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Abstract. In this survey we have attempted to bring together most of the results and papers that deal
with toughness related to cycle structure. We begin with a brief introduction and a section on terminology
and notation, and then try to organize the work into a few self explanatory categories. These categories
are circumference, the disproof of the 2-tough conjecture, factors, special graph classes, computational
complexity, and miscellaneous results as they relate to toughness. We complete the survey with some
tough open problems!
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1. Introduction

More than 30 years ago Chtal [67] introduced the concept of toughness. Since then a lot of
research has been done, mainly relating toughness conditions to the existence of cycle struc-
tures. Historically, most of the research was based on a number of conjectures in [67]. The
most challenging of these conjectures is still open: Is there a finite corigtanth that every
to-tough graph contains a cycle through all of its vertices? For a long time it was believed that
this conjecture should hold feg = 2. This ‘2-tough conjecture’ would then imply a number of
related results and conjectures which we will present later. But in 2000, it was shown [13] that
the 2-tough conjecture is false. On the other hand, we now know that the more ggfietajh
conjecture is true for a number of graph classes, including planar graphs, claw-free graphs, and
chordal graphs, to name just a few. The early research in this area concentrated on sufficient de-
gree conditions which, combined with a certain level of toughness, would yield the existence of
long cycles. Another stream involved finding toughness conditions for the existence of certain
factors in graphs. Research on toughness has also focused on computational complexity issues.
In particular, we now know that it is NP-hard to compute the toughness of a graph [16].

For the last four Kalamazoo conferences [30, 32,33, 10], we surveyed results on toughness
and its relationship to cycle structure. In this extended survey we have attempted to bring to-
gether most of the results that deal with toughness related to cycle structure. As was true in our
previous Kalamazoo surveys, the present survey is undoubtedly not comprehensive. To be fair
to everyone, we will force ourselves to omit some of our own results.
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We begin with a brief section on terminology and notation and then try to organize the
work into a few self explanatory categories. Many of the results fit easily into more than one
category. These categories are circumference, the disproof of the 2-tough conjecture, factors,
special graph classes, computational complexity, miscellaneous results, and open problems as
they relate to toughness.

2. Terminology

Much of the background for this survey can be found in [30,32,33,10]. A good reference for
any undefined terms in graph theory is [60] and in complexity theory is [93]. We consider only
undirected graphs with no loops or multiple edges. The definitions and terminology presented
below will appear often in the sequel. Other definitions will be given later as needed.

Let w(G) denote the number of components of a grahbA graph( is ¢-toughif |S| >
tw(G — S) for every subseb of the vertex seV/ (G) with w(G — S) > 1. Thetoughnesof
G, denotedr (G), is the maximum value offor which G is t-tough (takingr(K,,) = oo for all
n > 1). Hence ifG is not completer (G) = min{|S|/w(G — S)}, where the minimum is taken
over all cutsets of vertices ifi. In [145], Plummer defined a cuts&tC V' (G) to be atough set
if 7(G) = |S|/w(G — S), i.e., acutseb C V(G) for which this minimum is achieved. We let
a(G) denote the cardinality of a maximum set of independent verticés @indc(G) denote
thecircumferencef G, i.e., the length of a longest cycle @ Thegirth of G is the length of a
shortest cycle it7. We usex(G) for thevertex connectivitpf G and~(G) to denote thegenus
of G. A graphG is hamiltonianif G contains eHamilton cyclei.e., a cycle containing every
vertex of G; G is traceableif G contains eHamilton path i.e., a path containing every vertex
of G; G is pancyclicif G contains cycles of every length betweeand|V (G)|. A dominating
cycleof G is a cycleC of GG such thatZ — V(C) is an independent set, i.e., such that every
edge ofG has at least one of its endvertices@nA k-factor of a graph is &-regular spanning
subgraph. Of course, a Hamilton cycle is a (connectetjjctor. We sayG is chordal if it
contains no chordless cycle of length at least four fsatiordalif a longest chordless cycle in
G has length at most. We useN (v) to denote the set of neighbors of vertexi(v) = | N (v)|
to denote the degree of vertexandd(G) for the minimum degree 6. Fork < a(G), we
useoy(G) to denote the minimum degree sum taken over all independent sktgeofices of
G, and NCy(G) to denote the minimum cardinality of the union of the neighborhoods of any
k such vertices. Fok > «o(G), we seto,(G) = k(n — a(G)) and NCi(G) = n — o(G),
wheren = |V(G)|. If G has a noncomplete component, we)&t'2(G) denote the cardinality
of the minimum neighborhood union of any pair of vertices at distance two apart; otherwise
NC2(G) = n — 1. We use didiz, y) to denote the distance between two verticemndy in a
connected grapty, i.e., the length of a shortest pathGhbetween: andy. If no ambiguity can
arise we often omit the reference to the gr@ple.g., we usé? for the edge sek/(G), etc. We
uselog for the logarithm with base, andin for the natural logarithm.

3. Toughness and Circumference

In this section we survey results concerning the relationship between the toughness of a graph
and its circumference. We begin our discussion with a well-known theorem of Dirac [77].

Theorem 1.LetG be a graph om > 3 vertices withy > 7. Then G is hamiltonian.

A long cycle version of Theorem 1 was also proved by Dirac.



Toughness in Graphs 3

Theorem 2.LetG be a 2-connected graph onvertices. Ther(G) > min{n, 26}.
In 1960 Ore [141] generalized Theorem 1 as follows.
Theorem 3.Let G be a graph om > 3 vertices witho, > n. ThenG is hamiltonian.

A long cycle version of Theorem 3 was later established independently by Bondy [42],
Bermond [36], and Linial [130].

Theorem 4.LetG be a 2-connected graph onvertices. Ther(G) > min{n, o2 }.

It is clear from the definition that being 1-tough is a necessary condition for a graph to be
hamiltonian. A natural question, answered by Jung in 1978 [116], is how much the lower bound
o9 > n in Ore’s Theorem can be weakened under the assumptiotrtisat-tough.

Theorem 5.Let G be a 1-tough graph on > 11 vertices witho, > n — 4. ThenG is hamilto-
nian.

The original proof of Theorem 5 in [116] is rather complicated. A much simpler proof for
n > 16 appears in [23].

It is reasonable to consider a long cycle version of Jung’s Theorem. The first step in this
direction was taken by Ainouche and Christofides [1].

Theorem 6.LetG be a 1-tough graph on > 3 vertices. Ther(G) > min{n, o, + 1}.

They also conjectured that, + 1 in Theorem 6 could be replaced by + 2, and their
conjecture was established by Bauer and Schmeichel [27].

Theorem 7.LetG be a 1-tough graph on > 3 vertices. Ther(G) > min{n, o2 + 2}.

In [21], this was strengthened by providing a characterization of the 2-connected gtaphs
with ¢(G) < o9 4 2, and noting they were not 1-tough.

In [14] it was shown that the degree bound in Jung’s Theorem can be slightly lowered if
7(G) > 1.

Theorem 8.Let G be a graph omn > 30 vertices withr > 1. If 05 > n — 7, thenG is
hamiltonian.

Theorem 8 is best possible with respect to the bound-orater, the nonhamiltoniai-
tough graphs for whicla; > (3n — 24)/2 were characterized [117]. Theorem 8 also follows
from this characterization.

While Theorem 7 is best possible, a stronger result may be obtaingd ¥ 2n/3 (See
Theorem 17). A useful intermediate result concerns the existence of a longest cycle which is
also a dominating cycle. Since dominating cycles have played such a useful role in the early
results on toughness and cycle structure, we digress to discuss them. They were first introduced
by Nash-Williams in [139] and were later studied in detail by Veldman [155].

In [139], Nash-Williams proved the following.

Theorem 9.LetG be a 2-connected graph envertices withy > (n+2)/3. Then every longest
cycle inG is a dominating cycle.

The next result follows easily [139].
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Theorem 10.Let G be a 2-connected graph with> max{(n + 2)/3, a}. Then G is hamilto-
nian.

In 1980 Bondy [44] generalized Theorem 9.

Theorem 11.LetG be a 2-connected graph onvertices witho3 > n + 2. Then every longest
cycle inG is a dominating cycle.

An analogous generalization of Theorem 10 occurs in [44].

Theorem 12.Let G be a 2-connected graph anvertices witho; > max{n + 2, 3a}. ThenG
is hamiltonian.

Theorem 12 is an immediate consequence of the following result, established in [25].

Theorem 13.Let G be a 2-connected graph om vertices withos > n + 2. Thenc(G) >
min{n,n + o3/3 — a}.

In [25], Theorem 13 is proved by combining Theorem 11 with a technical lemma, which we
state explicitly because of its central role in proofs of several results in this survey.

Lemma 1.Let G be a graph omn vertices withd > 2 and o3 > n. Suppose&~ contains a

longest cycle” which is a dominating cycle andis a vertex inl’(G) — V(C'). With respect to

some orientation of’, let S be the set of immediate successorg’bof the vertices adjacent to
v. Then(V(G) — V(C)) U S'is an independent set of vertices.

The above results on dominating cycles all assume @&het 2-connected. If instead' is
assumed to be 1-tough, the bounds in Theorems 9 - 11 can be improved. The next two theorems
are due to Bigalke and Jung [39].

Theorem 14.Let G be a 1-tough graph on vertices withd > n/3. Then every longest cycle
in G is a dominating cycle.

Theorem 15.Let G be a 1-tough graph on > 3 vertices with) > max{n/3,« — 1}. ThenG
is hamiltonian.

We close this digression on dominating cycles with the following generalization of Theorem
14 appearing in [25].

Theorem 16.Let G be a 1-tough graph on vertices witho; > n. Then every longest cycle in
G is a dominating cycle.

We now return to our discussion of toughness and circumference. By combining Lemma 1
with Theorem 16, a result similar to Theorem 13 was proved in [25].

Theorem 17.Let G be a 1-tough graph om > 3 vertices withos > n. Thenc(G) >
min{n,n + o3/3 — a}.

It is easy to see that < n/(7 + 1). In particular,a < n/2 for any 1-tough graph. Thus
if G is a 1-tough graph on > 3 vertices withd > n/3, thenc(G) > 5n/6 by Theorem 17.
Note that from Theorem 7 we could only conclude th@t) > 2n/3 + 2. If G is 2-tough, then
a < n/3. So an immediate corollary of Theorem 17 is the following result from [25].

Corollary 1. LetG be a 2-tough graph on > 3 vertices. Ifo; > n, thenG is hamiltonian.
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Hoa [107] later showed that under the hypothesis of Theorem(&7, > min{n,n + o3/3 —

a + 1}. Sincea < n/2 for any 1-tough graph, we may conclude that under the hypothesis of
Theorem 17¢(G) > 5n/6 + 1. Using a clever variation of Woodall's Hopping Lemma [160],
Li [128] was able to improve on this result.

Theorem 18.1f G is a 1-tough graph om > 3 vertices withd > n/3, then

2 1+26 3 20 — 2 8 3 1In—6
C(G)Zmin{n, nAl nt }Zmin{ n n }

3 ’ 4 12
We do not believe, however, that this is best possible.

Conjecture 1Let G be a 1-tough graph on > 3 vertices witho; > n. Thenc(G) >
min{n, (3n +1)/4+ 03/6}.

Conjecture 1iftrue is best possible, as can be seen by the examples given in [25]. We omit the
details. Note that the truth of Conjecture 1 would allow us to conclude that under its hypothesis
c(G) > (11n + 3)/12. However the gap betwedBfn + 3)/9 and(11n + 3)/12 remains. The
truth of Conjecture 1 would also imply the following generalization of Jung’s Theorem, which
was established by Fal3bender [87].

Theorem 19.Let G be al-tough graph om > 13 vertices witho; > (3n — 14)/2. ThenG is
hamiltonian.

Theorem 19 was conjectured in [25], and its proof relies on a result in [25]. This result has
had a number of applications [11] and so we recall it now.

Theorem 20.Let G be al-tough graph o vertices witho; > n > 3. Then every longest
cycle inGG is a dominating cycle. Moreover, @ is not hamiltonian, therd: contains a longest
cycleC such thatmax{d(v) | v € V(G) — V(C)} > o3/3.

Examples in [25] show that the lower bound @nin Theorem 20 cannot be reduced. One
important application of Theorem 20 is Theorem 17.

The next result of Li from [129] is also related to Theorem 17. It concerns long cycles
through specified vertex sets in a 1-tough graph(Lee a graph of ordet and letX C V(G).
Denote byG|[X] the subgraph ofr induced byX. Let «(X) be the number of vertices of a
maximum independent set 6f.X |, ando (X ) the minimum degree sum i of k£ independent
vertices inX. A cycle C of G is called.X-longestf no cycle of G contains more vertices of
thanC, andC' is called X -dominatingif all neighbors of each vertex of — V' (C') are onC.

The main result in [129] is the following extension of a result by Bauer et al. [25].

Theorem 21.LetG be a 1-tough graph on vertices andX C V(G). If 03(X) > n, thenG has
an X -longest cycle”’ such thatC' is an X -dominating cycle anV (C)N X | > min{| X|, | X |+
03(X)/3 — a(X)}.

As we have seen, the use of dominating cycles to obtain long cycles has led to a number of
interesting results. The results we have discussed so far all involved vertex degrees. By consid-
ering neighborhood unions (see [127] for early work in this area) it was possible to strengthen
the conclusion of Theorem 17.
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Define

0, if =0 mod 3
e(i) =<2, ifi=1mod 3
1, if i =2 mod 3.

The following appeared in [56].

Theorem 22.Let G be al-tough graph om vertices withos > n + r > n > 3. Thenc(G) >
min{n,n + NCyi5ic(nir) — O}

In [56], it is shown that the lower bound @fG) and the subscript aVC' in the conclusion
of Theorem 22 cannot be increased in general. SMEg(G) is a nondecreasing function of
and NC5 > o3/3, Theorem 22 implies Theorem 17. Since alé6’, < n — a, the following
corollary, which slightly strengthens a result in [110], follows easily from Theorem 22. It also
implies Theorem 19.

Corollary 2. Let G be al-tough graph om vertices witho; > n +r > n > 3. Thene(G) >
min{n7 2NC7"+5+5(TL+7’)}'

It is also shown in [56] that the subscript &C' in the above corollary can be replaced by
|(n 4 6r + 17)/8], yielding an improvement if < n/2 — 19.

A result closely related to Corollary 2 appeared in [15], where the conclusion is in terms of
NC?2 rather thanV (.

Theorem 23.Let G be a 1-tough graph onn vertices withos; > n > 3. Thenc¢(G) >
min{n, 2NC2}.

In [15], it was conjectured that the conclusion of Theorem 23 can be replaced-Hhy>
min{n, 2NC2 + 4}.

We now continue with applications of Theorem 17 that do not involve neighborhood unions.
Since clearly; > 30 anda < n/(7 + 1), we have the next result.

Theorem 24.LetG be at-tough graph om > 3 vertices, wheré <t < 2.1f6 > n/(t+1)—1,
thendG is hamiltonian.

Notice that for this result to follow from Theorem 17 it is essential that 2. However this
requirement can be removed, as shown in [6].

Theorem 25.Let G be at-tough graph om > 3 vertices withd > n/(t + 1) — 1. ThenG is
hamiltonian.

Thus Chatal’'s Conjecture that there exists a finite constasuch that alk,-tough graphs
are hamiltonian is true within the class of graphs havif@) > en, for any fixede > 0.

Jung and Wittmann [118] established a long cycle analogue of Theorem 25 generalizing both
Theorem 2 and Theorem 25.

Theorem 26.Let G be a 2-connectedtough graph om vertices. Ther(G) > min{n, (t +
1)d +t}.

Another result in [6] related to Theorem 25 concerns the existence of a dominating cycle.

Theorem 27.Let G be at-tough graph(t > 1) onn > 3 vertices withy > n/(¢ + 2). ThenG
contains a dominating cycle.
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We now give a sufficient condition for a 1-tough gra@hio be hamiltonian based on the ver-
tex connectivity<(G) of G. The background for this result begins with a theorem aggkvist
and Nicoghossian [104].

Theorem 28.Let G be a 2-connected graph om vertices withd > (n + )/3. ThenG is
hamiltonian.

This obviously represents a great improvement over Dirac’s Theorem for 2-connected graphs
with small vertex connectivity. Theorem 28 was generalized in [8].

Theorem 29.Let G be a 2-connected graph aonvertices witho; > n + . ThenG is hamilto-
nian.

Both theorems are best possible, but not for 1-tough graphs. Bauer and Schmeichel [28] have
established a result analogous to Theorem 28 for 1-tough graphs.

Theorem 30.Let G be a 1-tough graph on > 3 vertices withd > (n + x — 2)/3. ThenG is
hamiltonian.

There are graphs to show that Theorem 30 is best possible when2, or whenx =
(n—>5)/2 > 11.
Wei [157] generalized Theorem 30 to the natural degree sum counterpart.

Theorem 31.Let G be a 1-tough graph om > 3 vertices witho3 > n + k — 2. ThenG is
hamiltonian.

Hoa [108] was able to show that a 1-tough graph with> n + x — « is hamiltonian. He
also established a number of results on the length of longest dominating cycles [109].
Many results involving long cycles rely on large degree sums of independent vertices. In
[51], Brandt and Veldman showed that if a 1-tough grépbnn > 2 vertices satisfieg(u) +
d(v) > n for every edgew € E(G), thenG is pancyclic ofG' = K, ), /.. The reader might
find it interesting to compare this to a classical result of Bondy [43]. We omit the details.

We now present a result of ldag [111] that finds a Hamilton cycle intgdough graph based
on the degree sequence of the graph. It generalizes the following well-known resultaChv
[65].

Theorem 32.Let G be a graph with degree sequente< d, < ... < d,,. If for all integersi
with 1 < i < n/2,d; <iimpliesd,_; > n — i, thenG is hamiltonian.

Theorem 33.Lett € {1,2,3} and letG be at-tough graph with degree sequente< d, <
. < d,. If for all integers: with ¢t < i < n/2,d; < i impliesd,,_;.; > n — i, thenG is
hamiltonian.

In [32] we also discussed the notion of path-tough graphs. A géajphpath-toughif for
every nonempty sef of vertices, the grapty — S can be covered by at mgst| vertex disjoint
paths. Being path-tough is a necessary condition for a graph to be hamiltonian. In addition,
every path-tough graph is 1-tough. A number of results on path-tough graphs appeared in [72].
In particular, it was shown that it is NP-complete to determine if a graph is path-tough. They
also proved the following.

Theorem 34.LetG be a path-tough graph on > 3 vertices. If§ > J—\/ﬁn thenG is hamilto-
nian.
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Schiermeyer [147] obtained the following counterpart of Jung’s Theorem for path-tough
graphs.

Theorem 35.Let G be a path-tough graph on > 3 vertices withoy, > 4(n — 6/5) /5. ThenG
is hamiltonian.

This improved an earlier result ofaggkvist [103].

A new type of sufficient degree condition for a graph to be hamiltonian was introduced by
Fan [86] in the following theorem. Note that in Theorem 3 it is necessary to examine the degrees
of each pair of nonadjacent vertices. In Theorem 36 below it is only necessary to check the
degrees of pairs of vertices at distance 2 apart. Theorem 36 has led to many new and interesting
results in hamiltonian graph theory.

Theorem 36.Let G be a 2-connected graph onvertices. If for all vertices:, y, dist(x, y) = 2
impliesmax{d(x),d(y)} > n/2, thenG is hamiltonian.

We can weaken the degree condition in Fan’s Theorem wheén1-tough. The following
two theorems in [12] exemplify such results.

Theorem 37.Let G be a 1-tough graph on > 3 vertices such that; > n. If for all vertices
x,y, dist(z,y) = 2 impliesmax{d(z),d(y)} > (n — 4)/2, thenG is hamiltonian.

Theorem 37 is best possible in the sense that neither of the two degree conditions can be
relaxed. Another result in [12] shows that the conditionognn Theorem 37 can be dropped
completely ifG is required to be 3-connected with enough vertices.

Theorem 38.Let GG be a 3-connected 1-tough graph an> 35 vertices. If for all vertices:, y,
dist(z,y) = 2 impliesmax{d(z),d(y)} > (n — 4)/2, thenG is hamiltonian.

We do not believe that the requirement 35 in Theorem 38 is best possible.

Until now, the results in this section have all included an assumption concerning the vertex
degrees or neighborhood unions. We now examine what is known about the circumference of
a t-tough graph if no assumption is made regarding vertex degrees or neighborhood unions.
First observe that it7 is a k-connected graph on > 2k vertices, then:(G) > 2k. The
graph Ky ,,—x (n > 2k > 4) shows this is best possible, regardless of the size éfowever
for t-tough graphs witit > 0, the situation is different. Lefy(¢,n) = min{c(G) | G is a
k-connected;-tough graph om verticeg. The following appears in [54].

Theorem 39.Lett > 0 be fixed. Thens(t,n) - log(a(t,n)) > (2 —o(1)) logn (n — o0).

Examples in [54] also show that for< t < 1, v, (t,n) = O(logn).
An important corollary of Theorem 39 is given below.

Corollary 3. Lett > 0 be fixed. Thetim,, V2 (t,n) = co.

A stronger result than Theorem 39 can be obtained{foonnected graphs [54].

. 4
Theorem 40.Lett > 0 be fixed. Thens(t,n) > <5log((1/t

It is shown in [54] that fort < 1, Theorem 40 is essentially best possible. This leads to the
following conjecture, also in [54].

ES 0(1)> logn (n — o).



Toughness in Graphs 9

Conjecture 2There is a positive constadt depending only oh, such that for > 0, v (¢, n) >
Alogn.

While Conjecture 2 has still not been settled, progress has been made with respect to planar
graphs. Letz be a planar graph of order. Tutte [154] proved that it7 is 4-connected, then
G is hamiltonian, while Jackson and Wormald [115] showed thdt i 3-connected, then
c(G) > pn? for certain positive constantsandd. Now assume: = 2. Regardless of the value
of n, the circumference off may be as small as 4 (consid&k ,,_» for n > 4). However, by
imposing a toughness condition a lower bound on the circumferenGecah be derived which
is logarithmic inn [40].

Theorem 41.Let G be a planar graph of orden and connectivity 2 such that(G — 5) < ¢
for every subse$ of V(G) with |S| = 2. Thenc(G) > ¢ (5_%)0'4 In n, wherey = 0.10.

Corollary 4. LetG be a planar graph of order and connectivity 2. Thef(G) > ¢ (57-)"“In n.

Examples in [40] show that under the hypotheses of Theorem 41 and Corollary 4 there is no
hope for a super-logarithmic lower bound €(id-). However Corollary 4 shows that Conjecture
2 above is true for planar graphs.

Another interesting problem, raised by Jackson in [112], is to determine whegiltien) >
n' for some positive constant depending only ort. Bondy and Simonovits [46] have con-
structed examples to show that for 3/2, if such a constani exists,n < log 8/ log9.

4. The disproof of the 2-tough conjecture

As noted earlier, being 1-tough is a necessary condition for a graph to be hamiltonian. In [67],
Chvatal conjectured that there exists a finite constaatich that every,-tough graph is hamil-
tonian. He showed in [67] that there exgstough nonhamiltonian graphs, and later Thomassen
[[37], p. 132] foundt-tough nonhamiltonian graphs with> % Later Enomoto et al. [84] have
found (2 — €)-tough graphs having no 2-factor for arbitrary- 0.

For many years, the focus was on determining whethex-adugh graphs are hamiltonian.
One reason for this is that if al-tough graphs were hamiltonian, a number of important con-
sequences [5] would follow. In addition, the results of Enomoto et al. [84] below seemed to
indicate that two might be the threshold for toughness that would imply hamiltonicity. The truth
of the 2-tough conjecture would also imply the well-known result of Fleischner [92] that the
square of any 2-connected graph is hamiltoninan. Moreover, it would imply the truth of two
other conjectures that have been open for about twenty years: Every 4-connected line graph is
hamiltonian [152], and every 4-connected claw-free graph is hamiltonian [135]. These conjec-
tures have recently been shown to be equivalent [146]. However, it turns out that2xtdadjh
graphs are hamiltonian. Indeed, we have the following result [13].

Theorem 42.For everye > 0, there exists 47 — ¢)-tough nontraceable graph.

We now give a brief outline of the construction of these counterexamples, which were in-
spired by constructions in [5] and [29].

For a given grapl andz,y € V(H) we define the grapt¥(H, z, y, [, m) as follows. Take
m disjoint copiesH., . .., H,, of H, with x;, y; the vertices inH; corresponding to the vertices
randyin H (i = 1,...,m). Let F,,, be the graph obtained frotl; U ... U H,, by adding
all possible edges between pairs of verticegan, ..., z,,v1,...,yn}. LetT = K; and let
G(H,z,y,l,m) be the joinT v F,, of T"and F,,.

The proof of the following theorem occurred in [13] and almost literally also in [5].
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Theorem 43.Let H be a graph and:, y two vertices off which are not connected by a Hamil-
ton path ofH. If m > 2] + 3, thenG(H, x,y, [, m) is nontraceable.

Figure 1.The graphL.

Consider the graph of Figure 1. There is obviously no Hamilton pathirbetweern: and
v. HenceG(L, u,v,l, m) is nontraceable for eveny. > 2[ + 3. The toughness of these graphs
was established in [13].

Theorem 44.For [ > 2 andm > 1,
l+4m
L = )

Combining Theorems 43 and 44 for sufficiently large values.@nd/, one obtains the next
result [13].

Corollary 5. For everye > 0, there exists e(% — e)-tough nontraceable graph.

It is easily seen from the proof in [13] that Theorem 43 remains validrif > 2l + 3”
and “nontraceable” are replaced by “> 2/ + 1” and “nonhamiltonian”, respectively. Thus
the graphG (L, u,v,2,5) is a nonhamiltonian graph, which by Theorem 44 has toughness 2.
This graph is sketched in Figure 2. It follows that a smallest counterexample to the 2-tough
conjecture has at most 42 vertices. Similarly, a smallest nontrac2ategh graph has at most
\V(G(L,u,v,2,7))| = 58 vertices.

B A A A A

Iy« [y < v & [» & [»

R A

Figure 2.The graphG(L, u, v, 2,5).

A graphG is neighborhood-connectefithe neighborhood of each vertex 6f induces a
connected subgraph ¢f. In [67], Chvatal also stated the following weaker version of the 2-
tough conjecture: every 2-tough neighborhood-connected graph is hamiltonian. Since all coun-
terexamples described above are neighborhood-connected, this weaker conjecture is also false.
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Most of the ingredients used in the above counterexamples were already present in [5]. It
only remained to observe that using the specific griapls a “building block” produced a graph
with toughness at least 2. We hope that other building blocks and/or smarter constructions will
lead to counterexamples with a higher toughness. Constructions similar to those used to prove
Theorem 42 have been used to establish other important resulistaCér] obtainec(g — e)-
tough graphs without a-factor for arbitrarye > 0. These examples are all chordal. It was
shown in [22] that ever;%-tough chordal graph has2afactor. Based on this, Kratsch [125]
raised the question whether eve}yough chordal graph is hamiltonian. Using Theorem 43 in
[13] it has been shown that this conjecture, too, is false.

Consider the graph/ of Figure 3.

q
Figure 3.The graph)M.

The graphM is chordal and has no Hamilton path with endvertipeand q. The graphs
G(M,p,q,l,m) are also chordal and, by Theorem 43, they are nontraceable whenewer

2l + 3. By arguments similar to those used in the proof of Theorem 44, the toughness of
4+ 3m . .
G(M,p,q,l,m)is 2; J:ri if { > 2. Hence forl > 2 the graphz(M, p, ¢, [, 2] + 3) is a chordal

. [ o :
nontraceable graph with toughng‘%{—g. This gives the following result from [13].

Theorem 45.For everye > 0, there exists e({ — e) -tough chordal nontraceable graph.

We will return to questions on tough chordal graphs in Section 6.

A k-walkin a graphG is a closed spanning walk 6f that visits every vertex aff at mostk
times. Of course a Hamilton cycle is then a 1-walk. In [80], Ellingham and Zha used the same
construction as above to give an infinite class of graphs of relatively high toughness without a
k-walk. They obtained the following results.

Theorem 46.Every 4-tough graph has a 2-walk.

Theorem 47.For everye > 0 and everyk > 1 there exists 3(4&51—:_11) — e) -tough graph with
no k-walk.

To prove the latter theorem they first modified the graginom Figure 1 and then relied on
the same basic construction that was used in [13].

5. Toughness and Factors

In [67], Chvatal conjectured that every+tough graph om > k + 1 vertices andkn even
contains ak-factor. Enomoto et al. [84] gave a decisive answer todéks conjecture in the
following two theorems.
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Theorem 48.Let G be ak-tough graph om vertices withn > k£ + 1 andkn even. Therd? has
a k-factor.

Theorem 49.Let k£ > 1. For everye > 0, there exists 4k — ¢)-tough graphG onn vertices
withn > k + 1 andkn even which has ng-factor.

In particular, every 2-tough graph contains a 2-factor, and for ewvery0, there exist in-
finitely many(2 — ¢)-tough graphs with no 2-factor.
In [81], Enomoto strengthened Theorem 48.

Theorem 50.Let k be a positive integer an@ be a graph om vertices withn > k£ + 1 and
kn even. Supposg| > k- w(G — S) — % forall S € V withw(G — S) > 2. ThenG has a
k-factor.

In [82], Enomoto first improved Theorem 50 fbr= 1 andk = 2. We need the following
definition. For a grapld- let

7 (G)=max{t||S| >t -w(G—S)—tforall S c V(G)}
S|

:min{w(G_S)_l\w(G—S)22}

if G is not complete. I{7' is complete, set’(G) = oco.
Theorem 51.Let G be a graph om vertices, where: is even. Ifr" > 1, thenG has al-factor.
Theorem 52.Let G be a graph om > 3 vertices. Ifr" > 2, thenG has a2-factor.

Both Theorem 51 and Theorem 52 were also shown to be sharp.
Finally, Enomoto and Hagita [83] were able to generalize Theorem 52 and strengthen Theo-
rem 48 for graphs with a sufficiently large number of vertices.

Theorem 53.Letk be a positive integer an@ be a graph om > k2 — 1 vertices withkn even.
If 7' > k, thenG has ak-factor.

For1l <t < 2, itis natural to ask how large the minimum vertex degree Bt@gh graph
can be, if the graph contains Refactor. This problem was studied in [29].

Theorem 54.Let G be at-tough graph om > 3 vertices, wherd <t < 2.1f § > (ﬁ> n,
thenG has a2-factor.

It is also shown in [29] that for any < [1, 3/2] there are infinitely many-tough graphs with
no 2-factor satisfyingy > (f—;ﬁ) n— 3.
However one can improve the bound in Theorem 58f@r < ¢ < 2 [29].

Theorem 55.Let G be at-tough graph onn > 3 vertices, where8/2 < ¢t < 2. If § >

(%) (ﬁfﬁ) n, thenG has a2-factor.

Examples in [29] show that Theorem 55 is asymptotically tight# (2r — 1)/r for any
integerr > 2.

More recently, minimum degree conditions fartough graph{1 < ¢ < 3) to have a 3-factor
have been established [26]. The results in [26] are similar to those given in [29] for 2-factors.
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In [61], Chen improved on Theorem 48 by showing that under similar conditions it is pos-
sible to find ak-factor containing a specified edge and also to findfactor not containing
a specified edge. Another improvement of Theorem 48 was obtained by Katerinis [119] . An
la, b]-factor of a graphG is a spanning subgraph of G such thata < dp(z) < b, for all
z € V(G).

Theorem 56.Leta < b andG be a graph om vertices such that < b or bn is even. Theldr
has an[a, b|-factorifr > a + § — 1.

Chen [62] improved this fot = 2 < b.

Theorem 57.Letb > 2 and G be a graph onn > 3 vertices. TherG has a|2, b]-factor if
T>1+1.

Ellingham et al. [79] have extended this result to connected factors.

Katerinis [120] has shown that a 1-tough bipartite graphm.on 3 vertices has a 2-factor.

We next give a minimum degree condition for a 1-tough graph to have a 2-factor with a
specific number of cycles. First note that Jung’s Theorem (Theorem 5) implies the following
weaker theorem with a minimum degree condition.

Theorem 58.Let G be al-tough graph on» > 11 vertices withd > (n — 4)/2. ThenG is
hamiltonian.

Faudree et al. [88] generalized Theorem 58 as follows.

Theorem 59.There exists an integer, such that every-tough graph om > n, vertices with
d > (n —4)/2 has a2-factor with k cycles, for allt such thatl < k& < (n — 10)/4.

A number of results on factors have appeared relating toughne@s ipfactor-critical
graphs. A graplt is (r, k)-factor-critical if G — X contains an-factor for all X C V' with
| X| = k. Forr > 2, these graphs were studied by Liu and Yu [131] under the n@atrie-
extendable graphs. They proved the following.

Theorem 60.Let G be a graph om vertices withr > 3. ThendG is (2, k)-factor-critical for
every integek such thatd < £ < r7andk <n — 3.

They also conjectured thatdf is a graph om vertices withr > g andn > 2¢ + 1 for some
integerq > 1, thenG is (2, 2q — 2)-factor-critical. Note that this conjecture is false for= 1
by Theorem 49. However it was shown by Cai et al. [59], and independently by Enomoto [82],
that the conjecture is true for all integers> 2.

Theorem 61.Let G be a graph om vertices withr > 2. ThenG is (2, k)-factor-critical for
every non-negative integérwith £ < min{27 — 2,n — 3}.

It was also shown in [59] that the bougd — 2 is sharp.
Progress has also been made on the relationship between toughnéss:gufialctor-critical
graphs forr = 1 andr = 3. In [89], Favaron considered= 1.

Theorem 62.Let G be a graph om vertices andk be an integer witie < k£ < n andn + &
even. Ther is (1, k)-factor-critical if 7 > k/2.

The valuek /2 in Theorem 62 was also shown to be sharp.
In [149], Shi et al. considered= 3.
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Theorem 63.Let G be a graph om vertices withr > 4. ThenG is (3, k)-factor-critical for
every non-negative integérsuch thain + k is evenk < 27 — 2 andk <n — 7.

This result is best possible with respect to each of the upper bourids on

In [121], Katona introduced the notion of-edge-toughness”. The definition is rather in-
volved, and we refer the reader to [121] for the precise definition. We note that it is easy to
verify that a graph is not-edge-tough in the same way one easily verifies that a graph is not
t-tough. Edge-toughness is nicely related to both toughness and hamiltonicity, as the following
results from [121] show.

Theorem 64.1f GG is a hamiltonian graph, thefy is 1-edge-tough.
Theorem 65.1f GG is at-edge-tough graph, the@ is ¢-tough.
Theorem 66.1f GG is a2t-tough graph, therd is ¢-edge-tough.

We know, by Theorem 48, th&tough graphs have-factors. In light of Theorem 66, it
would be interesting to know if-edge-tough graphs haafactors. This was answered by
Katona [122] in the affirmative.

Theorem 67.LetG be a 1-edge-tough graph on> 3 vertices. Theids has a 2-factor.
We close this section with a conjecture from [122].

Conjecture 3Lett be a positive integer and be at-edge-tough graph om > 2¢ + 1 vertices.
ThenG has &t-factor.

6. Toughness and Special Graph Classes

Triangle-free graphs have received much attention in the literature. In particular, tough triangle-
free graphs have a number of interesting properties. We begin by considering the problem of
finding the best possible minimum degree condition to ensure that a 1-tough triangle-free graph
onn vertices is hamiltonian. The degree condition for the existenc@4déator in the following
theorem from [20] is best possible.

Theorem 68.Let G be a 1-tough triangle-free graph on > 3 vertices. If6(G) > (n + 2)/4,
thenG has a 2-factor.

DefineC(G) to be the set of cycle lengths of a graphBrandt [47] has proven the following.

Theorem 69.Let G # C5 be a triangle-free, nonbipartite graph of order If § > n/3, then
C(G) ={4,5,...,7}, wherer = min{n,2(n — a)}.

On the other hand, Moon and Moser [136] have shown that in a balanced bipartite(graph
on n vertices, ifd > n/4, thenG is hamiltonian. Sincex < n/2 in any 1-tough graph, and
1-tough bipartite graphs are balanced, we easily obtain the following result.

Theorem 70.Let GG be a 1-tough triangle-free graph an > 3 vertices. If§ > n/3, thenG is
hamiltonian.
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Combining Theorem 68 and Theorem 70, we see that the best minimum degree guaranteeing
that a 1-tough triangle-free graph is hamiltonian is somewhere betineed) /4 and(n+1)/3.

In [67], it was conjectured that there exists a positive congtastich that every;-tough
graph is pancyclic. Later, Jackson and Katerinis [114] asked if there is a positive canstastt
that everyt,-tough graph contains a triangle. In [19], both of these questions were answered in
the negative.

Theorem 71.There exist arbitrarily tough, triangle-free graphs.

This was accomplished by constructing a sequence of “layered graphs”. If one begins with
a triangle-free graph, a sequence of layered graphs can be constructed that remain triangle-free
and whose toughness approaches infinity.

Subsequently, Alon [2] proved a stronger result.

Theorem 72.For everyt and g there exists a@-tough graph of girth greater than.

Alon’s technique involved showing that regular graphs with well separated eigenvalues are
tough. He was then able to use the Ramanujan graphs [133, 134] with appropriate parameters to
get explicit examples.

Later, Brandt, Faudree, and Goddard [50] also demonstrated thatals\pancyclic con-
jecture is false. A graph is calladeakly pancyclidf it contains cycles of every length between
its girth and its circumference. They show [50] there is no sufficiently large value of toughness
that will ensure that a graph is weakly pancyclic. Their short clever argument is presented in
[50] and originally appeared in Brandt [48]. For their construction, however, they need graphs
with large connectivity whose girth exceeds the maximum degree. For these graphs they also
rely on the Ramanujan graphs constructed by Lubotsky, Phillips, and Sarnak [133].

We now turn to some conjectures presented in [19]. It is easy to see that if some vertex in a
t-tough graphG onn vertices has degree larger than(t + 1), thenG must contain a triangle.
This led to the natural question of whether there exists/dn+ 1)-regulart-tough triangle-free
graph for arbitrarily large. Since it appeared that the sequence of layered graphs constructed in
[19] had this property, it was conjectured that such graphs exist, and in [19] this was proven for
infinitely manyt such thatl < ¢ < 3. The full conjecture was proven independently by Brandt
[49] and Brouwer [58]. In fact, Brandt [49] proved slightly more.

Theorem 73.For everye > 0 there exists a real numbey such that for every > ¢, there is a
triangle-free graphz onn vertices with toughness=n/é —landt —e <7 <t +e.

Theorem 71 is related to a number of other results on triangle-free graphs. It has been shown
[74,123,137,162] that there exist triangle-free graphs with arbitrarily large chromatic number.
Let x(G) denote the chromatic number of a graghlt is easy to see that @ is a graph om

vertices,
n

a(G)
In [85], Erdos used a clever probabilistic argument to show that there exist graphs with arbitrar-
ily high girth and arbitrarily high chromatic number. In fact, he showed that these graphs have
arbitrarily highn/« ratio. By (1) we see that Theorem 71 represents a strengthening of these

previous results for triangle-free graphs. In fact, Brandt [49] has shown that for an appropriate
sequence of layered graphs, (1) can be satisfied with equality.

X(G) = >7(G) + 1. (1)
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Theorem 74.For every positive integek there exists a triangle-free grapl with xy = k£ =
n/a=1+1.

It was also conjectured in [19] thataough graph om vertices withd > n /(¢ + 1) must be
pancyclic. Such a graph clearly contains a triangle and by Theorem 25 it must also be hamilto-
nian. The following result from [50] demonstrates that this conjecture is truetftmagh graph
if t <3—4000/n.

Theorem 75.LetG be a graph of order with minimum degreé > n/4 + 250 that contains a
triangle and a hamiltonian cycle. The&ris pancyclic.

A problem that has received much attention is that of determining the minimum level of
toughness to ensure that a member from a special graph family is hamiltonian. We first consider
chordal graphs, as well as a few other subclasses of perfect graphs (for definitions, see [52]
or [100]). First recall that we have seen in Section 3 an infinite class of chordal graphs with
toughness close t6/4 having no Hamilton path. Hencé;tough chordal graphs need not be
hamiltonian. In fact, even 1-tough planar chordal graphs need not be hamiltonian [41]. The
following result was established, however.

Theorem 76.Let GG be a chordal, planar graph with > 1. ThenG is hamiltonian.

Gerlach [94] showed that the chordality assumption in the above theorem can be weakened
to the assumption that separating cycles of length at least four have chords.

To see that being-tough will not suffice in Theorem 76, we must first define the “shortness
exponent” of a class of graphs. This concept was first introduced in [102] as a way of measuring
the size of longest cycles polyhedral i.e.,3-connected planar graphs.

Let X be a class of graphs. Tlshortness exponenf the classY is given by

. log c(H,)
T I g v ()

Thelim inf is taken over all sequences of graghisin X' such thatV (H,,)| — oo asn — oc.
In [41], it was also shown that the shortness exponent of the classlefaligh chordal pla-
nar graphs is at mostg 8/ log 9. Hence there exists a sequeri¢g G, . . . of 1-tough chordal

planar graphs wit ‘C/((CC;;)H
graphs are hamiltonian. This follows from the well-known result of Matthews and Sumner [135]
relating toughness and vertex connectivityiin;-free graphs, and a result of Balakrishnan and
Paulraja [3] showing th&t-connecteds, ;-free chordal graphs are hamiltonian.

While being 1-tough will not ensure hamiltonicity for chordal graphs, it will for other sub-
classes of perfect graphs. For example, in [124] it was shown (implicitly)lthatigh interval
graphs are hamiltonian, and in [73] it was shown th&tugh cocomparability graphs are hamil-
tonian.

Let us now consides/2-tough chordal graphs. We have already seen that such graphs need
not be hamiltonian. However for a certain subclass of chordal graphs, namely split graphs, we
have a different result. A grapfi is called asplit graphif V(G) can be partitioned into an
independent set and a clique. We mention the following two results from [126].

— 0 asi — oo. On the other hand, all-tough Kk s-free chordal

Theorem 77.Every3/2-tough split graph is hamiltonian.
Theorem 78.There is a sequendgr,, }2° , of split graphs with no 2-factor and(G,,) — 3/2.
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Even thoughs/2-tough chordal graphs need not be hamiltonian, it was shown in [22] that
they will have a&-factor. In fact, we can say a bit more.

Theorem 79.Let G be a3/2-tough5-chordal graph. Therdr has a2-factor.

Theorem 79 is best possible in two ways. @tal's examples in [67] show it is best possible
with respect to toughness and examples in [29] contathordal graphs without a-factor
whose toughness approactesom below.

The previous results on tough chordal graphs lead to a very natural question. Does there
exist at; > 0 such that every;-tough chordal graph is hamiltonian? This was settled in the
affirmative by Chen et al. [63], who gave a constructive proof of the following.

Theorem 80.Every18-tough chordal graph is hamiltonian.

The authors did not claim thas is best possible. The natural question, in light of the dis-
proof of the2-tough conjecture for general graphs, is what minimum level of toughness will
ensure that a chordal graph is hamiltonian. More specificall\2-4oeigh chordal graphs hamil-
tonian?

What about triangle-free graphs? Ar¢ough triangle-free graphs hamiltonian? It is conjec-
tured in [20] that for alk > 0, there exists & — ¢)-tough triangle-free graph that does not even
contain a2-factor. An infinite collection of triangle-free graphs are given that clearly have no
2-factor. It appears that the toughness of these graphs apprahabdke orden — oo; how-
ever establishing the toughness appears difficult. On the other hand, Ferland [90] has found an
infinite class of nonhamiltonian triangle-free graphs whose toughness is &t /éa€if course,
the toughness of the Petersen graph/i however the Petersen graph is not an infinite class.

In [57], toughness conditions are studied that guarantee the existence of a Hamilton cycle in
k-trees In this context, &-tree is a graph that can be obtained froii gaby repeatedly adding
new vertices and joining them to a set/omutually adjacent vertices. It is clear thatdree
is a chordal graph. In [57], it is shown that every 1-tough 2-tree on at least three vertices is
hamiltonian, a best possible result since 1-toughness is a necessary condition for hamiltonicity.
This is generalized to a result dntrees fork > 2 as follows: LetG be ak-tree. If G has
toughness at leagt+1)/3, thenG is hamiltonian. Moreover, infinite classes of nonhamiltonian
1-toughk-trees for eaclk > 3 are presented.

7. Computational Complexity of Toughness

The problem of determining the complexity of recognizintpugh graphs was first raised by
Chvatal [66] and later appeared in [151] and [[68], p. 429]. We refer the reader to [93] for the
basic ideas of complexity theory.

Consider the following decision problem, whers any positive rational number.

t-TOUGH
INSTANCE : GraphG.
QUESTION: IsT(G) > ¢ ?

The following was established in [16].

Theorem 81.For any positive rational numbet, --TOUGH is NP-hard.
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In [16], a well-known NP-hard variant of INDEPENDENT SET [[93], p. 194] is reduced to
the problem of recognizing 1-tough graphs. Then the latter problem is reduced to recognizing
t-tough graphs, for any fixed positive rational numbein fact, it is easy to use an argument
analogous to that used in [16] to reduce INDEPENDENT SET to the problem of recognizing
1-tough graphs, as shown in [30].

It is natural to inquire whether the problem of recognizirftgugh graphs remains NP-hard
for various subclasses of graphs. For example, Matthews and Sumner [135] have shown that
for K, ;-free graphsy = /2. Hence the toughness éf, ;-free graphs, and consequently of
line graphs, can be determined in polynomial time. Thus, while it is NP-complete to determine
if a line graph is hamiltonian [38], it is polynomial to determine if a line graph is 1-tough.
Another class of graphs for which this is the case is the class of split graphs. Recall that a
graphd is called a split graph it/ (G) can be partitioned into an independent set and a clique.
Determining if a split graph is hamiltonian was shown to be NP-complete in [70]. On the other
hand, the following was shown in [126].

Theorem 82.The class of 1-tough split graphs can be recognized in polynomial time.

Noting that submodular functions can be minimized in polynomial time [71,101], Woeginger
[159] then gave a short proof of the following result.

Theorem 83.For any rational numbet > 0, the class of-tough split graphs can be recognized
in polynomial time.

For many subclasses of graphs, however, it is NP-hard to recognaegh graphs. For
example, in [24] it was shown that it is NP-hard to recogrtizeugh graphs, even within the
class of graphs having minimum degree “almost” high enough to ensure that the graph is
tough.

Theorem 84.Lett > 1 be a rational number. 1§ > (t%)”’ thenG is t-tough. On the other
hand, for any fixed > 0, it is NP-hard to determine i7 is ¢-tough for graphsG with § >

(75 — €.

Haggkvist [103] has shown that &f > n/2 — 2, there is a polynomial time algorithm to
determine whetheé is hamiltonian. As a consequence of Jung’s Theorem (Theorem 5), a
graphG onn > 11 vertices satisfying > n/2 — 2 is hamiltonian if and only it is 1-tough.

It follows that 1-tough graphs can be recognized in polynomial time whem /2 — 2.

Another interesting class of graphs is the class of bipartite graphs. Obviouslyl for
any bipartite graph. The complexity of recognizing 1-tough bipartite graphs had been raised a
number of times; see, e.qg., [[55], p. 119]. In [126], Kratsch et al. were able to reduce 1-TOUGH
for general graphs to 1-TOUGH for bipartite graphs by using the classical Nash-Williams con-
struction [138] .

Theorem 85.1-TOUGH remains NP-hard for bipartite graphs.

Consequently, 1-TOUGH is also NP-hard for the larger class of triangle-free graphs.

An important class of graphs that has received considerable attention is the class of regular
graphs. Note that the maximum possible toughness of-aagular graph is-/2, sincer <
k/2 <r/2.

Chvatal [67] asked for which values ofandn > r + 1 there exists an-regular,r/2-tough
graph onn vertices, and observed that this is always the case &en. He also conjectured
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that forr odd andn sufficiently large, it would be necessary that= 0 mod r, and verified
this forr = 3. But for all oddr > 5, Doty [78] and Jackson and Katerinis [114] independently
constructed an infinite family of-regular,r/2-tough graphs om vertices withn # 0 mod r.

Jackson and Katerinis [114] gave a characterization of cBfitetough graphs which al-
lowed such graphs to be recognized in polynomial time. Their characterization of these graphs
uses the concept aifflation, introduced by Ch&tal in [67].

Theorem 86.LetG be a cubic graph. Thefi is3/2-toughifand only it = K4, G = Ky x K3,
or GG is the inflation of a-connected cubic graph.

Goddard and Swart [99] conjectured an analogous characterizatioregilar,r /2-tough
graphs for all- > 1, which would allow such graphs to be recognized in polynomial time.

In the opposite direction, it was established in [17] that it is NP-hard to recogdrizegh
cubic graphs. This was generalized in [18] as follows.

Theorem 87.For any integert > 1 and any fixed > 3t, it is NP-hard to recognize-regular,
t-tough graphs.

The complexity of recognizing-regular,¢-tough graphs remains completely open when
2t < r < 3t, and the complexity when = 2¢ + 1 seems especially intriguing.

There are still many interesting subclasses of graphs for which the complexity of recognizing
t-tough graphs is unknown. A number of these classes are given in [17]. In particular, Dillen-
court [75,76] has noted that we still do not know the complexity of recognizing 1-tough planar
graphs or 1-tough maximal planar graphs.

The fact that it is NP-hard to recognizeough graphs makes it desirable to strengthen some
theorems by replacing the assumption that a grashl -tough with the weaker assumption that
G is 2-connected. The ideais to try to draw the same conclusion regarding the cycle structure of
G under the weaker hypothesis tiais 2-connected by specifying an easily described family
of exceptional graphs for which the new theorem does not hold.

To illustrate this type of improvement, consider again Theorem 7 (the long cycle version of
Jung’s Theorem). By Theorem 4, a 2-connected gr@dpim » > 3 vertices satisfies(G) >
min{n, o2 }. In [21], it was noted that the 2-connected graphs wiii) = o, or o, + 1 con-
stituted a familyH of eight easily-recognized classes of graphs. This led to the following im-
provement of Theorem 7.

Theorem 88.Let G be a2-connected graph on > 3 vertices. Ther(G) > min{n, oy + 2}
unlessG € H.

A similar improvement of Theorem 5 was found by Skup[@50], and an analogous im-
provement of both parts of Theorem 20 was found by Bauer et al. [31].

There are several results in hamiltonian graph theory of the f@rimplies P,, whereP,
is an NP-hard property of graphs aRd is an NP-hard cycle structure property, and one might
wonder about the practical value of such theorems.

Two such theorems are the well-known theorems of&@@éivand Erds [69] and Jung [116].

In [68], Chvatal gave a proof of the Clatal-Erdds Theorem [69] which constructs in poly-
nomial time either a Hamilton cycle in a graphor an independent set of more thanertices
in G. In [9], the authors provided a similar type of polynomial time constructive proof for Jung’'s
Theorem [116] on graphs with at ledst vertices.
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Theorem 89.Let G be a graph om > 16 vertices withoy > n — 4. Then we can construct in
polynomial time either a Hamilton cycle @ or a setX C V(G) withw(G — X) > | X].

Itis possible that other theorems in graph theory with an NP-hard hypothesis and an NP-hard
conclusion also have polynomial time constructive proofs.

8. Other Toughness Results

In [144], Plummer investigated the relationship between the toughness of a graph and whether
a given matching in a graph can be extended to a perfect matching. In [67], it was noted that
every 1-tough graph on an even number of vertices has a perfect matching. amed n be
positive integers witm < n/2 — 1 and letG be a graph om vertices with a perfect matching.

A graphdG is m-extendablef every matching of sizen extends to a perfect matching. In [144],
Plummer proved the following result on-extendable graphs.

Theorem 90.Supposé- is a graph onn vertices, withn even. Letn be a positive integer with
m < n/2 — 1. If 7 > m, thenG is m-extendable. Moreover, the lower bound-ois tight for
all m.

As just noted, every 1-tough graph on an even number of vertices has a perfect matching.
In fact, more is true. In [132], a grapH is calledelementaryf G has a perfect matching, and
if the edges ofZ which occur in a perfect matching induce a connected subgragh dhe
following was established in [7].

Theorem 91.Let G be a 1-tough graph on an even number of vertices. Thénelementary.

Similarly, 1-tough graphs on an odd number of vertices have special matching properties. A
graphG is calledfactor-critical [132] if G — v has a perfect matching, for alle V(G). The
following was also established in [7].

Theorem 92.LetG be a 1-tough graph on an odd number of vertices. THeas factor-critical.

Let w,(G) denote the number of odd components of the gi@ph setT" C V(G) is called
aTutte seffor G if w,(G —T) — |T| = maxxcy(e){w.(G — X) — |X|}. The importance of
Tutte sets rests on the fact that the size of a maximum matchi6gisrprecisely; (|V (G)| —
(wo(G —=T) —|T))), by a well-known theorem of Berge [35]. Maximum Tutte setsiseem
especially interesting. In [7], it was established that finding maximum Tutte sets in a general
graph is NP-hard. However Theorems 91 and 92, together with the special structure of Tutte
sets in elementary and factor-critical graphs [132], yield the following result from [7].

Theorem 93.Maximum Tutte sets can be found in polynomial time for the class of 1-tough
graphs.

Recall that a cutset C V(G) is called atough seffor G if 7(G) = |S|/w(G — 5), and
any component off — S is called aough componertf G. In [145], Plummer investigated the
toughness of tough components. In particular, he showed tliaisfnot complete and > 1,

then any tough componeatin G satisfiesr(C') > [7(G)] :

We have mentioned that it is NP-hard to determine if a cubic graph is 1-tough. It is possible,
however, to obtain an upper bound on the toughness of a cubic graph in terms of its indepen-
dence number [96].
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Theorem 94.Let G be a noncomplete cubic graph anvertices. Then

L (2n—3a 2«
Tgmm{ }

n—a 4a—n

In [96], Goddard also considered the toughness of a special class of cubic grapjdeA
permutation graphs a cubic graph om vertices obtained by taking two vertex disjoint cycles
onm vertices and adding a matching between the vertices of the two cycles. It was conjectured

in [143] that the toughness of such a graph is at most 4/3. Goddard [96] came very close to
proving this is true.

Theorem 95.Let G be a cycle permutation graph on 2m vertices. Then

<4/3 m = 0,1 mod 4,
TS <4/3 m = 2 mod 4,
<4/3+4/(9m — 3) m = 3 mod 4.

In [158], Win considered the relationship between the toughness of a graph and the existence
of a k-tree. In this context, &-tree of a connected graph is a spanning tree with maximum
degree at mogi. Note that we usedl-trees before for a different subclass of the class of chordal
graphs.

Theorem 96.Let G be a connected graph. Suppdse> 2, and that for any subset C V (G),
w(G —S) <2+ (k—2)|S|. ThenG has ak-tree.

For k = 2, this simply says that a connected graph with independence number at most 2 has
a Hamilton path. Fok > 3, Theorem 96 has the following corollary [158].

Corollary 6. Letk > 3. 1f 7 > 1/(k — 2), thenG has ak-tree.

A graph ispolyhedralif it is planar and 3-connected. Since a 4-connected planar graph is
hamiltonian by a well-known theorem of Tutte, a nonhamiltonian planar graph is at3fibst
tough. In [105], Harant constructed nonhamiltonian regular polyhedral graphs of degree 3, 4,
and 5 with maximum toughnesg?2.

In [106], Harant and Owens constructed nonhamiltonian maximal planar graphs with tough-
ness/4. In [142], Owens improved this by constructing nonhamiltonian maximal planar graphs
with toughness /2 — ¢, for anye > 0. In fact, Owens’ graphs do not even contain a 2-factor.
Since(3/2 + ¢)-tough planar graphs are hamiltonian, it would be interesting to determine the
cycle structure o8 /2-tough planar and maximal planar graphs. In particular, it would be inter-
esting to know if3 /2-tough maximal planar graphs even contain a 2-factor.

A number of other results have considered the existence of tough nonhamiltonian maxi-
mal planar graphs. L&t (¢,) denote the class of alj-tough maximal planar graphs. In [140],
Nishizeki produced a nonhamiltonian graph Iénvertices in/’(1), thus answering a question
of Chvatal concerning the existence of such a graph. In [75], Dillencourt found such a graph
with 15 vertices. Finally, Tl [153] was able to find a nonhamiltonian graphifl) with just
13 vertices, and to show that no such graph can have fewer vertices.

In Section 6, we defined the shortness exponef,), of a class of graph&’. Regarding
o(I'(1)), Dillencourt [75] showed thai(I'(1)) < log, 6, and in [153], Tk improved this by
showingo(1'(1)) < logg5. In [105], it is shown that the shortness exponent of the class of
3-regular polyhedral graphs with toughn@gg is less than 1. The same holds for the class of
4-regular such graphs. A recent result of Chen and Yu [64] shows that the shortness exponent
of polyhedral graphs iBg, 2. As a consequence(1'(3/2)) > logs 2.
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More results on the shortness exponent can be found in [75,102].

In [97], Goddard et al. considered bounds on the toughness of a gfapherms of the
graph’s connectivity and genus. They made use of the following result of Schmeichel and Bloom
[148], in which~ denotes the genus.

Theorem 97.LetG be a graph with > 3. Thenw(G—X) < -2 (| X|—2+2) forall X C V
with | X| > &.

After simplifying the proof of Theorem 97 they used the result to obtain lower bounds on
Theorem 98.Let G be a connected graph. Then
Q)7 > g —1,if v = 0, and

@r> =2
2(k — 24 27)
They also discussed the quality of the bounds, and investigated upper boundsqrar-
ticular, they showed that Theorem 98 (1) is sharpfef « < 5, and that the bound in Theorem
98 (2) is attained by an infinite class of graphs, all of girth 4.

JF vy > 1.

In [91], Ferland investigated the toughness of generalized Petersen graphs. These graphs
were first defined by Watkins in [156]. For eaeh> 3 and0 < k£ < n, the generalized
Petersen graplti(n, k) has vertex seV = {uy,us, ..., Up,v1,0s,...,v,} and edge sekl =
{(uuipr) |1 <@ <n}pU{(u;v) |1 <i<n}U{(v,viix) |1 <i<n}, where all indices
are modulae. Of course, the Petersen graplGi§s, 2).

In [91], as well as in his earlier paper [90], Ferland was interested in bounds$dar, k)),
especially asymptotic bounds. He called a real nurhbeasymptotic upper bourfor 7(G(n, k))
if lim,, . 7(G(n, k)) < b. Asymptotic lower bounds are defined similarly. In [143](n, 1))
is completely determined, antlis an asymptotic upper bound. In [90], it was found that
for 7(G(n,2)), 5/4 is both a lower bound and an asymptotic upper bound./#or 3 and
0 < k < n, upper and lower (asymptotic) bounds tdiG(n, k)) were given in [91].

In [53], Broersma, Engbers and Trommel studied the relationship between the toughness of
a graph and the toughness of its spanning subgraphs. In particular they proved the following.

Theorem 99.Let G be a graph om > 4 vertices withr > 1. Then there exists a spanning
subgraphH of G with7(H) = 1.

They also defined a gragh to beminimally ¢-toughif 7(G) = t and7(H) < t for every
proper spanning subgragh of G. They also discussed conditions under which the square of a
graph will be minimally2-tough.

Other variants on the toughness concept are more related to vulnerability and reliability of
graphs and networks than to their cycle structure. We refer the interested reader to some survey
papers [4,34,95] and will not treat them here.

9. Conclusions and Open Problems

Since Chatal [67] introduced toughness in 1973, much research has been done that relates
toughness conditions to the existence of cycle structures. In this survey, we have gathered many
of the important results in this area. Historically, the motivation for this research was based on a
number of conjectures in [67]. The most challenging of these conjectures is still open: Is there a
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finite constant, such that every,-tough graph is hamiltonian? If so, what is the smallest such
to?

We now know that if the conjecture is true, then> 9/4. Although the conjecture is still
open for general graphs, we know that it is true for a number of well-studied graph classes,
e.g., planar graphs, claw-free graphs and chordal graphs. Sinte@tinected planar graphs
are hamiltonian by a well-known theorem of Tutte, we have- 3/2 for planar graphs, and
this result is best possible. For claw-free graphs we kmow x/2; consequently, < 7/2
by a result of Ryjacek [146], combined with a result of Zhan [161] and Jackson [113] stating
that all 7-connected line graphs are hamiltonian. However Matthews and Sumner [135] have
conjectured that-connectedZ-tough) claw-free graphs are hamiltonian. Finally, we krigw
18 for chordal graphs by Theorem 80. Examples in [13] show that this cannot be improved to
a value belowr/4. Are all 7/4-tough chordal graphs hamiltonian? It would be interesting to
know if 2-tough chordal graphs are hamiltonian. The gaps in our knowledge for claw-free and
chordal graphs imply a number of challenging open problems. The same is true for the class
of triangle-free graphs. It is known that there exists an infinite clagg4tough triangle-free
nonhamiltonian graphs [90], and it even appears that a class of triangle-free graphs with no
2-factor constructed in [20] has toughness approachifigm below. These examples suggest
the intriguing possibility that everd~tough triangle-free graph is hamiltonian, though it remains
completely open whether thig-tough conjecture holds for the class of triangle-free graphs. By
contrast, we know by Theorem 25 that the conjecture is true within the class of graphs on
vertices satisfying > en, for any fixede > 0.

Suppose we also impose a minimum degree condition. The examples in [13] that disproved
the 2-tough conjecture all have = 4. We know from Corollary 1 that i€+ is a2-tough graphs
onn vertices witho > n/3, thenG is hamiltonian. What i < § < n/3? The early research
on toughness and cycle structure concentrated on sufficient degree conditions which, combined
with a certain level of toughness, would yield the existence of long cycles. This survey contains
a wealth of results in this direction. One of the major open problems in this area is the con-
jecture that every 1-tough graph arvertices withos > n > 3 has a cycle of length at least
min{n, (3n + 1)/4 + 03/6}. Another interesting problem is to find the best possible minimum
degree condition to ensure that dough triangle-free graph is hamiltonian. By Theorems 68
and 70, we know the answer lies somewhere between2)/4 and(n + 1)/3.

If we do not impose a degree condition, toughness conditions can still guarantee cycles
of length proportional to a function of the number of vertices of the graph. Two of the most
challenging open problems in this area are whether there exist positive condtant$ 3,
depending only om, such that every 2-connected, respectively 3-connetiisdigh graph om
vertices has a cycle of length at leaslog n, respectivelyn”. Both problems have affirmative
solutions for planar graphs.

Another area of research has involved finding toughness conditions for the existence of cer-
tain factors in graphs. One of the challenging open problems in this area is to determine whether
every3/2-tough maximal planar graph has a 2-factor. If so, are they all hamiltonian? We also
do not know if a3/2-tough planar graph has2afactor.

Research on toughness has also focused on computational complexity issues. In particular,
we now know that recognizingtough graphs is NP-hard in general, whereas it is polynomial
within the class of claw-free graphs and within the class of split graphs. For many other inter-
esting classes, this complexity question is still open, e.g., for (maximal) planar graphs and for
chordal graphs. Within the class ofregular graphs withr > 3¢, recognizingt-tough graphs
has been shown to be NP-hard. The problem is trivial 4 2¢, but its complexity is open for
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values ofr with 2t < r < 3t. It was conjectured by Goddard and Swart [99] to be polynomial
for r = 2t, and seems especially interesting whea 2t + 1.
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