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Abstract. In this survey we have attempted to bring together most of the results and papers that deal
with toughness related to cycle structure. We begin with a brief introduction and a section on terminology
and notation, and then try to organize the work into a few self explanatory categories. These categories
are circumference, the disproof of the 2-tough conjecture, factors, special graph classes, computational
complexity, and miscellaneous results as they relate to toughness. We complete the survey with some
tough open problems!
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1. Introduction

More than 30 years ago Chvátal [67] introduced the concept of toughness. Since then a lot of
research has been done, mainly relating toughness conditions to the existence of cycle struc-
tures. Historically, most of the research was based on a number of conjectures in [67]. The
most challenging of these conjectures is still open: Is there a finite constantt0 such that every
t0-tough graph contains a cycle through all of its vertices? For a long time it was believed that
this conjecture should hold fort0 = 2. This ‘2-tough conjecture’ would then imply a number of
related results and conjectures which we will present later. But in 2000, it was shown [13] that
the 2-tough conjecture is false. On the other hand, we now know that the more generalt0-tough
conjecture is true for a number of graph classes, including planar graphs, claw-free graphs, and
chordal graphs, to name just a few. The early research in this area concentrated on sufficient de-
gree conditions which, combined with a certain level of toughness, would yield the existence of
long cycles. Another stream involved finding toughness conditions for the existence of certain
factors in graphs. Research on toughness has also focused on computational complexity issues.
In particular, we now know that it is NP-hard to compute the toughness of a graph [16].

For the last four Kalamazoo conferences [30,32,33,10], we surveyed results on toughness
and its relationship to cycle structure. In this extended survey we have attempted to bring to-
gether most of the results that deal with toughness related to cycle structure. As was true in our
previous Kalamazoo surveys, the present survey is undoubtedly not comprehensive. To be fair
to everyone, we will force ourselves to omit some of our own results.
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We begin with a brief section on terminology and notation and then try to organize the
work into a few self explanatory categories. Many of the results fit easily into more than one
category. These categories are circumference, the disproof of the 2-tough conjecture, factors,
special graph classes, computational complexity, miscellaneous results, and open problems as
they relate to toughness.

2. Terminology

Much of the background for this survey can be found in [30,32,33,10]. A good reference for
any undefined terms in graph theory is [60] and in complexity theory is [93]. We consider only
undirected graphs with no loops or multiple edges. The definitions and terminology presented
below will appear often in the sequel. Other definitions will be given later as needed.

Let ω(G) denote the number of components of a graphG. A graphG is t-tough if |S| ≥
tω(G − S) for every subsetS of the vertex setV (G) with ω(G − S) > 1. The toughnessof
G, denotedτ(G), is the maximum value oft for whichG is t-tough (takingτ(Kn) = ∞ for all
n ≥ 1). Hence ifG is not complete,τ(G) = min{|S|/ω(G−S)}, where the minimum is taken
over all cutsets of vertices inG. In [145], Plummer defined a cutsetS ⊆ V (G) to be atough set
if τ(G) = |S|/ω(G − S), i.e., a cutsetS ⊆ V (G) for which this minimum is achieved. We let
α(G) denote the cardinality of a maximum set of independent vertices ofG, andc(G) denote
thecircumferenceof G, i.e., the length of a longest cycle inG. Thegirth of G is the length of a
shortest cycle inG. We useκ(G) for thevertex connectivityof G andγ(G) to denote thegenus
of G. A graphG is hamiltonianif G contains aHamilton cycle, i.e., a cycle containing every
vertex ofG; G is traceableif G contains aHamilton path, i.e., a path containing every vertex
of G; G is pancyclicif G contains cycles of every length between3 and|V (G)|. A dominating
cycleof G is a cycleC of G such thatG − V (C) is an independent set, i.e., such that every
edge ofG has at least one of its endvertices onC. A k-factorof a graph is ak-regular spanning
subgraph. Of course, a Hamilton cycle is a (connected)2-factor. We sayG is chordal if it
contains no chordless cycle of length at least four andk-chordal if a longest chordless cycle in
G has length at mostk. We useN(v) to denote the set of neighbors of vertexv, d(v) = |N(v)|
to denote the degree of vertexv, andδ(G) for the minimum degree inG. For k ≤ α(G), we
useσk(G) to denote the minimum degree sum taken over all independent sets ofk vertices of
G, andNCk(G) to denote the minimum cardinality of the union of the neighborhoods of any
k such vertices. Fork > α(G), we setσk(G) = k(n − α(G)) andNCk(G) = n − α(G),
wheren = |V (G)|. If G has a noncomplete component, we letNC2(G) denote the cardinality
of the minimum neighborhood union of any pair of vertices at distance two apart; otherwise
NC2(G) = n − 1. We use dist(x, y) to denote the distance between two verticesx andy in a
connected graphG, i.e., the length of a shortest path inG betweenx andy. If no ambiguity can
arise we often omit the reference to the graphG, e.g., we useE for the edge setE(G), etc. We
uselog for the logarithm with base2, andln for the natural logarithm.

3. Toughness and Circumference

In this section we survey results concerning the relationship between the toughness of a graph
and its circumference. We begin our discussion with a well-known theorem of Dirac [77].

Theorem 1.LetG be a graph onn ≥ 3 vertices withδ ≥ n
2
. Then G is hamiltonian.

A long cycle version of Theorem 1 was also proved by Dirac.
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Theorem 2.LetG be a 2-connected graph onn vertices. Thenc(G) ≥ min{n, 2δ}.
In 1960 Ore [141] generalized Theorem 1 as follows.

Theorem 3.LetG be a graph onn ≥ 3 vertices withσ2 ≥ n. ThenG is hamiltonian.

A long cycle version of Theorem 3 was later established independently by Bondy [42],
Bermond [36], and Linial [130].

Theorem 4.LetG be a 2-connected graph onn vertices. Thenc(G) ≥ min{n, σ2}.
It is clear from the definition that being 1-tough is a necessary condition for a graph to be

hamiltonian. A natural question, answered by Jung in 1978 [116], is how much the lower bound
σ2 ≥ n in Ore’s Theorem can be weakened under the assumption thatG is 1-tough.

Theorem 5.LetG be a 1-tough graph onn ≥ 11 vertices withσ2 ≥ n− 4. ThenG is hamilto-
nian.

The original proof of Theorem 5 in [116] is rather complicated. A much simpler proof for
n ≥ 16 appears in [23].

It is reasonable to consider a long cycle version of Jung’s Theorem. The first step in this
direction was taken by Ainouche and Christofides [1].

Theorem 6.LetG be a 1-tough graph onn ≥ 3 vertices. Thenc(G) ≥ min{n, σ2 + 1}.
They also conjectured thatσ2 + 1 in Theorem 6 could be replaced byσ2 + 2, and their

conjecture was established by Bauer and Schmeichel [27].

Theorem 7.LetG be a 1-tough graph onn ≥ 3 vertices. Thenc(G) ≥ min{n, σ2 + 2}.
In [21], this was strengthened by providing a characterization of the 2-connected graphsG

with c(G) < σ2 + 2, and noting they were not 1-tough.
In [14] it was shown that the degree bound in Jung’s Theorem can be slightly lowered if

τ(G) > 1.

Theorem 8.Let G be a graph onn ≥ 30 vertices withτ > 1. If σ2 ≥ n − 7, thenG is
hamiltonian.

Theorem 8 is best possible with respect to the bound onσ2. Later, the nonhamiltonian1-
tough graphs for whichσ3 ≥ (3n − 24)/2 were characterized [117]. Theorem 8 also follows
from this characterization.

While Theorem 7 is best possible, a stronger result may be obtained ifσ2 ≥ 2n/3 (See
Theorem 17). A useful intermediate result concerns the existence of a longest cycle which is
also a dominating cycle. Since dominating cycles have played such a useful role in the early
results on toughness and cycle structure, we digress to discuss them. They were first introduced
by Nash-Williams in [139] and were later studied in detail by Veldman [155].

In [139], Nash-Williams proved the following.

Theorem 9.LetG be a 2-connected graph onn vertices withδ ≥ (n+2)/3. Then every longest
cycle inG is a dominating cycle.

The next result follows easily [139].
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Theorem 10.Let G be a 2-connected graph withδ ≥ max{(n + 2)/3, α}. Then G is hamilto-
nian.

In 1980 Bondy [44] generalized Theorem 9.

Theorem 11.LetG be a 2-connected graph onn vertices withσ3 ≥ n + 2. Then every longest
cycle inG is a dominating cycle.

An analogous generalization of Theorem 10 occurs in [44].

Theorem 12.LetG be a 2-connected graph onn vertices withσ3 ≥ max{n + 2, 3α}. ThenG
is hamiltonian.

Theorem 12 is an immediate consequence of the following result, established in [25].

Theorem 13.Let G be a 2-connected graph onn vertices withσ3 ≥ n + 2. Thenc(G) ≥
min{n, n + σ3/3− α}.

In [25], Theorem 13 is proved by combining Theorem 11 with a technical lemma, which we
state explicitly because of its central role in proofs of several results in this survey.

Lemma 1.Let G be a graph onn vertices withδ ≥ 2 and σ3 ≥ n. SupposeG contains a
longest cycleC which is a dominating cycle andv is a vertex inV (G)− V (C). With respect to
some orientation ofC, let S be the set of immediate successors onC of the vertices adjacent to
v. Then(V (G)− V (C)) ∪ S is an independent set of vertices.

The above results on dominating cycles all assume thatG is 2-connected. If insteadG is
assumed to be 1-tough, the bounds in Theorems 9 - 11 can be improved. The next two theorems
are due to Bigalke and Jung [39].

Theorem 14.Let G be a 1-tough graph onn vertices withδ ≥ n/3. Then every longest cycle
in G is a dominating cycle.

Theorem 15.LetG be a 1-tough graph onn ≥ 3 vertices withδ ≥ max{n/3, α− 1}. ThenG
is hamiltonian.

We close this digression on dominating cycles with the following generalization of Theorem
14 appearing in [25].

Theorem 16.LetG be a 1-tough graph onn vertices withσ3 ≥ n. Then every longest cycle in
G is a dominating cycle.

We now return to our discussion of toughness and circumference. By combining Lemma 1
with Theorem 16, a result similar to Theorem 13 was proved in [25].

Theorem 17.Let G be a 1-tough graph onn ≥ 3 vertices withσ3 ≥ n. Then c(G) ≥
min{n, n + σ3/3− α}.

It is easy to see thatα ≤ n/(τ + 1). In particular,α ≤ n/2 for any 1-tough graph. Thus
if G is a 1-tough graph onn ≥ 3 vertices withδ ≥ n/3, thenc(G) ≥ 5n/6 by Theorem 17.
Note that from Theorem 7 we could only conclude thatc(G) ≥ 2n/3 + 2. If G is 2-tough, then
α ≤ n/3. So an immediate corollary of Theorem 17 is the following result from [25].

Corollary 1. LetG be a 2-tough graph onn ≥ 3 vertices. Ifσ3 ≥ n, thenG is hamiltonian.
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Hoa [107] later showed that under the hypothesis of Theorem 17,c(G) ≥ min{n, n + σ3/3 −
α + 1}. Sinceα ≤ n/2 for any1-tough graph, we may conclude that under the hypothesis of
Theorem 17,c(G) ≥ 5n/6 + 1. Using a clever variation of Woodall’s Hopping Lemma [160],
Li [128] was able to improve on this result.

Theorem 18.If G is a 1-tough graph onn ≥ 3 vertices withδ ≥ n/3, then

c(G) ≥ min

{
n,

2n + 1 + 2δ

3
,
3n + 2δ − 2

4

}
≥ min

{
8n + 3

9
,
11n− 6

12

}
.

We do not believe, however, that this is best possible.

Conjecture 1.Let G be a 1-tough graph onn ≥ 3 vertices withσ3 ≥ n. Then c(G) ≥
min{n, (3n + 1)/4 + σ3/6}.

Conjecture 1 if true is best possible, as can be seen by the examples given in [25]. We omit the
details. Note that the truth of Conjecture 1 would allow us to conclude that under its hypothesis
c(G) ≥ (11n + 3)/12. However the gap between(8n + 3)/9 and(11n + 3)/12 remains. The
truth of Conjecture 1 would also imply the following generalization of Jung’s Theorem, which
was established by Faßbender [87].

Theorem 19.Let G be a1-tough graph onn ≥ 13 vertices withσ3 ≥ (3n − 14)/2. ThenG is
hamiltonian.

Theorem 19 was conjectured in [25], and its proof relies on a result in [25]. This result has
had a number of applications [11] and so we recall it now.

Theorem 20.Let G be a1-tough graph onn vertices withσ3 ≥ n ≥ 3. Then every longest
cycle inG is a dominating cycle. Moreover, ifG is not hamiltonian, thenG contains a longest
cycleC such thatmax{d(v) | v ∈ V (G)− V (C)} ≥ σ3/3.

Examples in [25] show that the lower bound onσ3 in Theorem 20 cannot be reduced. One
important application of Theorem 20 is Theorem 17.

The next result of Li from [129] is also related to Theorem 17. It concerns long cycles
through specified vertex sets in a 1-tough graph. LetG be a graph of ordern and letX ⊆ V (G).
Denote byG[X] the subgraph ofG induced byX. Let α(X) be the number of vertices of a
maximum independent set ofG[X], andσk(X) the minimum degree sum inG of k independent
vertices inX. A cycleC of G is calledX-longestif no cycle ofG contains more vertices ofX
thanC, andC is calledX-dominatingif all neighbors of each vertex ofX − V (C) are onC.

The main result in [129] is the following extension of a result by Bauer et al. [25].

Theorem 21.LetG be a 1-tough graph onn vertices andX ⊆ V (G). If σ3(X) ≥ n, thenG has
anX-longest cycleC such thatC is anX-dominating cycle and|V (C)∩X| ≥ min{|X|, |X|+
σ3(X)/3− α(X)}.

As we have seen, the use of dominating cycles to obtain long cycles has led to a number of
interesting results. The results we have discussed so far all involved vertex degrees. By consid-
ering neighborhood unions (see [127] for early work in this area) it was possible to strengthen
the conclusion of Theorem 17.
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Define

ε(i) :=





0, if i ≡ 0 mod 3
2, if i ≡ 1 mod 3
1, if i ≡ 2 mod 3.

The following appeared in [56].

Theorem 22.LetG be a1-tough graph onn vertices withσ3 ≥ n + r ≥ n ≥ 3. Thenc(G) ≥
min{n, n + NCr+5+ε(n+r) − α}.

In [56], it is shown that the lower bound onc(G) and the subscript ofNC in the conclusion
of Theorem 22 cannot be increased in general. SinceNCt(G) is a nondecreasing function oft
andNC3 ≥ σ3/3, Theorem 22 implies Theorem 17. Since alsoNCk ≤ n − α, the following
corollary, which slightly strengthens a result in [110], follows easily from Theorem 22. It also
implies Theorem 19.

Corollary 2. Let G be a1-tough graph onn vertices withσ3 ≥ n + r ≥ n ≥ 3. Thenc(G) ≥
min{n, 2NCr+5+ε(n+r)}.

It is also shown in [56] that the subscript ofNC in the above corollary can be replaced by
b(n + 6r + 17)/8c, yielding an improvement ifr ≤ n/2− 19.

A result closely related to Corollary 2 appeared in [15], where the conclusion is in terms of
NC2 rather thanNCk.

Theorem 23.Let G be a 1-tough graph onn vertices withσ3 ≥ n ≥ 3. Then c(G) ≥
min{n, 2NC2}.

In [15], it was conjectured that the conclusion of Theorem 23 can be replaced byc(G) ≥
min{n, 2NC2 + 4}.

We now continue with applications of Theorem 17 that do not involve neighborhood unions.
Since clearlyσ3 ≥ 3δ andα ≤ n/(τ + 1), we have the next result.

Theorem 24.LetG be at-tough graph onn ≥ 3 vertices, where1 ≤ t ≤ 2. If δ > n/(t+1)−1,
thenG is hamiltonian.

Notice that for this result to follow from Theorem 17 it is essential thatτ ≤ 2. However this
requirement can be removed, as shown in [6].

Theorem 25.Let G be at-tough graph onn ≥ 3 vertices withδ > n/(t + 1) − 1. ThenG is
hamiltonian.

Thus Chv́atal’s Conjecture that there exists a finite constantt0 such that allt0-tough graphs
are hamiltonian is true within the class of graphs havingδ(G) ≥ εn, for any fixedε > 0.

Jung and Wittmann [118] established a long cycle analogue of Theorem 25 generalizing both
Theorem 2 and Theorem 25.

Theorem 26.Let G be a 2-connectedt-tough graph onn vertices. Thenc(G) ≥ min{n, (t +
1)δ + t}.

Another result in [6] related to Theorem 25 concerns the existence of a dominating cycle.

Theorem 27.LetG be at-tough graph(t ≥ 1) onn ≥ 3 vertices withδ > n/(t + 2). ThenG
contains a dominating cycle.
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We now give a sufficient condition for a 1-tough graphG to be hamiltonian based on the ver-
tex connectivityκ(G) of G. The background for this result begins with a theorem of Häggkvist
and Nicoghossian [104].

Theorem 28.Let G be a 2-connected graph onn vertices withδ ≥ (n + κ)/3. ThenG is
hamiltonian.

This obviously represents a great improvement over Dirac’s Theorem for 2-connected graphs
with small vertex connectivity. Theorem 28 was generalized in [8].

Theorem 29.LetG be a 2-connected graph onn vertices withσ3 ≥ n + κ. ThenG is hamilto-
nian.

Both theorems are best possible, but not for 1-tough graphs. Bauer and Schmeichel [28] have
established a result analogous to Theorem 28 for 1-tough graphs.

Theorem 30.Let G be a 1-tough graph onn ≥ 3 vertices withδ ≥ (n + κ − 2)/3. ThenG is
hamiltonian.

There are graphs to show that Theorem 30 is best possible whenκ = 2, or whenκ =
(n− 5)/2 ≥ 11.

Wei [157] generalized Theorem 30 to the natural degree sum counterpart.

Theorem 31.Let G be a 1-tough graph onn ≥ 3 vertices withσ3 ≥ n + κ − 2. ThenG is
hamiltonian.

Hoa [108] was able to show that a 1-tough graph withσ2 ≥ n + κ − α is hamiltonian. He
also established a number of results on the length of longest dominating cycles [109].

Many results involving long cycles rely on large degree sums of independent vertices. In
[51], Brandt and Veldman showed that if a 1-tough graphG on n ≥ 2 vertices satisfiesd(u) +
d(v) ≥ n for every edgeuv ∈ E(G), thenG is pancyclic orG = Kn/2,n/2. The reader might
find it interesting to compare this to a classical result of Bondy [43]. We omit the details.

We now present a result of Hoàng [111] that finds a Hamilton cycle in at-tough graph based
on the degree sequence of the graph. It generalizes the following well-known result of Chvátal
[65].

Theorem 32.Let G be a graph with degree sequenced1 ≤ d2 ≤ . . . ≤ dn. If for all integersi
with 1 ≤ i < n/2, di ≤ i impliesdn−i ≥ n− i, thenG is hamiltonian.

Theorem 33.Let t ∈ {1, 2, 3} and letG be at-tough graph with degree sequenced1 ≤ d2 ≤
. . . ≤ dn. If for all integersi with t ≤ i < n/2, di ≤ i impliesdn−i+t ≥ n − i, thenG is
hamiltonian.

In [32] we also discussed the notion of path-tough graphs. A graphG is path-toughif for
every nonempty setS of vertices, the graphG−S can be covered by at most|S| vertex disjoint
paths. Being path-tough is a necessary condition for a graph to be hamiltonian. In addition,
every path-tough graph is 1-tough. A number of results on path-tough graphs appeared in [72].
In particular, it was shown that it is NP-complete to determine if a graph is path-tough. They
also proved the following.

Theorem 34.LetG be a path-tough graph onn ≥ 3 vertices. Ifδ ≥ 3
6+
√

3
n, thenG is hamilto-

nian.
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Schiermeyer [147] obtained the following counterpart of Jung’s Theorem for path-tough
graphs.

Theorem 35.LetG be a path-tough graph onn ≥ 3 vertices withσ2 > 4(n− 6/5)/5. ThenG
is hamiltonian.

This improved an earlier result of Häggkvist [103].

A new type of sufficient degree condition for a graph to be hamiltonian was introduced by
Fan [86] in the following theorem. Note that in Theorem 3 it is necessary to examine the degrees
of each pair of nonadjacent vertices. In Theorem 36 below it is only necessary to check the
degrees of pairs of vertices at distance 2 apart. Theorem 36 has led to many new and interesting
results in hamiltonian graph theory.

Theorem 36.LetG be a 2-connected graph onn vertices. If for all verticesx, y, dist(x, y) = 2
impliesmax{d(x), d(y)} ≥ n/2, thenG is hamiltonian.

We can weaken the degree condition in Fan’s Theorem whenG is 1-tough. The following
two theorems in [12] exemplify such results.

Theorem 37.Let G be a 1-tough graph onn ≥ 3 vertices such thatσ3 ≥ n. If for all vertices
x, y, dist(x, y) = 2 impliesmax{d(x), d(y)} ≥ (n− 4)/2, thenG is hamiltonian.

Theorem 37 is best possible in the sense that neither of the two degree conditions can be
relaxed. Another result in [12] shows that the condition onσ3 in Theorem 37 can be dropped
completely ifG is required to be 3-connected with enough vertices.

Theorem 38.LetG be a 3-connected 1-tough graph onn ≥ 35 vertices. If for all verticesx, y,
dist(x, y) = 2 impliesmax{d(x), d(y)} ≥ (n− 4)/2, thenG is hamiltonian.

We do not believe that the requirementn ≥ 35 in Theorem 38 is best possible.

Until now, the results in this section have all included an assumption concerning the vertex
degrees or neighborhood unions. We now examine what is known about the circumference of
a t-tough graph if no assumption is made regarding vertex degrees or neighborhood unions.
First observe that ifG is a k-connected graph onn ≥ 2k vertices, thenc(G) ≥ 2k. The
graphKk,n−k (n ≥ 2k ≥ 4) shows this is best possible, regardless of the size ofn. However
for t-tough graphs witht > 0, the situation is different. Letγk(t, n) = min{c(G) | G is a
k-connected,t-tough graph onn vertices}. The following appears in [54].

Theorem 39.Let t > 0 be fixed. Thenγ2(t, n) · log(γ2(t, n)) ≥ (2− o(1)) log n (n →∞).

Examples in [54] also show that for0 < t ≤ 1, γ2(t, n) = O(log n).
An important corollary of Theorem 39 is given below.

Corollary 3. Let t > 0 be fixed. Thenlimn→∞γ2(t, n) = ∞.

A stronger result than Theorem 39 can be obtained for3-connected graphs [54].

Theorem 40.Let t > 0 be fixed. Thenγ3(t, n) ≥
(

4

5 log((1/t) + 1)
− o(1)

)
log n (n →∞).

It is shown in [54] that fort ≤ 1, Theorem 40 is essentially best possible. This leads to the
following conjecture, also in [54].
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Conjecture 2.There is a positive constantA, depending only ont, such that fort > 0, γ2(t, n) ≥
A log n.

While Conjecture 2 has still not been settled, progress has been made with respect to planar
graphs. LetG be a planar graph of ordern. Tutte [154] proved that ifG is 4-connected, then
G is hamiltonian, while Jackson and Wormald [115] showed that ifG is 3-connected, then
c(G) ≥ ρnθ for certain positive constantsρ andθ. Now assumeκ = 2. Regardless of the value
of n, the circumference ofG may be as small as 4 (considerK2,n−2 for n ≥ 4). However, by
imposing a toughness condition a lower bound on the circumference ofG can be derived which
is logarithmic inn [40].

Theorem 41.Let G be a planar graph of ordern and connectivity 2 such thatω(G − S) ≤ ξ

for every subsetS of V (G) with |S| = 2. Thenc(G) ≥ ψ
(

1
ξ−1

)0.4
ln n, whereψ ≈ 0.10.

Corollary 4. LetG be a planar graph of ordern and connectivity 2. Thenc(G) ≥ ψ( τ
2−τ

)0.4ln n.

Examples in [40] show that under the hypotheses of Theorem 41 and Corollary 4 there is no
hope for a super-logarithmic lower bound onc(G). However Corollary 4 shows that Conjecture
2 above is true for planar graphs.

Another interesting problem, raised by Jackson in [112], is to determine whetherγ3(t, n) ≥
nη for some positive constantη depending only ont. Bondy and Simonovits [46] have con-
structed examples to show that fort = 3/2, if such a constantη exists,η ≤ log 8/ log 9.

4. The disproof of the 2-tough conjecture

As noted earlier, being 1-tough is a necessary condition for a graph to be hamiltonian. In [67],
Chvátal conjectured that there exists a finite constantt0 such that everyt0-tough graph is hamil-
tonian. He showed in [67] that there exist3

2
-tough nonhamiltonian graphs, and later Thomassen

[[37], p. 132] foundt-tough nonhamiltonian graphs witht > 3
2
. Later Enomoto et al. [84] have

found(2− ε)-tough graphs having no 2-factor for arbitraryε > 0.
For many years, the focus was on determining whether all2-tough graphs are hamiltonian.

One reason for this is that if all2-tough graphs were hamiltonian, a number of important con-
sequences [5] would follow. In addition, the results of Enomoto et al. [84] below seemed to
indicate that two might be the threshold for toughness that would imply hamiltonicity. The truth
of the 2-tough conjecture would also imply the well-known result of Fleischner [92] that the
square of any 2-connected graph is hamiltoninan. Moreover, it would imply the truth of two
other conjectures that have been open for about twenty years: Every 4-connected line graph is
hamiltonian [152], and every 4-connected claw-free graph is hamiltonian [135]. These conjec-
tures have recently been shown to be equivalent [146]. However, it turns out that not all2-tough
graphs are hamiltonian. Indeed, we have the following result [13].

Theorem 42.For everyε > 0, there exists a(9
4
− ε)-tough nontraceable graph.

We now give a brief outline of the construction of these counterexamples, which were in-
spired by constructions in [5] and [29].

For a given graphH andx, y ∈ V (H) we define the graphG(H, x, y, l, m) as follows. Take
m disjoint copiesH1, . . . , Hm of H, with xi, yi the vertices inHi corresponding to the vertices
x andy in H (i = 1, . . . , m). Let Fm be the graph obtained fromH1 ∪ . . . ∪ Hm by adding
all possible edges between pairs of vertices in{x1, . . . , xm, y1, . . . , ym}. Let T = Kl and let
G(H, x, y, l, m) be the joinT ∨ Fm of T andFm.

The proof of the following theorem occurred in [13] and almost literally also in [5].
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Theorem 43.LetH be a graph andx, y two vertices ofH which are not connected by a Hamil-
ton path ofH. If m ≥ 2l + 3, thenG(H, x, y, l, m) is nontraceable.

vu

Figure 1.The graphL.

Consider the graphL of Figure 1. There is obviously no Hamilton path inL betweenu and
v. HenceG(L, u, v, l,m) is nontraceable for everym ≥ 2l + 3. The toughness of these graphs
was established in [13].

Theorem 44.For l ≥ 2 andm ≥ 1,

τ(G(L, u, v, l, m)) =
l + 4m

2m + 1
.

Combining Theorems 43 and 44 for sufficiently large values ofm andl, one obtains the next
result [13].

Corollary 5. For everyε > 0, there exists a
(

9
4
− ε

)
-tough nontraceable graph.

It is easily seen from the proof in [13] that Theorem 43 remains valid if “m ≥ 2l + 3”
and “nontraceable” are replaced by “m ≥ 2l + 1” and “nonhamiltonian”, respectively. Thus
the graphG(L, u, v, 2, 5) is a nonhamiltonian graph, which by Theorem 44 has toughness 2.
This graph is sketched in Figure 2. It follows that a smallest counterexample to the 2-tough
conjecture has at most 42 vertices. Similarly, a smallest nontraceable2-tough graph has at most
|V (G(L, u, v, 2, 7))| = 58 vertices.

Figure 2.The graphG(L, u, v, 2, 5).

A graphG is neighborhood-connectedif the neighborhood of each vertex ofG induces a
connected subgraph ofG. In [67], Chv́atal also stated the following weaker version of the 2-
tough conjecture: every 2-tough neighborhood-connected graph is hamiltonian. Since all coun-
terexamples described above are neighborhood-connected, this weaker conjecture is also false.
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Most of the ingredients used in the above counterexamples were already present in [5]. It
only remained to observe that using the specific graphL as a “building block” produced a graph
with toughness at least 2. We hope that other building blocks and/or smarter constructions will
lead to counterexamples with a higher toughness. Constructions similar to those used to prove
Theorem 42 have been used to establish other important results. Chvátal [67] obtained

(
3
2
− ε

)
-

tough graphs without a2-factor for arbitraryε > 0. These examples are all chordal. It was
shown in [22] that every3

2
-tough chordal graph has a2-factor. Based on this, Kratsch [125]

raised the question whether every3
2
-tough chordal graph is hamiltonian. Using Theorem 43 in

[13] it has been shown that this conjecture, too, is false.
Consider the graphM of Figure 3.

q

p

Figure 3.The graphM .

The graphM is chordal and has no Hamilton path with endverticesp andq. The graphs
G(M, p, q, l,m) are also chordal and, by Theorem 43, they are nontraceable wheneverm ≥
2l + 3. By arguments similar to those used in the proof of Theorem 44, the toughness of

G(M, p, q, l,m) is
l + 3m

2m + 1
if l ≥ 2. Hence forl ≥ 2 the graphG(M, p, q, l, 2l + 3) is a chordal

nontraceable graph with toughness
7l + 9

4l + 7
. This gives the following result from [13].

Theorem 45.For everyε > 0, there exists a
(

7
4
− ε

)
-tough chordal nontraceable graph.

We will return to questions on tough chordal graphs in Section 6.
A k-walk in a graphG is a closed spanning walk ofG that visits every vertex ofG at mostk

times. Of course a Hamilton cycle is then a 1-walk. In [80], Ellingham and Zha used the same
construction as above to give an infinite class of graphs of relatively high toughness without a
k-walk. They obtained the following results.

Theorem 46.Every 4-tough graph has a 2-walk.

Theorem 47.For everyε > 0 and everyk ≥ 1 there exists a
(

8k+1
4k(2k−1)

− ε
)
-tough graph with

nok-walk.

To prove the latter theorem they first modified the graphL from Figure 1 and then relied on
the same basic construction that was used in [13].

5. Toughness and Factors

In [67], Chv́atal conjectured that everyk-tough graph onn ≥ k + 1 vertices andkn even
contains ak-factor. Enomoto et al. [84] gave a decisive answer to Chvátal’s conjecture in the
following two theorems.
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Theorem 48.LetG be ak-tough graph onn vertices withn ≥ k + 1 andkn even. ThenG has
a k-factor.

Theorem 49.Let k ≥ 1. For everyε > 0, there exists a(k − ε)-tough graphG on n vertices
with n ≥ k + 1 andkn even which has nok-factor.

In particular, every 2-tough graph contains a 2-factor, and for everyε > 0, there exist in-
finitely many(2− ε)-tough graphs with no 2-factor.

In [81], Enomoto strengthened Theorem 48.

Theorem 50.Let k be a positive integer andG be a graph onn vertices withn ≥ k + 1 and
kn even. Suppose|S| ≥ k · ω(G − S) − 7k

8
for all S ⊆ V with ω(G − S) ≥ 2. ThenG has a

k-factor.

In [82], Enomoto first improved Theorem 50 fork = 1 andk = 2. We need the following
definition. For a graphG let

τ
′
(G) = max{t | |S| ≥ t · ω(G− S)− t for all S ⊂ V (G)}

= min

{ |S|
ω(G− S)− 1

| ω(G− S) ≥ 2

}

if G is not complete. IfG is complete, setτ
′
(G) = ∞.

Theorem 51.LetG be a graph onn vertices, wheren is even. Ifτ
′ ≥ 1, thenG has a1-factor.

Theorem 52.LetG be a graph onn ≥ 3 vertices. Ifτ
′ ≥ 2, thenG has a2-factor.

Both Theorem 51 and Theorem 52 were also shown to be sharp.
Finally, Enomoto and Hagita [83] were able to generalize Theorem 52 and strengthen Theo-

rem 48 for graphs with a sufficiently large number of vertices.

Theorem 53.Letk be a positive integer andG be a graph onn ≥ k2−1 vertices withkn even.
If τ

′ ≥ k, thenG has ak-factor.

For 1 ≤ t < 2, it is natural to ask how large the minimum vertex degree of at-tough graph
can be, if the graph contains no2-factor. This problem was studied in [29].

Theorem 54.Let G be at-tough graph onn ≥ 3 vertices, where1 ≤ t ≤ 2. If δ ≥
(

2−t
1+t

)
n,

thenG has a2-factor.

It is also shown in [29] that for anyt ∈ [1, 3/2] there are infinitely manyt-tough graphs with
no2-factor satisfyingδ ≥

(
2−t
1+t

)
n− 5

2
.

However one can improve the bound in Theorem 54 for3/2 < t < 2 [29].

Theorem 55.Let G be at-tough graph onn ≥ 3 vertices, where3/2 < t < 2. If δ ≥(
2−t
1+t

) (
t2−1

7t−7−t2

)
n, thenG has a2-factor.

Examples in [29] show that Theorem 55 is asymptotically tight ift = (2r − 1)/r for any
integerr ≥ 2.

More recently, minimum degree conditions for at-tough graph(1 ≤ t < 3) to have a 3-factor
have been established [26]. The results in [26] are similar to those given in [29] for 2-factors.
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In [61], Chen improved on Theorem 48 by showing that under similar conditions it is pos-
sible to find ak-factor containing a specified edge and also to find ak-factor not containing
a specified edge. Another improvement of Theorem 48 was obtained by Katerinis [119] . An
[a, b]-factor of a graphG is a spanning subgraphF of G such thata ≤ dF (x) ≤ b, for all
x ∈ V (G).

Theorem 56.Let a ≤ b andG be a graph onn vertices such thata < b or bn is even. ThenG
has an[a, b]-factor if τ ≥ a + a

b
− 1.

Chen [62] improved this fora = 2 < b.

Theorem 57.Let b > 2 and G be a graph onn ≥ 3 vertices. ThenG has a[2, b]-factor if
τ ≥ 1 + 1

b
.

Ellingham et al. [79] have extended this result to connected factors.
Katerinis [120] has shown that a 1-tough bipartite graph onn ≥ 3 vertices has a 2-factor.
We next give a minimum degree condition for a 1-tough graph to have a 2-factor with a

specific number of cycles. First note that Jung’s Theorem (Theorem 5) implies the following
weaker theorem with a minimum degree condition.

Theorem 58.Let G be a1-tough graph onn ≥ 11 vertices withδ ≥ (n − 4)/2. ThenG is
hamiltonian.

Faudree et al. [88] generalized Theorem 58 as follows.

Theorem 59.There exists an integern0 such that every1-tough graph onn ≥ n0 vertices with
δ ≥ (n− 4)/2 has a2-factor withk cycles, for allk such that1 ≤ k ≤ (n− 10)/4.

A number of results on factors have appeared relating toughness to(r, k)-factor-critical
graphs. A graphG is (r, k)-factor-critical if G − X contains anr-factor for allX ⊆ V with
|X| = k. For r ≥ 2, these graphs were studied by Liu and Yu [131] under the name(r, k)-
extendable graphs. They proved the following.

Theorem 60.Let G be a graph onn vertices withτ ≥ 3. ThenG is (2, k)-factor-critical for
every integerk such that3 ≤ k ≤ τ andk ≤ n− 3.

They also conjectured that ifG is a graph onn vertices withτ ≥ q andn ≥ 2q + 1 for some
integerq ≥ 1, thenG is (2, 2q − 2)-factor-critical. Note that this conjecture is false forq = 1
by Theorem 49. However it was shown by Cai et al. [59], and independently by Enomoto [82],
that the conjecture is true for all integersq ≥ 2.

Theorem 61.Let G be a graph onn vertices withτ ≥ 2. ThenG is (2, k)-factor-critical for
every non-negative integerk with k ≤ min{2τ − 2, n− 3}.

It was also shown in [59] that the bound2τ − 2 is sharp.
Progress has also been made on the relationship between toughness and(r, k)-factor-critical

graphs forr = 1 andr = 3. In [89], Favaron consideredr = 1.

Theorem 62.Let G be a graph onn vertices andk be an integer with2 ≤ k < n andn + k
even. ThenG is (1, k)-factor-critical if τ > k/2.

The valuek/2 in Theorem 62 was also shown to be sharp.
In [149], Shi et al. consideredr = 3.
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Theorem 63.Let G be a graph onn vertices withτ ≥ 4. ThenG is (3, k)-factor-critical for
every non-negative integerk such thatn + k is even,k < 2τ − 2 andk ≤ n− 7.

This result is best possible with respect to each of the upper bounds onk.
In [121], Katona introduced the notion of “t-edge-toughness”. The definition is rather in-

volved, and we refer the reader to [121] for the precise definition. We note that it is easy to
verify that a graph is nott-edge-tough in the same way one easily verifies that a graph is not
t-tough. Edge-toughness is nicely related to both toughness and hamiltonicity, as the following
results from [121] show.

Theorem 64.If G is a hamiltonian graph, thenG is 1-edge-tough.

Theorem 65.If G is a t-edge-tough graph, thenG is t-tough.

Theorem 66.If G is a2t-tough graph, thenG is t-edge-tough.

We know, by Theorem 48, that2-tough graphs have2-factors. In light of Theorem 66, it
would be interesting to know if1-edge-tough graphs have2-factors. This was answered by
Katona [122] in the affirmative.

Theorem 67.LetG be a 1-edge-tough graph onn ≥ 3 vertices. ThenG has a 2-factor.

We close this section with a conjecture from [122].

Conjecture 3.Let t be a positive integer andG be at-edge-tough graph onn ≥ 2t + 1 vertices.
ThenG has a2t-factor.

6. Toughness and Special Graph Classes

Triangle-free graphs have received much attention in the literature. In particular, tough triangle-
free graphs have a number of interesting properties. We begin by considering the problem of
finding the best possible minimum degree condition to ensure that a 1-tough triangle-free graph
onn vertices is hamiltonian. The degree condition for the existence of a2-factor in the following
theorem from [20] is best possible.

Theorem 68.Let G be a 1-tough triangle-free graph onn ≥ 3 vertices. Ifδ(G) ≥ (n + 2)/4,
thenG has a 2-factor.

DefineC(G) to be the set of cycle lengths of a graphG. Brandt [47] has proven the following.

Theorem 69.Let G 6= C5 be a triangle-free, nonbipartite graph of ordern. If δ > n/3, then
C(G) = {4, 5, ..., r}, wherer = min{n, 2(n− α)}.

On the other hand, Moon and Moser [136] have shown that in a balanced bipartite graphG
on n vertices, ifδ > n/4, thenG is hamiltonian. Sinceα ≤ n/2 in any 1-tough graph, and
1-tough bipartite graphs are balanced, we easily obtain the following result.

Theorem 70.Let G be a 1-tough triangle-free graph onn ≥ 3 vertices. Ifδ > n/3, thenG is
hamiltonian.
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Combining Theorem 68 and Theorem 70, we see that the best minimum degree guaranteeing
that a 1-tough triangle-free graph is hamiltonian is somewhere between(n+2)/4 and(n+1)/3.

In [67], it was conjectured that there exists a positive constantt1 such that everyt1-tough
graph is pancyclic. Later, Jackson and Katerinis [114] asked if there is a positive constantt2 such
that everyt2-tough graph contains a triangle. In [19], both of these questions were answered in
the negative.

Theorem 71.There exist arbitrarily tough, triangle-free graphs.

This was accomplished by constructing a sequence of “layered graphs”. If one begins with
a triangle-free graph, a sequence of layered graphs can be constructed that remain triangle-free
and whose toughness approaches infinity.

Subsequently, Alon [2] proved a stronger result.

Theorem 72.For everyt andg there exists at-tough graph of girth greater thang.

Alon’s technique involved showing that regular graphs with well separated eigenvalues are
tough. He was then able to use the Ramanujan graphs [133,134] with appropriate parameters to
get explicit examples.

Later, Brandt, Faudree, and Goddard [50] also demonstrated that Chvátal’s pancyclic con-
jecture is false. A graph is calledweakly pancyclicif it contains cycles of every length between
its girth and its circumference. They show [50] there is no sufficiently large value of toughness
that will ensure that a graph is weakly pancyclic. Their short clever argument is presented in
[50] and originally appeared in Brandt [48]. For their construction, however, they need graphs
with large connectivity whose girth exceeds the maximum degree. For these graphs they also
rely on the Ramanujan graphs constructed by Lubotsky, Phillips, and Sarnak [133].

We now turn to some conjectures presented in [19]. It is easy to see that if some vertex in a
t-tough graphG onn vertices has degree larger thann/(t + 1), thenG must contain a triangle.
This led to the natural question of whether there exists ann/(t+1)-regulart-tough triangle-free
graph for arbitrarily larget. Since it appeared that the sequence of layered graphs constructed in
[19] had this property, it was conjectured that such graphs exist, and in [19] this was proven for
infinitely manyt such that1 ≤ t < 3. The full conjecture was proven independently by Brandt
[49] and Brouwer [58]. In fact, Brandt [49] proved slightly more.

Theorem 73.For everyε > 0 there exists a real numbert0 such that for everyt > t0 there is a
triangle-free graphG onn vertices with toughnessτ = n/δ − 1 andt− ε ≤ τ ≤ t + ε.

Theorem 71 is related to a number of other results on triangle-free graphs. It has been shown
[74,123,137,162] that there exist triangle-free graphs with arbitrarily large chromatic number.
Let χ(G) denote the chromatic number of a graphG. It is easy to see that ifG is a graph onn
vertices,

χ(G) ≥ n

α(G)
≥ τ(G) + 1. (1)

In [85], Erdös used a clever probabilistic argument to show that there exist graphs with arbitrar-

ily high girth and arbitrarily high chromatic number. In fact, he showed that these graphs have
arbitrarily highn/α ratio. By (1) we see that Theorem 71 represents a strengthening of these
previous results for triangle-free graphs. In fact, Brandt [49] has shown that for an appropriate
sequence of layered graphs, (1) can be satisfied with equality.
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Theorem 74.For every positive integerk there exists a triangle-free graphG with χ = k =
n/α = τ + 1.

It was also conjectured in [19] that at-tough graph onn vertices withδ > n/(t+1) must be
pancyclic. Such a graph clearly contains a triangle and by Theorem 25 it must also be hamilto-
nian. The following result from [50] demonstrates that this conjecture is true for at-tough graph
if t < 3− 4000/n.

Theorem 75.LetG be a graph of ordern with minimum degreeδ ≥ n/4 + 250 that contains a
triangle and a hamiltonian cycle. ThenG is pancyclic.

A problem that has received much attention is that of determining the minimum level of
toughness to ensure that a member from a special graph family is hamiltonian. We first consider
chordal graphs, as well as a few other subclasses of perfect graphs (for definitions, see [52]
or [100]). First recall that we have seen in Section 3 an infinite class of chordal graphs with
toughness close to7/4 having no Hamilton path. Hence,1-tough chordal graphs need not be
hamiltonian. In fact, even 1-tough planar chordal graphs need not be hamiltonian [41]. The
following result was established, however.

Theorem 76.LetG be a chordal, planar graph withτ > 1. ThenG is hamiltonian.

Gerlach [94] showed that the chordality assumption in the above theorem can be weakened
to the assumption that separating cycles of length at least four have chords.

To see that being1-tough will not suffice in Theorem 76, we must first define the “shortness
exponent” of a class of graphs. This concept was first introduced in [102] as a way of measuring
the size of longest cycles inpolyhedral, i.e.,3-connected planar graphs.

Let Σ be a class of graphs. Theshortness exponentof the classΣ is given by

σ(Σ) = lim inf
H∈Σ

log c(Hn)

log |V (Hn)| .

Thelim inf is taken over all sequences of graphsHn in Σ such that|V (Hn)| → ∞ asn →∞.
In [41], it was also shown that the shortness exponent of the class of all1-tough chordal pla-

nar graphs is at mostlog 8/ log 9. Hence there exists a sequenceG1, G2, . . . of 1-tough chordal

planar graphs with
c(Gi)

|V (Gi)| → 0 asi → ∞. On the other hand, all1-toughK1,3-free chordal

graphs are hamiltonian. This follows from the well-known result of Matthews and Sumner [135]
relating toughness and vertex connectivity inK1,3-free graphs, and a result of Balakrishnan and
Paulraja [3] showing that2-connectedK1,3-free chordal graphs are hamiltonian.

While being 1-tough will not ensure hamiltonicity for chordal graphs, it will for other sub-
classes of perfect graphs. For example, in [124] it was shown (implicitly) that1-tough interval
graphs are hamiltonian, and in [73] it was shown that1-tough cocomparability graphs are hamil-
tonian.

Let us now consider3/2-tough chordal graphs. We have already seen that such graphs need
not be hamiltonian. However for a certain subclass of chordal graphs, namely split graphs, we
have a different result. A graphG is called asplit graph if V (G) can be partitioned into an
independent set and a clique. We mention the following two results from [126].

Theorem 77.Every3/2-tough split graph is hamiltonian.

Theorem 78.There is a sequence{Gn}∞n=1 of split graphs with no 2-factor andτ(Gn) → 3/2.
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Even though3/2-tough chordal graphs need not be hamiltonian, it was shown in [22] that
they will have a2-factor. In fact, we can say a bit more.

Theorem 79.LetG be a3/2-tough5-chordal graph. ThenG has a2-factor.

Theorem 79 is best possible in two ways. Chvátal’s examples in [67] show it is best possible
with respect to toughness and examples in [29] contain6-chordal graphs without a2-factor
whose toughness approaches2 from below.

The previous results on tough chordal graphs lead to a very natural question. Does there
exist at1 > 0 such that everyt1-tough chordal graph is hamiltonian? This was settled in the
affirmative by Chen et al. [63], who gave a constructive proof of the following.

Theorem 80.Every18-tough chordal graph is hamiltonian.

The authors did not claim that18 is best possible. The natural question, in light of the dis-
proof of the2-tough conjecture for general graphs, is what minimum level of toughness will
ensure that a chordal graph is hamiltonian. More specifically, are2-tough chordal graphs hamil-
tonian?

What about triangle-free graphs? Are2-tough triangle-free graphs hamiltonian? It is conjec-
tured in [20] that for allε > 0, there exists a(2− ε)-tough triangle-free graph that does not even
contain a2-factor. An infinite collection of triangle-free graphs are given that clearly have no
2-factor. It appears that the toughness of these graphs approaches2 as the ordern → ∞; how-
ever establishing the toughness appears difficult. On the other hand, Ferland [90] has found an
infinite class of nonhamiltonian triangle-free graphs whose toughness is at least5/4. Of course,
the toughness of the Petersen graph is4/3; however the Petersen graph is not an infinite class.

In [57], toughness conditions are studied that guarantee the existence of a Hamilton cycle in
k-trees. In this context, ak-tree is a graph that can be obtained from aKk by repeatedly adding
new vertices and joining them to a set ofk mutually adjacent vertices. It is clear that ak-tree
is a chordal graph. In [57], it is shown that every 1-tough 2-tree on at least three vertices is
hamiltonian, a best possible result since 1-toughness is a necessary condition for hamiltonicity.
This is generalized to a result onk-trees fork ≥ 2 as follows: LetG be ak-tree. If G has
toughness at least(k+1)/3, thenG is hamiltonian. Moreover, infinite classes of nonhamiltonian
1-toughk-trees for eachk ≥ 3 are presented.

7. Computational Complexity of Toughness

The problem of determining the complexity of recognizingt-tough graphs was first raised by
Chvátal [66] and later appeared in [151] and [[68], p. 429]. We refer the reader to [93] for the
basic ideas of complexity theory.

Consider the following decision problem, wheret is any positive rational number.

t-TOUGH
INSTANCE : GraphG.

QUESTION : Isτ(G) ≥ t ?

The following was established in [16].

Theorem 81.For any positive rational numbert, t-TOUGH is NP-hard.
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In [16], a well-known NP-hard variant of INDEPENDENT SET [[93], p. 194] is reduced to
the problem of recognizing 1-tough graphs. Then the latter problem is reduced to recognizing
t-tough graphs, for any fixed positive rational numbert. In fact, it is easy to use an argument
analogous to that used in [16] to reduce INDEPENDENT SET to the problem of recognizing
1-tough graphs, as shown in [30].

It is natural to inquire whether the problem of recognizingt-tough graphs remains NP-hard
for various subclasses of graphs. For example, Matthews and Sumner [135] have shown that
for K1,3-free graphs,τ = κ/2. Hence the toughness ofK1,3-free graphs, and consequently of
line graphs, can be determined in polynomial time. Thus, while it is NP-complete to determine
if a line graph is hamiltonian [38], it is polynomial to determine if a line graph is 1-tough.
Another class of graphs for which this is the case is the class of split graphs. Recall that a
graphG is called a split graph ifV (G) can be partitioned into an independent set and a clique.
Determining if a split graph is hamiltonian was shown to be NP-complete in [70]. On the other
hand, the following was shown in [126].

Theorem 82.The class of 1-tough split graphs can be recognized in polynomial time.

Noting that submodular functions can be minimized in polynomial time [71,101], Woeginger
[159] then gave a short proof of the following result.

Theorem 83.For any rational numbert ≥ 0, the class oft-tough split graphs can be recognized
in polynomial time.

For many subclasses of graphs, however, it is NP-hard to recognizet-tough graphs. For
example, in [24] it was shown that it is NP-hard to recognizet-tough graphs, even within the
class of graphs having minimum degree “almost” high enough to ensure that the graph ist-
tough.

Theorem 84.Let t ≥ 1 be a rational number. Ifδ ≥ ( t
t+1

)n, thenG is t-tough. On the other
hand, for any fixedε > 0, it is NP-hard to determine ifG is t-tough for graphsG with δ ≥
( t

t+1
− ε)n.

Häggkvist [103] has shown that ifδ ≥ n/2 − 2, there is a polynomial time algorithm to
determine whetherG is hamiltonian. As a consequence of Jung’s Theorem (Theorem 5), a
graphG on n ≥ 11 vertices satisfyingδ ≥ n/2 − 2 is hamiltonian if and only ifG is 1-tough.
It follows that 1-tough graphs can be recognized in polynomial time whenδ ≥ n/2− 2.

Another interesting class of graphs is the class of bipartite graphs. Obviouslyτ ≤ 1 for
any bipartite graph. The complexity of recognizing 1-tough bipartite graphs had been raised a
number of times; see, e.g., [[55], p. 119]. In [126], Kratsch et al. were able to reduce 1-TOUGH
for general graphs to 1-TOUGH for bipartite graphs by using the classical Nash-Williams con-
struction [138] .

Theorem 85.1-TOUGH remains NP-hard for bipartite graphs.

Consequently, 1-TOUGH is also NP-hard for the larger class of triangle-free graphs.
An important class of graphs that has received considerable attention is the class of regular

graphs. Note that the maximum possible toughness of anr-regular graph isr/2, sinceτ ≤
κ/2 ≤ r/2.

Chvátal [67] asked for which values ofr andn > r + 1 there exists anr-regular,r/2-tough
graph onn vertices, and observed that this is always the case forr even. He also conjectured



Toughness in Graphs 19

that for r odd andn sufficiently large, it would be necessary thatn ≡ 0 mod r, and verified
this for r = 3. But for all oddr ≥ 5, Doty [78] and Jackson and Katerinis [114] independently
constructed an infinite family ofr-regular,r/2-tough graphs onn vertices withn 6≡ 0 mod r.

Jackson and Katerinis [114] gave a characterization of cubic3/2-tough graphs which al-
lowed such graphs to be recognized in polynomial time. Their characterization of these graphs
uses the concept ofinflation, introduced by Chv́atal in [67].

Theorem 86.LetG be a cubic graph. ThenG is3/2-tough if and only ifG = K4, G = K2×K3,
or G is the inflation of a3-connected cubic graph.

Goddard and Swart [99] conjectured an analogous characterization ofr-regular,r/2-tough
graphs for allr ≥ 1, which would allow such graphs to be recognized in polynomial time.

In the opposite direction, it was established in [17] that it is NP-hard to recognize1-tough
cubic graphs. This was generalized in [18] as follows.

Theorem 87.For any integert ≥ 1 and any fixedr ≥ 3t, it is NP-hard to recognizer-regular,
t-tough graphs.

The complexity of recognizingr-regular,t-tough graphs remains completely open when
2t < r < 3t, and the complexity whenr = 2t + 1 seems especially intriguing.

There are still many interesting subclasses of graphs for which the complexity of recognizing
t-tough graphs is unknown. A number of these classes are given in [17]. In particular, Dillen-
court [75,76] has noted that we still do not know the complexity of recognizing 1-tough planar
graphs or 1-tough maximal planar graphs.

The fact that it is NP-hard to recognize1-tough graphs makes it desirable to strengthen some
theorems by replacing the assumption that a graphG is 1-tough with the weaker assumption that
G is 2-connected. The idea is to try to draw the same conclusion regarding the cycle structure of
G under the weaker hypothesis thatG is 2-connected by specifying an easily described family
of exceptional graphs for which the new theorem does not hold.

To illustrate this type of improvement, consider again Theorem 7 (the long cycle version of
Jung’s Theorem). By Theorem 4, a 2-connected graphG on n ≥ 3 vertices satisfiesc(G) ≥
min{n, σ2}. In [21], it was noted that the 2-connected graphs withc(G) = σ2 or σ2 + 1 con-
stituted a familyH of eight easily-recognized classes of graphs. This led to the following im-
provement of Theorem 7.

Theorem 88.Let G be a2-connected graph onn ≥ 3 vertices. Thenc(G) ≥ min{n, σ2 + 2}
unlessG ∈ H.

A similar improvement of Theorem 5 was found by Skupień [150], and an analogous im-
provement of both parts of Theorem 20 was found by Bauer et al. [31].

There are several results in hamiltonian graph theory of the formP1 impliesP2, whereP1

is an NP-hard property of graphs andP2 is an NP-hard cycle structure property, and one might
wonder about the practical value of such theorems.

Two such theorems are the well-known theorems of Chvátal and Erd̈os [69] and Jung [116].
In [68], Chv́atal gave a proof of the Chvátal-Erd̈os Theorem [69] which constructs in poly-

nomial time either a Hamilton cycle in a graphG or an independent set of more thanκ vertices
in G. In [9], the authors provided a similar type of polynomial time constructive proof for Jung’s
Theorem [116] on graphs with at least16 vertices.
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Theorem 89.LetG be a graph onn ≥ 16 vertices withσ2 ≥ n− 4. Then we can construct in
polynomial time either a Hamilton cycle inG or a setX ⊆ V (G) with ω(G−X) > |X|.

It is possible that other theorems in graph theory with an NP-hard hypothesis and an NP-hard
conclusion also have polynomial time constructive proofs.

8. Other Toughness Results

In [144], Plummer investigated the relationship between the toughness of a graph and whether
a given matching in a graph can be extended to a perfect matching. In [67], it was noted that
every 1-tough graph on an even number of vertices has a perfect matching. Letm andn be
positive integers withm ≤ n/2− 1 and letG be a graph onn vertices with a perfect matching.
A graphG is m-extendableif every matching of sizem extends to a perfect matching. In [144],
Plummer proved the following result onm-extendable graphs.

Theorem 90.SupposeG is a graph onn vertices, withn even. Letm be a positive integer with
m ≤ n/2 − 1. If τ > m, thenG is m-extendable. Moreover, the lower bound onτ is tight for
all m.

As just noted, every 1-tough graph on an even number of vertices has a perfect matching.
In fact, more is true. In [132], a graphG is calledelementaryif G has a perfect matching, and
if the edges ofG which occur in a perfect matching induce a connected subgraph ofG. The
following was established in [7].

Theorem 91.LetG be a 1-tough graph on an even number of vertices. ThenG is elementary.

Similarly, 1-tough graphs on an odd number of vertices have special matching properties. A
graphG is calledfactor-critical [132] if G − v has a perfect matching, for allv ∈ V (G). The
following was also established in [7].

Theorem 92.LetG be a 1-tough graph on an odd number of vertices. ThenG is factor-critical.

Let ωo(G) denote the number of odd components of the graphG. A setT ⊆ V (G) is called
a Tutte setfor G if ωo(G − T ) − |T | = maxX⊆V (G){ωo(G − X) − |X|}. The importance of
Tutte sets rests on the fact that the size of a maximum matching inG is precisely1

2
(|V (G)| −

(ωo(G − T ) − |T |)), by a well-known theorem of Berge [35]. Maximum Tutte sets inG seem
especially interesting. In [7], it was established that finding maximum Tutte sets in a general
graph is NP-hard. However Theorems 91 and 92, together with the special structure of Tutte
sets in elementary and factor-critical graphs [132], yield the following result from [7].

Theorem 93.Maximum Tutte sets can be found in polynomial time for the class of 1-tough
graphs.

Recall that a cutsetS ⊆ V (G) is called atough setfor G if τ(G) = |S|/ω(G − S), and
any component ofG− S is called atough componentof G. In [145], Plummer investigated the
toughness of tough components. In particular, he showed that ifG is not complete andτ ≥ 1,

then any tough componentC in G satisfiesτ(C) ≥ dτ(G)e
2

.

We have mentioned that it is NP-hard to determine if a cubic graph is 1-tough. It is possible,
however, to obtain an upper bound on the toughness of a cubic graph in terms of its indepen-
dence number [96].
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Theorem 94.LetG be a noncomplete cubic graph onn vertices. Then

τ ≤ min
{

2n− 3α

n− α
,

2α

4α− n

}
.

In [96], Goddard also considered the toughness of a special class of cubic graphs. Acycle
permutation graphis a cubic graph on2m vertices obtained by taking two vertex disjoint cycles
onm vertices and adding a matching between the vertices of the two cycles. It was conjectured
in [143] that the toughness of such a graph is at most 4/3. Goddard [96] came very close to
proving this is true.

Theorem 95.LetG be a cycle permutation graph on 2m vertices. Then

τ





≤ 4/3 m ≡ 0, 1 mod 4,
< 4/3 m ≡ 2 mod 4,
≤ 4/3 + 4/(9m− 3) m ≡ 3 mod 4.

In [158], Win considered the relationship between the toughness of a graph and the existence
of a k-tree. In this context, ak-tree of a connected graph is a spanning tree with maximum
degree at mostk. Note that we usedk-trees before for a different subclass of the class of chordal
graphs.

Theorem 96.LetG be a connected graph. Supposek ≥ 2, and that for any subsetS ⊆ V (G),
ω(G− S) ≤ 2 + (k − 2)|S|. ThenG has ak-tree.

Fork = 2, this simply says that a connected graph with independence number at most 2 has
a Hamilton path. Fork ≥ 3, Theorem 96 has the following corollary [158].

Corollary 6. Letk ≥ 3. If τ ≥ 1/(k − 2), thenG has ak-tree.

A graph ispolyhedralif it is planar and 3-connected. Since a 4-connected planar graph is
hamiltonian by a well-known theorem of Tutte, a nonhamiltonian planar graph is at most3/2-
tough. In [105], Harant constructed nonhamiltonian regular polyhedral graphs of degree 3, 4,
and 5 with maximum toughness3/2.

In [106], Harant and Owens constructed nonhamiltonian maximal planar graphs with tough-
ness5/4. In [142], Owens improved this by constructing nonhamiltonian maximal planar graphs
with toughness3/2 − ε, for anyε > 0. In fact, Owens’ graphs do not even contain a 2-factor.
Since(3/2 + ε)-tough planar graphs are hamiltonian, it would be interesting to determine the
cycle structure of3/2-tough planar and maximal planar graphs. In particular, it would be inter-
esting to know if3/2-tough maximal planar graphs even contain a 2-factor.

A number of other results have considered the existence of tough nonhamiltonian maxi-
mal planar graphs. LetΓ (t0) denote the class of allt0-tough maximal planar graphs. In [140],
Nishizeki produced a nonhamiltonian graph on19 vertices inΓ (1), thus answering a question
of Chvátal concerning the existence of such a graph. In [75], Dillencourt found such a graph
with 15 vertices. Finally, Tḱač [153] was able to find a nonhamiltonian graph inΓ (1) with just
13 vertices, and to show that no such graph can have fewer vertices.

In Section 6, we defined the shortness exponent,σ(Σ), of a class of graphsΣ. Regarding
σ(Γ (1)), Dillencourt [75] showed thatσ(Γ (1)) ≤ log7 6, and in [153], Tḱač improved this by
showingσ(Γ (1)) ≤ log6 5. In [105], it is shown that the shortness exponent of the class of
3-regular polyhedral graphs with toughness3/2 is less than 1. The same holds for the class of
4-regular such graphs. A recent result of Chen and Yu [64] shows that the shortness exponent
of polyhedral graphs islog3 2. As a consequence,σ(Γ (3/2)) ≥ log3 2.



22 Douglas Bauer et al.

More results on the shortness exponent can be found in [75,102].

In [97], Goddard et al. considered bounds on the toughness of a graphG in terms of the
graph’s connectivity and genus. They made use of the following result of Schmeichel and Bloom
[148], in whichγ denotes the genus.

Theorem 97.LetG be a graph withκ ≥ 3. Thenω(G−X) ≤ 2
κ−2

(|X|−2+2γ) for all X ⊆ V
with |X| ≥ κ.

After simplifying the proof of Theorem 97 they used the result to obtain lower bounds onτ .

Theorem 98.LetG be a connected graph. Then

(1) τ >
κ

2
− 1, if γ = 0, and

(2) τ ≥ κ(κ− 2)

2(κ− 2 + 2γ)
, if γ ≥ 1.

They also discussed the quality of the bounds, and investigated upper bounds onτ . In par-
ticular, they showed that Theorem 98 (1) is sharp for2 ≤ κ ≤ 5, and that the bound in Theorem
98 (2) is attained by an infinite class of graphs, all of girth 4.

In [91], Ferland investigated the toughness of generalized Petersen graphs. These graphs
were first defined by Watkins in [156]. For eachn ≥ 3 and 0 < k < n, the generalized
Petersen graphG(n, k) has vertex setV = {u1, u2, . . . , un, v1, v2, . . . , vn} and edge setE =
{(ui, ui+1) | 1 ≤ i ≤ n} ∪ {(ui, vi) | 1 ≤ i ≤ n} ∪ {(vi, vi+k) | 1 ≤ i ≤ n}, where all indices
are modulon. Of course, the Petersen graph isG(5, 2).

In [91], as well as in his earlier paper [90], Ferland was interested in bounds forτ(G(n, k)),
especially asymptotic bounds. He called a real numberb anasymptotic upper boundfor τ(G(n, k))
if limn→∞ τ(G(n, k)) ≤ b. Asymptotic lower bounds are defined similarly. In [143],τ(G(n, 1))
is completely determined, and1 is an asymptotic upper bound. In [90], it was found that
for τ(G(n, 2)), 5/4 is both a lower bound and an asymptotic upper bound. Forn ≥ 3 and
0 < k < n, upper and lower (asymptotic) bounds forτ(G(n, k)) were given in [91].

In [53], Broersma, Engbers and Trommel studied the relationship between the toughness of
a graph and the toughness of its spanning subgraphs. In particular they proved the following.

Theorem 99.Let G be a graph onn ≥ 4 vertices withτ > 1. Then there exists a spanning
subgraphH of G with τ(H) = 1.

They also defined a graphG to beminimally t-tough if τ(G) = t andτ(H) < t for every
proper spanning subgraphH of G. They also discussed conditions under which the square of a
graph will be minimally2-tough.

Other variants on the toughness concept are more related to vulnerability and reliability of
graphs and networks than to their cycle structure. We refer the interested reader to some survey
papers [4,34,95] and will not treat them here.

9. Conclusions and Open Problems

Since Chv́atal [67] introduced toughness in 1973, much research has been done that relates
toughness conditions to the existence of cycle structures. In this survey, we have gathered many
of the important results in this area. Historically, the motivation for this research was based on a
number of conjectures in [67]. The most challenging of these conjectures is still open: Is there a
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finite constantt0 such that everyt0-tough graph is hamiltonian? If so, what is the smallest such
t0?

We now know that if the conjecture is true, thent0 ≥ 9/4. Although the conjecture is still
open for general graphs, we know that it is true for a number of well-studied graph classes,
e.g., planar graphs, claw-free graphs and chordal graphs. Since all4-connected planar graphs
are hamiltonian by a well-known theorem of Tutte, we havet0 > 3/2 for planar graphs, and
this result is best possible. For claw-free graphs we knowτ = κ/2; consequentlyt0 ≤ 7/2
by a result of Ryjacek [146], combined with a result of Zhan [161] and Jackson [113] stating
that all 7-connected line graphs are hamiltonian. However Matthews and Sumner [135] have
conjectured that4-connected (2-tough) claw-free graphs are hamiltonian. Finally, we knowt0 ≤
18 for chordal graphs by Theorem 80. Examples in [13] show that this cannot be improved to
a value below7/4. Are all 7/4-tough chordal graphs hamiltonian? It would be interesting to
know if 2-tough chordal graphs are hamiltonian. The gaps in our knowledge for claw-free and
chordal graphs imply a number of challenging open problems. The same is true for the class
of triangle-free graphs. It is known that there exists an infinite class of5/4-tough triangle-free
nonhamiltonian graphs [90], and it even appears that a class of triangle-free graphs with no
2-factor constructed in [20] has toughness approaching2 from below. These examples suggest
the intriguing possibility that every2-tough triangle-free graph is hamiltonian, though it remains
completely open whether thet0-tough conjecture holds for the class of triangle-free graphs. By
contrast, we know by Theorem 25 that the conjecture is true within the class of graphs onn
vertices satisfyingδ ≥ εn, for any fixedε > 0.

Suppose we also impose a minimum degree condition. The examples in [13] that disproved
the2-tough conjecture all haveδ = 4. We know from Corollary 1 that ifG is a2-tough graphs
on n vertices withδ ≥ n/3, thenG is hamiltonian. What if5 ≤ δ < n/3? The early research
on toughness and cycle structure concentrated on sufficient degree conditions which, combined
with a certain level of toughness, would yield the existence of long cycles. This survey contains
a wealth of results in this direction. One of the major open problems in this area is the con-
jecture that every 1-tough graph onn vertices withσ3 ≥ n ≥ 3 has a cycle of length at least
min{n, (3n + 1)/4 + σ3/6}. Another interesting problem is to find the best possible minimum
degree condition to ensure that a1-tough triangle-free graph is hamiltonian. By Theorems 68
and 70, we know the answer lies somewhere between(n + 2)/4 and(n + 1)/3.

If we do not impose a degree condition, toughness conditions can still guarantee cycles
of length proportional to a function of the number of vertices of the graph. Two of the most
challenging open problems in this area are whether there exist positive constantsA and B,
depending only ont, such that every 2-connected, respectively 3-connected,t-tough graph onn
vertices has a cycle of length at leastA log n, respectivelynB. Both problems have affirmative
solutions for planar graphs.

Another area of research has involved finding toughness conditions for the existence of cer-
tain factors in graphs. One of the challenging open problems in this area is to determine whether
every3/2-tough maximal planar graph has a 2-factor. If so, are they all hamiltonian? We also
do not know if a3/2-tough planar graph has a2-factor.

Research on toughness has also focused on computational complexity issues. In particular,
we now know that recognizingt-tough graphs is NP-hard in general, whereas it is polynomial
within the class of claw-free graphs and within the class of split graphs. For many other inter-
esting classes, this complexity question is still open, e.g., for (maximal) planar graphs and for
chordal graphs. Within the class ofr-regular graphs withr ≥ 3t, recognizingt-tough graphs
has been shown to be NP-hard. The problem is trivial ifr < 2t, but its complexity is open for
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values ofr with 2t ≤ r < 3t. It was conjectured by Goddard and Swart [99] to be polynomial
for r = 2t, and seems especially interesting whenr = 2t + 1.
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68. V. Chvátal, Hamiltonian cycles, In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and
B. Shmoys, eds.,The Traveling Salesman Problem, A Guided Tour of Combinatorial Optimization,
John Wiley & Sons, Chichester (1985) 403–429.
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102. B. Grünbaum and H. Walther, Shortness exponents of families of graphs,J. Combin. Theory -
Ser. B14 (1973) 364–385.
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