(2π/9) · α1/3 and it can be constructed in
O(n log n).

Theorem 6. There exist UDGs such that α1/3 ≥ σ1/3.

Theorem 7. r3 ≤ 2 · sin(2π/9) · α1/3.

Theorem 8. Algorithm 3 that constructs a strongly connected span-
ning digraph with max out-degree three can be computed in O(n log n);
where n is the number of points.

5 Conclusion

In this paper we studied the problem of how to construct from a
set of points in the plane and a positive integer k > 0, a geometric
strongly connected spanning digraph of out-degree at most k and

whose longest edge length is the shortest possible. We proved that
the problem can be solved with optimal edge length in polynomial
time when the out-degree is at least 4. To quantify the problem we
introduced the concept of k-robustness for a UDG radius. We also
improved the previous best known upper bound when the out-degree
is at most 3. However, it is unknown whether the problem can be
solved optimally in polynomial time when the out-degree is at most
3.

References

1. D. Bauer, H. Broersma, and E. Schmeichel. Toughness in graphs–a survey. Graphs
and Combinatorics, 22(1):1–35, 2006.

2. I. Caragiannis, C. Kaklamanis, E. Kranakis, D. Krizanc, and A. Wiese. Communi-
cation in wireless networks with directional antennae. In 20th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’08), pages 344–351, Munich,
Germany, June 14–16 2008. IEEE/ACM.

3. M. De Berg, O. Cheong, and M. Van Kreveld. Computational geometry: algorithms
and applications. Springer-Verlag New York Inc, 2008.

4. S. Dobrev, E. Kranakis, D. Krizanc, O. Morales Ponce, J. Opatrny, and L. Stacho.
Strong connectivity in sensor networks with given number of directional antennae
of bounded angle. In Proceedings of the 4th Annual International Conference on
Combinatorial Optimization and Applications (COCOA 10). Part II, LNCS 6509,
pages 72–86, Big Island, Hawaii, Dec 18-20 2010. Springer-Verlag.

5. A. Francke and M. Hoffmann. The euclidean degree-4 minimum spanning tree
problem is np-hard. In Proceedings of the 25th annual symposium on Computational
geometry, pages 179–188. ACM, 2009.

6. E. Kranakis, D. Krizanc, and O. Morales. Maintaining connectivity in sensor net-
works using directional antennae. In S. Nikoletseas and J. Rolim, editors, Theoret-
ical aspects of Distributed Computing in Sensor Networks, chapter 3, pages 59–84.
Springer, 2010. ISBN 978-3-642-14848-4.

7. C.H. Papadimitriou. The euclidean travelling salesman problem is np-complete.
Theoretical Computer Science, 4(3):237–244, 1977.

8. R.G. Parker and R.L. Rardin. Guaranteed performance heuristics for the bottleneck
traveling salesman problem. Operations Research Letters, 2(6):269–272, 1984.

Appendix

The proof of the Theorem 3 will be provided after proving the follow-
ing lemmas. Let us denote by TUDG(P, r) the graph T∪UDG(P, r),
where T is the MST of P .

Lemma 4. The following invariant holds for Aα1/i at the beginning
of each iteration of the loop. Let e = {u, v} be the last processed edge.

– H is a tree
– A vertex is red if and only if it is a separator vertex of TUDG(P, d(u, v)).

Furthermore, for every red vertex w : h(w) = w and c(w) is the
number of connected components of TUDG(P, d(u, v)) \ {w}.

– ∀x, y ∈ P : h(x) = h(y) if and only if x and y lie in the same
block of TUDG(P, d(u, v)).

Proof. By induction over loop iterations. The base step at the begin-
ning of the first iteration of the loop follows from the construction
and the definitions.

The induction step:

– H remains a tree, because each created cycle is replaced by a star
graph. The subsequent collapse of the all-black component just
reduces the size of the resulting tree.

– Let u = {u, v} be the last processed edge. If h(u) = h(v), by in-
duction hypothesis the edge lies within the same block and adding
it does not influence any separator vertex. Whenever h(u) 6= h(v),
the edge (h(u), h(v)) creates a cycle Ce in H; this corresponds to a
cycle C ′e in TUDG(P, d(u, v)) (since the edges are added in order
of increasing length, all shorter edges of UDG(P, d(u, v)) have al-
ready been processed). The cycle C ′e connects two components for
each separator (by induction hypothesis red) vertex lying on this
cycle, except the vertices incident to e. This is exactly reflected
on line 12 – by induction hypothesis the red vertices processed on
line 12 are exactly the separators lying on the cycle C ′e. The in-
variant is maintained by recoloring red vertices to red on line 15
whenever the separation degree reaches 1, i.e. the vertex stops
being a separator. Note also that h(w) remains equal to w while
w remains red.

– This invariant is maintained on line 21.

This completes the proof of the lemma. ut

From the second point of the previous lemma and from line 13
of Aα1/i we get

Lemma 5. Algorithm Aα1/i correctly computes values α1/i(v) for
1 ≤ i < 5 and for each vertex v ∈ P .

Proof. The lemma follows easily from the second point of the previ-
ous lemma and from line 13 of Aα1/i .

Now we will prove that the number of processed edges is of the
order of O(n). Let RNG(P) denote the Relative Neighbourhood
Graph of the point set P and let RNGw(P) = RNG(P \ {w}). The
following simple lemma is crucial:

Lemma 6. Let e = {u, v} be the shortest edge connecting two con-
nected components of TUDG(P, r) \ {w} where r < d(u, v). Then
either e ∈ RNG(P) and it forms angle at least π/3 with all incident
edges of TUDG(P, r) \ {w}, or e ∈ RNGw(P) and only the angles
∠wuv or ∠wvu might be smaller than π/3.

Proof. Let S(x, r) denote an open (i.e. not containing the boundary
vertices) sphere/disk centered at vertex x with radius r. If S(u, |e|)∩
S(v, |e|) is empty then e ∈ RNG(P) and the lemma holds. Consider
now a vertex p ∈ S(u, |e|) ∩ S(v, |e|). Let Cu and Cv denote the
components of TUDG(P, r) containing u and v, respectively. p /∈
Cu, otherwise (p, v) would be the shortest edge connecting Cu and
Cv. Analogously p /∈ Cv. Therefore, the only possibility is p = w.
After removing w, S(u, d(u, v)) ∩ S(v, d(u, v)) becomes empty, i.e.
e ∈ RNGw(P). ut

Consider now an edge e = {u, v} such that h(u) 6= h(v). By
Lemma 4 u and v belong to different blocks ofG′ = TUDG(P, d(u′, v′))
where {u′, v′} is the last edge processed before e. Therefore there ex-
ists a separator vertex w such that u and v are in different com-
ponents of G′ \ {w}. Since the edges are processed in the order
of increasing length, e must be the shortest edge connecting dif-
ferent components of G′ \ {w}. By Lemma 6 e ∈ RNGw(P). This
means that it is enough to consider on line 8 only the edges from⋃

w∈P RNGw(P).

Lemma 7. The number of edges in
⋃

w∈P RNGw(P) is in O(n).

Proof. We will actually show that
⋃

w∈P Delw(P) has O(n) edges,
where Del(P) is the Delauney triangulation of P and Delw(P) =
Del(P \ {w}). Since ∀S : RNG(S) ⊆ Del(S), this is sufficient.

The crucial observation is that Delw(P) \ Del(P) has at most
d(w) edges, where d(w) is the degree of w in Del(P). Summing up
over all w ∈ P we have

|
⋃
w∈P

Delw(P)| ≤ |Del(P) ∪
⋃
w∈P

(Delw(P) \Del(P))|

≤ |Del(P)|+
∑
w∈P

d(w)

= |Del(P)|+ 2|Del(P)|
= 3|Del(P)| ∈ O(n),

which completes the proof of the lemma. ut

Proof (Theorem 6). We present a counter example in Figure 2 where
the set S = {u1, u2, u3} such that G \ S leaves 10 connected compo-
nents.

u1

u2

u3

Fig. 2: α1/3 ≥ σ1/3.

ut

Algorithm 2 Strongly connected spanning digraph with max out-
degree four with radius r4 = α4 on a set of points

1: Let G = MST (P) and
−→
G be the strongly connected digraph obtained from orient-

ing every edge of G in both directions.
2: Set S be the set of vertices of G of degree five.
3: Let r4 = Aα4.
4: for each v in S do
5: Set Ev be the shortest edges of length at most r4 that join two components of
G \ {v}.

6: end for
7: while S is non-empty do
8: Let {u,w} be edge that forms the longest cycle C in G.
9: Let G = G ∪ {u,w}.

10: if |C| > 3 then
11: Orient the cycle C in clockwise order.
12: Let S = S \ C.
13: else
14: Let v = C \ {u,w}.
15: Let Gu and Gw be the components of G\{v} such that u ∈ Gu and v ∈ Gw.
16: Let vu . . . u′v be a cycle in Gu ∪ {v} and vw . . . w′v be a cycle in Gw ∪ {v}
17: Let G = G ∪ {u,w} and S = S \ {v}.
18: if u 6= u′ then
19: Let G = G \ {v, u}.
20: end if
21: if w 6= w′ then
22: Let G = G \ {v, w}.
23: end if
24: Orient the cycle in

−→
G as vu′ . . . uw . . . w′v.

25: end if
26: end while
27: Return G.

Proof (Theorem 7). Let P be a set of points and
−→
G′ be the strongly

connected digraph of max-out degree four obtained from Theorem 4.

Let G = G′ and
−→
G =

−→
G′. Consider the set S of vertices of G such

that ω(G \ {v}) = 4. Let r3 be the radius of α1/3 obtained from
Algorithm Aα1/i. For each vertex v ∈ S we compute the set Ev of
shortest edges of length at most r3 that join two distinct components
of G \ {v}.

As in Theorem 4 we will add new edges to G in order to form cy-
cles that include every vertex in S. We will prove that the out-degree
of the vertices in S can be always decreased without affecting the
max out-degree providing that the cycles have length three. However,

when the cycles have length greater than three, the orientation of
the cycles does not guarantee that every vertex has max out-degree
three. Thus, when we orient a cycle of length greater than three, for
each vertex v in the cycle that has out-degree four and ω(G\{v}) = 3,
we will process the shortest edges that connects two components to
form cycles of length three, so that the out-degree can be decreased.
However, these new edges may have length greater than r3. We will
prove that the length is bounded by 2 sin(2π/9) · r3.

Firstly we process edges in
⋃

v∈S Ev in descending order according
to the hop-length of the cycle that they form with the edges of G′.
Let {u,w} ∈

⋃
v∈S Ev be the edge that forms the longest cycle C.

We consider two cases:

– |C| > 3. Since {u,w} is the shortest edge, the lune formed by
S(u, d(u,w)) ∩ S(w, d(u,w)) is empty. Therefore, the angle that
{u,w} forms with the edges incident to u and w is at least π/3.

Let G = G∪{u,w} and orient C in clockwise order in
−→
G . Observe

that the orientation of C does not break the connectivity. How-
ever, it does not guarantee that the out-degree is decreased to 3.
Remove from S each vertex v ∈ S ∩C such that ω(G \ {v}) ≤ 3.
Consider the set S ′ of vertices of out-degree four in C\S. For each
vertex v′ in S ′, let Ev′ be the shortest edge {u′, w′} connecting
two distinct components of G\{v′} such that {v′, u′} and {v′, w′}
exist in G′. Add v′ to S.
It remains to prove that d(u′, w′) ≤ 2 sin(2π/9) · r3. Let (w0, v

′),
(v′, u0) ∈ C and (v′, u1), (v′, u2) and (v′, u3) be the out-going

edges of v′ in
−→
G . From Lemma 3 and the fact that S(u, d(u,w))∩

S(w, d(u,w)) is empty, ∠(w0v
′u0) ≥ π/3 and ∠(ujv

′uk) ≥ π/3.
Furthermore, at least two out-going edges (v′, ua), (v

′ub) are in
the same component. Therefore, there exist at least two vertices
{u′, w′} in distinct components with angle at most

2π − ∠(w0v
′u0)− ∠(uav

′ub)

3
=

4π

9
,

i.e., d(u′, w′) ≤ 2 sin(2π/9) · r3 since the longest edge of G so far
is r3.

– |C| = 3. Observe that {u, v}, {w, v} ∈ T . Let v ∈ C \ {u,w}
and Gu, Gw be the two components of G \ v such that u ∈

Gu and w ∈ Gw. Since {u,w} creates the longest cycle, there
does not exist an edge distinct to {u,w} in

⋃
x∈S\{v}Ex that

joins Gu and Gw. However, since {u, v}, {v, w} ∈ G′, the lune
formed by S(u, d(u,w)) ∩ S(w, d(u,w)) contains v. Therefore,
min(∠(wuv),∠(vuw)) ≤ π/3. Consider the cycle C ′ = vu . . . u′v
in Gu ∪ {v} and the cycle C ′′ = vw . . . w′v in Gw ∪ {v}. Let
G = G ∪ {u,w} and remove v from S. Remove {v, u} from G if
u 6= u′. Similarly, remove {v, w} from G if w 6= w′. Orient the new

cycle in
−→
G as vu′ . . . uw . . . w′v. Observe that v has out-degree at

most three in
−→
G and the out-degree of the vertices in the cycle

does not increase. Furthermore, the strong connectivity is not
broken.

This process maintains
−→
G strongly connected. When S is empty,

the max out-degree of
−→
G is three. The theorem follows. ut

Proof (Theorem 8). From Theorem G can be computed in O(n log n)
time. From Lemma 7, the number of edges to be processed are of
the order of O(n). Thus, it takes O(n log n) time to sort the edges
to be processed in line 8. Since every edge is in a constant number
of cycles the time to complete the construction is O(n log n).

Algorithm 3 Strongly connected spanning digraph with max out-
degree three with radius 2 sin(2π/9) · α3 on a set of points

1: Let G and
−→
G be the strongly connected digraph obtained from Algorithm 2.

2: Set S be the set of vertices of G such that ω(G \ {v}) = 4.
3: Let r3 = Aα3.
4: for each v in S do
5: Set Ev be the shortest edges of length at most r3 that join two components of
G \ {v}.

6: end for
7: while S is non-empty do
8: Let {u,w} be edge that forms the longest cycle C in G.
9: Let G = G ∪ {u,w}.

10: if |C| > 3 then
11: Orient the cycle C in clockwise order.
12: Remove form S all the vertices v in S ∩ C such that ω(G \ {v}) ≤ 4.
13: Let S′ be the set of vertices of out-degree four in C \ S.
14: for each v′ in S′ do
15: Set Ev′ be the shortest edge {u′, w′} joining two components of G \ {v′}

such that {u′, v′}, {w′, v′} ∈ G.
16: Let S = S ∪ {v}.
17: end for
18: else
19: Let v = C \ {u,w}.
20: Let Gu and Gw be the components of G\{v} such that u ∈ Gu and v ∈ Gw.
21: Let vu . . . u′v be a cycle in Gu ∪ {v} and vw . . . w′v be a cycle in Gw ∪ {v}
22: Let G = G ∪ {u,w} and S = S \ {v}.
23: if u 6= u′ then
24: Let G = G \ {v, u}.
25: end if
26: if w 6= w′ then
27: Let G = G \ {v, w}.
28: end if
29: Orient the cycle in

−→
G as vu′ . . . uw . . . w′v.

30: end if
31: end while
32: Return G.

