
Locating Guards for Visibility Coverage of Polygons∗

Yoav Amit† Joseph S. B. Mitchell‡ Eli Packer§

Abstract

We propose heuristics for visibility coverage of a polygon

with the fewest point guards. This optimal coverage prob-

lem, often called the “art gallery problem”, is known to be

NP-hard, so most recent research has focused on heuristics

and approximation methods. We evaluate our heuristics

through experimentation, comparing the upper bounds on

the optimal guard number given by our methods with com-

puted lower bounds based on heuristics for placing a large

number of visibility-independent “witness points”. We give

experimental evidence that our heuristics perform well in

practice, on a large suite of input data; often the heuristics

give a provably optimal result, while in other cases there

is only a small gap between the computed upper and lower

bounds on the optimal guard number.

1 Introduction

The art gallery problem was introduced in 1973 when
Klee asked how many guards are sufficient to “guard”
the interior of a simple polygon having n vertices. Al-
though it was shown that bn

3 c guards are always suffi-
cient and sometimes necessary [12, 14], and such a set of
guards can be computed easily, such solutions are usu-
ally far from optimal in terms of minimizing the number
of guards for a particular input polygon. Moreover, it
was shown that determining an optimal set of guards is
NP-hard, even for simple polygons [23]. Approximation
algorithms with logarithmic approximation ratios are
known ([13, 15, 17]) for somewhat restricted versions of
the problem, e.g., requiring guards to be placed at ver-
tices or at points of a discrete grid. Constant-factor ap-
proximations are known for guarding 1.5D terrains and
monotone polygons (see [5, 22, 24]), and exact meth-
ods are known for the special case of rectangle visibility
in rectilinear polygons [28]. The unrestricted version
of the optimization problem remains open; no approxi-
mation algorithms are known that are better than the

∗Partially supported by grants from the National Science
Foundation (ACI-0328930, CCF-0431030, CCF-0528209), Metron

Aviation, and NASA Ames (NAG2-1620).
†Stony Brook University, Stony Brook, NY 11794-4400.
‡Stony Brook University, Stony Brook, NY 11794-3600.

jsbm@ams.sunysb.edu.
§Stony Brook University, Stony Brook, NY 11794-4400.

epacker@cs.sunysb.edu.

trivial bn
3 c-approximation that comes from the classical

combinatorial bound.
Our Contribution. We propose heuristics for

computing a small set of point guards to cover a given
polygon. While we are not able to prove good worst-
case approximation bounds for our methods (indeed,
each can be made “bad” in certain cases), we conduct
an experimental analysis of their performance. We give
methods also to compute lower bounds on the optimal
number of guards for each instance in our experiments,
using another set of implemented heuristics for deter-
mining a set of visibility-independent witness points.
(The cardinality of such a set is a lower bound on the op-
timal number of guards.) We show that on a wide range
of input polygons, our heuristics work well in practice,
often matching our computed lower bounds (in which
case the solution is provably optimal), and always yield-
ing at most 2 times the lower bound (for the randomly
generated instances). To our knowledge, ours is the first
attempt to conduct a systematic experimentation with
guard placement heuristics, together with methods to
compute lower bounds that give provable performance
bounds in terms of approximation ratios.

Our implementation is built on top of the CGAL
arrangement package. Our experiments are conducted
on a variety of polygons, including many generated
“randomly” using the RPG software of [2].

Related Work. Surveys on the art gallery prob-
lem are given in [1, 25, 26, 27]. A related problem to
computing a minimum guard cover is the problem of
computing optimal partitions of polygons, e.g., into the
fewest convex or star-shaped subpolygons. These prob-
lems are theoretically much easier than coverage prob-
lems; polynomial-time algorithms based on dynamic
programming are known [3, 21]. Of course, if a polygon
can be partitioned into k convex or star-shaped sub-
polygons, it can be guarded using at most k guards;
thus, partitioning can serve as a basis for one type of
heuristic for guard coverage. We note, however (see
Section 5.1), that there are simple examples for which a
constant number of guards are sufficient to cover, while
the best partition is of linear size.

2 Preliminaries

The input is a (possibly multiply connected) polygon P
having a total of n vertices on its boundary. We let h be
the number of holes in P ; if h = 0, P is said to be simple.
For points p, q ∈ P , we say that p and q are visible

to each other if the segment pq is contained in P . For
p ∈ P , we let V(p) denote the visibility polygon of p, i.e.,
set of all points q ∈ P that are visible to p. Clearly, V(p)
is star-shaped and p belongs to its kernel. Similarly, for
a set of points P ⊆ P we denote by V(P) =

⋃
p∈P V(p)

the union of all of the visibility polygons of the points
of P. We say that a set G ⊂ P of points is a guarding

set of P if V(G) = P . We let g(P) be the number of
guards in a minimum-cardinality guarding set of P .

We say that a finite set, I ⊂ P , of points in
P is a visibility-independent set of witness points if
the visibility polygons V(p) : p ∈ I are pairwise-
disjoint: ∀p,q∈IV(p) ∩ V(q) = ∅. We let i(P) denote the
independence number of P , defined to be the number
of witness points in a maximum-cardinality visibility-
independent set. Clearly, g(P) ≥ |I| for any visibility-
independent set I, since no single guard is able to see
more than one point of I. Thus, if we find a visibility-
independent set I and a guarding set G such that
|I| = |G|, then G is an optimal guarding set (e.g., see
Figure 13(e)). Not all polygons admit two such sets;
indeed, there can be an Ω(n) gap between i(P) and
g(P) (see Section 5.1). We say that a polygon for which
i(P) = g(P) is a perfect polygon (in analogy with the
concept of perfect graphs).

In our experiments, our goal will be to find small
guarding sets G and large visibility-independent sets I;
the set G we produce approximates the optimal guard
number, g(P) with approximation ratio |G|/|I|.

3 Algorithms

3.1 Greedy Algorithms. A natural approach to
placing guards is to do so greedily: Add guards one by
one until coverage is achieved, choosing at each step
a guard from among a set of candidates in order to
maximize its contribution to the coverage (e.g., the
“amount” of P that it sees that was not previously
covered). Greedy methods are well known in set
cover problems, as they yield logarithmic approximation
bounds (which are best possible in some sense). We
formulate this process as having two phases: First, we
construct a set S of candidate guards that serve as a
cover of P : P = V(S). Then, we greedily select a
(much smaller) subset, G ⊂ S, of the candidates that
also serves to cover P .

• Constructing a candidate set: The challenge of this
step is to come up with a “good” candidate set S

from which a good guarding set can be extracted.

• Criteria for greedily choosing guards G ⊂ S: From
S we choose a smaller set G that also covers P .
The challenge here is to derive a good heuristic for
choosing guards that results in a small set G.

3.1.1 Constructing a Candidate Set. We exper-
iment with three choices of candidate sets.

The first one, V (P), is essentially the set V of
vertices of P ; it is easy to see that V guards all of P .
For implementation purposes, we actually used points
arbitrarily close to the vertices of P from inside, in order
to avoid degenerate visibility on the adjacent edges – see
Section 2. The exact position is on the ray that bisects
the interior angle of the corresponding vertex. We also
made sure that each point is actually inside P .

In our second choice of candidate set, we place the
candidate points at the centers (centers of mass) of the
convex polygons in a decomposition of P induced by an
arrangement of certain line segments. We consider two
different arrangements. One arrangement is defined by
edge extensions, extending each edge that is incident to
a reflex vertex v, extending it beyond v until it intersects
the boundary of P at some other point; see Figure 1(a).
The second arrangement is defined by extensions of visi-
bility graph edges that are incident to at least one reflex
vertex, v: If v sees vertex u, then we construct a segment
vw that extends along the line through u and v, away
from u, until it first encounters a point w on the bound-
ary of P . See Figure 1(b). The arrangement of these vis-

ibility extensions also give rise to an arrangement having
convex faces within P . Finally, C(P) is defined to be the
set of centers of mass for the convex faces in the arrange-
ment (either of edge extensions or visibility extensions).
It is easy to see that C(P) guards P . Note that there
are O(n) edge extensions (thus, their arrangement has
worst-case complexity O(n2)) and there are O(n2) visi-
bility extensions (with arrangement complexity O(n4)).
The intuition behind using these partition-based can-
didate sets is that different subpolygons will contain
points with different combinatorial type with respect to
visibility within P . For instance, in Figure 1(a), points
in different subpolygons see different subsets of the re-
flex angle edges: points in the left subpolygon see the
left edge incident to the reflex vertex, points in the right
subpolygon see the right edge, and points in the middle
subpolygon see both. It is clear in this example that the
best choice is to select a guard from the “middle” sub-
polygon. We later try to construct criteria that reflect
this intuition.

Finally, the third choice of candidate set is simply
the union: V (P) ∪ C(P).

(a) (b)

Figure 1: A polygon with (a). edge extensions, and (b).
visibility extensions. Extensions are drawn with dashed
lines.

3.1.2 Extracting a Small Guarding Set. We
experiment with the three candidate sets, V (P), C(P)
and V (P) ∪ C(P), defined in the previous subsection.
In the descriptions below, we use W (P) to denote the
candidate set chosen. Our goal is to generate a guarding
set G ⊂ W (P) that is as small as possible; in general,
we expect |G| to be much less than |W (P)|.

We greedily add “good” candidates to the guarding
set G, until the entire polygon is covered. The next
guard is selected to maximize a certain measure, among
all of the remaining candidates. We considered
the following algorithms, labeled “A1” through “A13”
(another algorithm, A14, is presented in Section 3.2):

• A1. The candidates are W (P) = V (P)∪C(P), with
C(P) based on the arrangement of edge extensions.
The score, µ(c), for a candidate c ∈ W (P) is the
number of points of W (P) that are seen from c
that are not already seen by a point of G. At each
iteration of the algorithm, the candidate c with the
highest score µ(c) is added to G, and the scores µ(·)
are updated accordingly.

• A2. A2 is similar to A1 with the following mod-
ification: With each candidate c added to G, the
arrangement is augmented with the edges of V(c)
that are not on the boundary of P . The idea is
to enrich the set of candidates to reflect the still
uncovered portion of the polygon. See Figure 2.

• A3. A3 is similar to A1, but the score µ(c) of
candidate c is the area seen by c that is not yet
seen by G. This algorithm requires that after
each candidate is added to G, we update the
(unguarded) visible area for each remaining unused
candidate.

• A4. A4 is similar to A1, but uses a score µ(c)
that weights the candidates c′ that are not-yet-
covered by c, by the (precomputed) area of the cell
corresponding to c′.

• A5. A5 is the same as A4, but the weight associated
with c′ is the length of the boundary of the cell in
common with ∂P , instead of its area.

• A6. A6 is the same as A4, but the weight associated
with c′ is the fraction of the perimeter of the cell
that is in common with ∂P .

• A7. A7 is like A1, but with candidates W (P) =
V (P) (vertices of P).

• A8. A8 is like A1, but with candidates W (P) =
C(P).

• A9. A9 is like A1, but with the score µ(c) defined
to be the number of not-yet-covered vertices seen
by c.

• A10. A10 is like A1, but with the score µ(c) defined
to be the number of not-yet-covered cell centers
seen by c.

• A11. A11 is like A1, but with the arrangement
based on visibility extensions. As a result, the
number of candidates becomes much larger (worst-
case O(n4), versus O(n2)).

• A12. A12 is a combination of A2 and A11, using
dynamically added segments, and arrangements of
visibility extensions.

• A13. A13 is a probabilistic algorithm, based on the
Brönnimann-Goodrich framework [10, 13]. Each
candidate is assigned a weight dynamically, pro-
portional to its chances to be selected. Initially,
each point is assigned weight 1. In each iteration, a
guard is selected randomly. Then a random point p
that is still unguarded is selected. We find all non-
guarding candidates that see p and double their
weights, improving the chances of guarding p in
the next iterations. This process gives an O(log Φ)-
approximation on average, where Φ is the optimal
number of guards selected from W (P); [13] applied
this strategy for candidates defined by a grid.

All of the above heuristics may result in a set G that
is not minimal – i.e., it may be possible to remove one
or more guards while still covering P . Thus, we apply
a post-processing step in which we iteratively remove
redundant guards until we are left with a minimal
guarding set.

(a) (b)

Figure 2: Using algorithm A2: (a). The polygon and the
first guard to be selected (shaded). (b). The visibility
polygon of the guard (highlighted, in red) caused the
addition of 8 new candidates (small black disks).

Remark. As reflected in our list of algorithms, we
formulated several parameters that control the behav-
ior. Together, they can be combined to yield numerous
variants, making it tedious and impractical to test all of
them. Instead, we defined a basic variant (A1), which
we believed would give good results and be relatively
simple and time efficient. Other variants differed in one
or two parameters from A1. We were interested both
in the effect of this modification and in the possibil-
ity to modify parameters further. As our experiments
showed (see Section 5), the only positive influences were
obtained with A2 and A11. Thus, we also tried a com-
bination of the two, A12.

3.2 Methods Based on Polygon Partition.

A very different approach is to base the guarding
on partitioning the polygon into pieces, each with an
assigned guard:

• A14. Partition the polygon into star-shaped pieces,
and place one guard within the kernel of each
piece. While a polynomial-time algorithm is known
for partitioning a simple polygon into the fewest
star-shaped pieces, we opt instead to apply a
simpler (and faster) heuristic, which applies also
to polygons with holes: Triangulate P , and then
iteratively delete diagonals (according to a heuristic
priority), merging two adjacent faces as long as
the resulting new face is still star-shaped (this is
similar to the Hertel-Mehlhorn’s heuristic that 4-
approximates the minimum convex partition).

Since the results of this heuristic were relatively
poor (see Section 5), we did not explore other variants
of the algorithm further. Note too that for some “spike
box” polygons, any partition-based algorithm will give
very poor results compared with greedy coverage meth-
ods (see the discussion in Section 5.1).

3.3 Algorithms for Visibility-Independent Sets.

As we described in Section 1, a visibility-independent
set I provides a lower bound on the guarding number.
Since maximizing |I| is NP-hard, we resort to heuris-
tics for finding independent sets. (While there are ef-
fective combinatorial optimization methods for exactly
computing maximum independent sets, we opted here to
use faster heuristics.) We apply a greedy heuristic simi-
lar to our guard placement strategies: We start with an
initial set S of candidates (not independent) and itera-
tively add visibility-independent points to a set I (ini-
tially empty), adding at each step a point that sees the
least number of points in S. After adding a point to I,
we remove all of the points in S that see it. We stop
when S is empty.

We note that if a point p ∈ ∂P is perturbed
slightly into the interior of P , its visibility polygon
will usually enlarge; see Figure 3(a). Since in our
greedy algorithm, we want to choose points that see
as little as possible, a natural heuristic is to choose
points of ∂P as candidates. Also, when perturbing
a point at a convex vertex along ∂P , the visibility
polygon usually enlarges; see Figure 3(b). Thus, we
include convex vertices in the candidate set. For reflex
vertices, however, a perturbation away from the vertex
along ∂P generally causes the visibility polygon to
become smaller; see Figure 3(c). This motivates using
a candidate set that includes two kinds of candidates:
convex vertices (denoted by I1) and midpoints of edges
incident to two reflex vertices (denoted by I2). Let
I3 = I1 ∪ I2. We experimented with independent sets
built using candidates of all 3 types. Not surprisingly,
it turned out that I3 gives the best results, as it has a
richer set of candidates.

Figure 4 shows a test on a 44-vertex polygon. The
guarding candidates set, the guarding set, and the
visibility-independent set are shown.

4 Implementation Details

4.1 Computing Extension Edges. In all cases ex-
cept vertex guard candidates, we compute a subdivision
of the polygon into cells, as described in Section 3.1.1,
by extending certain line segments that connect pairwise
visible (possibly adjacent) vertices. If P has no holes, we
can apply the algorithm of Hershberger [18], using time
O(n+k); otherwise, we can compute the visibility graph
in time O(k + n log n) (e.g., [16]). Here, k is the output
size and is the number of possible visibility extensions
(at most O(n2)). If we use only edge extensions, then
there are O(n) such extensions, and each can be deter-
mined using a ray-shooting query (O(log n) time query).
The extensions, together with ∂P , constitute the input
segments for the arrangement computation.

(a) (b) (c)

Figure 3: The effect of moving guards. The arrow
indicates the direction, red regions are added to the
visibility, while green regions are removed. (a). Moving
the point inside the polygon from the boundary usually
increases visibility, (b). Moving from a convex vertex
along the boundary usually increases visibility. (c).
Moving along the boundary from a reflex vertex usually
decreases visibility.

Figure 4: The result of running a test on a polygon with
44 vertices with heuristic A1, independent candidate
set I3, and using edge extensions for the polygon
subdivision. The large (red) disks are the guards, the
(green) squares are the visibility-independent points,
the small (cyan) disks are the remaining candidates,
and the black segments inside the polygon are the edge
extensions.

(a) (b) (c)

Figure 5: A polygon with edge extensions. Extensions
are in bold. (a) The extensions obtained with exact
precision: extensions end exactly on polygon edges. (b)
Using finite precision may lead to too short extensions,
resulting in erroneous cell merging. (c) Extensions are
pushed slightly further to guarantee that the cells are
closed and have correct topology.

4.2 Using the Arrangement to Compute a Can-

didate Set. The polygon boundary edges and
the edge- or visibility-extensions are the segments for
which we compute an arrangement, A(P), of complex-
ity O(n2) (for edge-extensions) or O(n4) (for visibility-
extensions). Each (convex) cell of A(P) contributes one
candidate, which we take to be the center of mass of the
cell.

We use the CGAL arrangement package to com-
pute A(P). We found that using exact arithmetic is
extremely slow; thus, we opted to use floating point,
with some small perturbations of segment endpoints to
avoid robustness difficulties. Since the endpoints of ex-
tensions are imprecise, we may erroneously combine two
adjacent cells if we are not careful. To avoid this error,
we push the extension endpoint slightly beyond the in-
tersection with ∂P . In this way, the interior cells will
be separated and either the unbounded cell or a hole
will have “notches” (see Figure 5). Although those cells
are affected, they are irrelevant since they are outside
of P . We did not attempt to compute the minimum
perturbation to be robust; rather, we assumed that a
small extension by a prespecified ε was sufficient for our
purposes (and never had an issue arise from this as-
sumption). We were careful, however, to check that this
extra extension did not result in reentering the interior,
which may happen if two edges are very close. In this
case, we decrease the extra extension accordingly and
still assume that it is sufficient for robust computation.
However, we did not encounter polygons with this rare
feature in our experiments.

After computing the full arrangement A(P), we
compute the candidates of each cell. Then we compute
the pairwise visibility among the candidates. If the
polygon is simple, one can apply the algorithm of [4]
to do so in time O(n2 log2 n + k) or O(n4 log2 +k)

(using space O(n2) or O(n4)), for edge- and visibility-
extensions, respectively. In some of our heuristics we
need to extract features of the cells (see Section 3.1.2);
this takes time linear on the complexity of the cells and
thus linear in |A(P)| (worst-case O(n2) or O(n4)).

4.3 Computing a Guarding Set. We iteratively
choose a guard and make the necessary updates until
the polygon is covered. We next describe the different
routines of this process.

4.3.1 Choosing the Next Guard. This routine
depends on the algorithm we use. We use two kinds of
algorithms: the greedy and the probabilistic.

Greedy. We check each candidate that has not
yet been selected. According to the scoring criteria
of the algorithm, we score each candidate and select
the one with the highest score to be the next guard.
The work for each candidate is constant, except in the
case of heuristic A3, for which we need to update the
arrangement for each new guard (O(n log n) time for
each).

Probabilistic. We simply select the guard chosen
randomly with respect to the weights. Then, we remove
its weight from the total weights.

It is worth mentioning that in both types of algo-
rithms it is possible that all candidates are visible to
the temporary list of guards, yet the polygon is not yet
covered. In this special case we identify the area that is
not covered (using the data structure in Section 4.3.3),
compute its center of mass and find a candidate that
sees this point by using point location to find in which
cell of A(P) it is located.

4.3.2 Updating the Data Structures. Once a
candidate guard is selected, we need to update the
relevant data structures before choosing the next guard.
Again, it differs for each kind of algorithm we use, as
we describe below.

Greedy. We update the weights of the candidates
as follows. Let g be the new guard and K(g) be the
visible candidates from g. Among these, there may be
candidates that are newly guarded and thus need not
be considered any more. For each such candidate, c,
we again take all of its visible candidates. For each, we
update its weight by removing the effect of c. All of
the information about the visibility among points was
precomputed, as described in Section 4.2.

Probabilistic. We find a point that is still not
guarded (if there are still such points), and double the
weights of all of the candidates that see it (including the
point itself).

4.3.3 Checking Coverage. We maintain the re-
gion, M , that is guarded by the current guarding set,
G, as follows. We initialize M to be empty. For each
new guard g we perform M = M ∪ V(g) by performing
a union of polygons. At each step we check whether
P = M . If so, the polygon is fully covered. If the poly-
gon is simple, then any of the above union computations
takes linear time. (Note that M will never have holes.)
If P has holes, then M can have holes and can have
quadratic complexity; thus, each computation may take
quadratic time. In order to compute visibility polygons
we implemented the linear-time algorithm of Joe and
Simpson [19], for visibility in simple polygons, and we
use a radial sweep around the guard, for visibility in
polygons with holes (time O(n log n)).

4.4 Removing Redundant Guards. By using
the several heuristics we described above, we decrease
the guarding set significantly from the initial set of
candidates. However, it may still be the case that
more guards can be removed while maintaining full
coverage. It may happen that after selecting a guard
g, other guards are selected such that they cover the
parts covered alone by g when it was chosen.

In order to remove redundant guards, we use the
following routine. We maintain an arrangement of
visibility polygons of the guarding set. We traverse
the guards and for each guard do the following. We
remove the guard’s visibility polygon edges from the
arrangement. Then, we check whether the new faces
are covered by the remaining guards. If they are, the
guard is removed from the guarding set. Otherwise,
we return the removed visibility polygon edges to the
arrangement. By the time the routine is completed, the
guarding set is clearly minimal.

4.5 Computing Visibility-Independent Sets.

In Section 3.3 we explained how we construct the in-
dependent candidate set and how we select the next
independent point. We use an arrangement, A, of visi-
bility polygon edges. For each point being selected, we
insert the corresponding visibility polygon into A and
check whether it intersects previous visibility polygons.
If it does not, we insert the point to the independent
set. Otherwise we remove its visibility polygon edges
from A.

5 Experiments

We have implemented our various algorithms on a PC
using openGL and CGAL (version 3.1) libraries. Our
software works with Microsoft Windows XP with Visual
.Net compiler. The tests were performed on a Microsoft
Windows XP workstation with an Intel Pentium 4 CPU

3.20GHz, 2.00 GB of RAM.
We have performed extensive experiments with the

algorithms we described in Section 3.1.2. In this
section we report our results and conclusions from our
experiments.

We found A1 (the basic algorithm) to be very useful
in the sense that both the guarding was efficient and the
time and space required were relatively reasonable. The
results obtained with algorithm A2 were satisfactory
and overall showed to be a little better than A1.
However, we paid for a much longer processing time. It
was not practical for large polygons that require many
guards and, thus, many iterations. In contrast, A1 had
no trouble handling even larger polygons. Although the
algorithm A3 seems useful for testing, it was extremely
slow—too slow for being a candidate here. Thus, we
omit its results here. Algorithms A4, A5 and A6 gave
reasonable results, but A1 turned out to be at least as
good or better in most tests we performed. Algorithms
A7, A8, A9 and A10 were usually worse or equal to A1.
A7 had very bad results for the spikes box (polygon f in
Figure 13). Algorithm A11 gave slightly better results
than A1 and was comparable to A2. Naturally, it took
more time and required more space than A1. It was
more time-efficient than A2, but the space requirement
was problematic, and it even exploded the space when
the arrangement of the visibility edges was very large.
The algorithm A12 gave the same results as A11. Since
it is more complicated than A11, there is no reason
to use it instead. The results of algorithm A13 were
not as satisfactory as A1. Also, the processing time
was significantly higher, as the number of redundant
guards was enormous, resulting in a lot of time for both
computing the guarding set and removing some of them.
The results of A14 were the worst among all algorithms
we tried. We implemented and tested this algorithm
only with simple polygons. Based on the results, we
found it useless to implement and test this algorithm
for polygons with holes.

Our tests include both interesting cases produced
manually and randomly generated polygons [2]. Fig-
ure 13 shows some of the interesting cases we tested.
All show the guarding and independent sets. Table 1
(see Section 5.3) shows statistics obtained with the al-
gorithms we used on 40 input sets. As we show later, the
best results were obtained with A2 and A11 (ignore Al-
gorithm A12 for the moment). Those results were a little
better overall than A1. The graphs in Figure 5 illustrate
their results and show how close they were. While the
results of A1 are slightly worse than the other two, it
takes substantially less time and space. Both (especially
A2) were substantially slower than A1, and both (espe-
cially A11) required much more space. A2 was found to

be way too slow for big polygons (randomly generated
200 vertex polygons) to be practical, while A11 ran out
of space for one of our polygons, which had a large size
of A(P). The good results of A2 and A11 motivated the
testing of their combination, with dynamically inserted
edges and visibility extensions (heuristic A12). However,
the results with A12 were almost identical to the results
with A11. Thus, we found no use in considering A12.
Based on all these results, we decided to concentrate on
algorithms A1, A2 and A11. Figure 15 shows a few 100-
vertex polygons we tested, with each of the algorithms
A1, A2 and A11. As shown in this figure, the different
heuristics were better for different examples. The three
heuristics imposed a trade-off between guarding quality
and time/space.

In order to explore their performance further and
get more concrete information, we tested these three
heuristics with more input sets, which strengthened our
conclusions of the trade-off we described. This trade-off
implies that when the input is small enough, or when
time and space are not an issue, using A2 and A11 would
be recommended. As time and space become restricted,
the use of A2 (mainly when the time is restricted) and
A11 (mainly when the space is restricted) becomes less
desirable and motivates the use of A1.

In order to get a quantitative measure on the
quality of the guarding sets computed, we computed
visibility-independent sets too. The ratio between the
best guarding and the best visibility-independent set
(obtained with I3) never exceeded 2, for randomly
generated polygons, and was usually close to 1. That
implies that our results were always a 2-approximation
to the optimal guarding, and usually were much better.

We analyze the time taken by the three algorithms.
With those statistics, we want to show the correlation
between the parameters and the time, and also to
compare the running time of the three algorithms.
Figure 5 shows the number of guards as a function
of the number of vertices. It shows that there is a
slight correlation between the two, but generally it
shows that the number of guards is almost independent
of the number of vertices. It should be clear that
generally there is no correlation between the two, as any
convex polygon requires only one guard, while “comb”
polygons (see Figure 13(k)) requires n/3−O(1) guards.
Figures 8 and 9 show the time as a function of the
number of guards, extension edges and vertices. The
figures show that although there is a correlation between
the parameters and the time, this correlation is not
strong and clearly there is a lot of noise. Thus, it would
be hard to predict the time based on the parameters of
the input. This observation can be explained also by the
observation above about vertices vs. guards. Clearly

both sizes should affect the running time and, since they
are not highly correlated, the time is not correlated with
each. One thing that can be clearly observed from those
figures is that A2 took the most time, while A1 took
the least (although there were exceptions).We can also
observe that for some polygons, A2 and A11 took much
more time than A1, while there are cases in which the
difference is not big.

5.1 Input Datasets. We tried to explore an
interesting and broad variety of input datasets. Except
for the randomly generated polygons, we constructed
many more examples. We present some of them below.

Well. This interesting example demonstrates a
case in which more than one guard “collaborates” in
guarding “wells” (see Figure 13(a)). The challenge in
guarding such polygons is that there is dependency
among guards: if one moves, another will have to move
too in order to compensate for the loss of visibility.

Spike box. This example is composed of a rect-
angular box with many spikes coming out of it (see Fig-
ure 13(f) and 14(h)). This example demonstrates how
inefficient a partition technique can be. In Figure 13(f),
two guards are sufficient to guard all spikes (and the
rectangular area too). However, if we order the spikes
around the rectangle perimeter and mark each spike ac-
cording to the guard who sees it, we will have no con-
sistency in this sequence. Let e be the number of guard
changes along this sequence. If e is large, it is easy to
see that any partition will subdivide the polygon into
many pieces. In the worst case, a constant number of
guards are sufficient to guard the polygon, while a linear
number of guards will be necessary with partition tech-
niques. Figure 14(h) is an example in which the upper
bound was much greater than the lower bound (here, a
ratio of 4 was obtained). In general, this ratio can be
Θ(n).

Special art gallery variants. Figure 13(c)
shows an example for simulating line segments guarding

(a rectangular polygon with skinny rectangular holes).
Other variants of interest are the guarding of the
boundary of the polygon from the outside (Figures 13(h)
and (i) and 14(e)) and the prison yard problem, which
is a combination of guarding the boundary from the
inside and outside (see Figure 14(d)). Note, however,
that while each of these examples were constructed for
instances involving guarding only of the boundary, here
we produce guards that guard the entire free space.
However, it would not be hard to modify the software
to support boundary (surface) guarding; indeed, the
problem becomes easier than area guarding. Another
variant that is well researched is the case of orthogonal

polygons, which usually have different combinatorial art

(a)

(b)

Figure 6: (a). Comparison of the guarding quality of
A1 (basic), A2 (dynamic) and A11 (full visibility). The
guarding number of all polygons with the same number
of vertices were averaged. Circles represent the results.
Note that the test with 83 vertices exploded the space
with A11; thus, it is not reflected in its graph. (b). Time
as a function of guarding set size.

(a)

(b)

Figure 7: (a). Comparison of the running time as a
function of the extensions size, comparing A1 (basic),
A2 (dynamic) and A11 (full visibility). (b). A zoom-in
of the plot above.

Figure 8: Time as a function of the number of vertices
in the polygon.

Figure 9: Time as a function of the number of vertices in
the polygon, plus 10 times the number of guards. Note
that A2 (dynamic) took too long to run on the polygons
with 200 vertices, so this data is not plotted.

Figure 10: Comparing upper and lower bounds.

Figure 11: The area covered as a function of number
of guards. The area in this graph corresponds to
guarding sizes that range between the lower and the
upper bounds we obtained. Each polygonal chain
represents a different input. The area of the polygons
was normalized (area 1 for each).

gallery theorems (see Figures 14(f) and (g)). Two more
variants are rectangular rooms (Figure 14(i)) and spiral

polygons, which are polygons composed of two chains
– one with convex vertices and the other with reflex
vertices (Figure 13(d) and 14(a)).

5.2 Covering Areas. Maximizing the area seen by
a set of k guards has been studied (see, e.g.,[11]). The
motivation is to guard a large portion of the polygon,
while using a small and efficient guarding set. Since
algorithm A3 greedily finds the most uncovered area
seen by the next guard, this algorithm may be expected
to perform provably well. However, we did not explore
this algorithm much as it was found to be extremely
slow. Nevertheless, it would be interesting to evaluate
the performance of other heuristics and see how well
they cover the area, as more and more elements are
added to the guarding sets.

Let l be the maximum lower bound obtained on
the guard number of P ; let b > l be the upper
bound obtained. We are interested to examine how
the coverage area varies as the size of the guard set
constructed by our algorithm varies from l to b. We
implemented this experiment, and the results with A1

are illustrated in Figure 11.
Let k be the size of an optimal guarding set of

polygon P . Suppose we check how much area we cover
with k− 1 guards or less. The results can be arbitrarily
bad, as illustrated in Figure 12. The polygon in this
figure consists of a big triangle from which a branch, B,

Figure 12: An example in which the guard that sees the
most area is not chosen in the first place.

of complicated small regions spikes from one of its edges.
Using A1, we first choose guards to cover B, and might
only guard the region P\B with the very last guard.
Now suppose our bounds are not tight; then, using the
first k − 1 ≥ l guards gives us an arbitrarily bad area
coverage, as B gets arbitrarily small.

In our experiments, most of the time we covered at
least 80% of the area of the polygon using l guards. In
the worst example, only 40% was covered. Interestingly,
there is a steep increase with one of the guards that
is added after the lth guard. This indicates that the
situation tends to be similar to what we described
in the example above, where one of the “late” added
guards contributes significantly to the total coverage
area. We also observe that in most of the cases where
the area covered was relatively small with l guards,
adding a few more guards usually increased the area
covered substantially. Thus, a good heuristic is to
choose a number of guards that is not much more than
l. According to our experiments, this method is likely to
give better results. We note again, as discussed above,
that the covering may be quite poor with this heuristic
as well.

5.3 Main Table of Results. Let A denote the set
of all heuristics we use, and let m be the number of input
sets we tested. For each heuristic Ai ∈ A, let GAi

(j) be
the number of guards obtained on some input number
j. Let Gmin(j) be the minimum number of guards ob-
tained with all heuristics on input j. For heuristic Ai, let

Ki =
Σ1≤j≤m(GAi

(j)−Gmin(j))

|A| , the average of number of

guards minus the best guarding obtained with all heuris-

tics, and let Mi =
Σ1≤j≤m((GAi

(j)−Gmin(j))/Gmin(j))

|A| rep-

resents the deviation from minimum in percentage. Let
Qi be the number of times the guarding obtained with
Ai was the best among all heuristics (ties among the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 13: Experiment snapshots obtained with our software on different manually generated polygons, while
using heuristic A1. Red disks are the guards and green rectangles are the independent points. The black shapes
inside some of the polygons represent holes. The sets in figures b, c, g, h and i are polygons with special features
that were manually copied from [25].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14: Experiment snapshots obtained with our software on different manually generated polygons, while
using heuristic A1. Red disks are the guards and green rectangles are the independent points. The black shapes
inside some of the polygons represent holes. The sets in figures b, c, f, g and i are polygons with special features
that were manually copied from [25].

(a) 16 guards (b) 15 guards (c) 16 guards

(d) 14 guards (e) 14 guards (f) 13 guards

(g) 16 guards (h) 16 guards (i) 15 guards

(j) 14 guards (k) 16 guards (l) 16 guards

Figure 15: Experiment snapshots of guarding sets obtained with our software on different 100-vertex polygons
(each row is dedicated to one input), with heuristics A1 (first column), A2 (middle column) and A11 (right
column).

A1 A2 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

K 0.7 0.47 1.47 1.6 1.3 1.22 0.9 0.83 1.75 0.48 0.5 1.64 3.33
M 0.10 0.06 0.22 0.22 0.16 0.29 0.13 0.14 0.41 0.08 0.09 0.27 0.69
Q 16 17 11 11 10 10 11 12 8 15 15 9 8
B 40 40 40 40 40 40 40 30 29 39 38 39 30

Table 1: Results obtained with our heuristics on 40 input sets.

best guarding were counted for each heuristic). Let Bi

be the number of tests that were actually completed,
not counting those that either exploded the memory or
whose candidate scores became zero values (and thus
caused the algorithm to select candidates arbitrarily,
until all points of the polygon are seen, thereby tak-
ing an unusually long time to complete). We use these
notations (without subscripts) in Table 1.

6 Conclusions

We have conducted the first experimental analysis of
a broad class of heuristics for locating guards to cover
polygons. We designed and implemented several heuris-
tics for guarding polygons, possibly with holes. We also
computed visibility-independent sets, allowing us to ob-
tain provable bounds on how close our results are to op-
timal. We concluded that there are three recommended
heuristics, and they trade off guarding quality, space
and time. The guarding sets obtained with them were
very satisfactory in the sense that they were always ei-
ther optimal or close to optimal (within factor 2 for all
randomly generated instances) in all of the cases we en-
countered.

Most of our methods extend naturally to practical
variants of the guarding and sensor coverage problem
in which there are constraints on the visibility, e.g.,
view distance, good view angles of walls to be observed,
robustness of coverage, etc [17, 20]. The methods also
can be generalized to three dimensions, though the
implementation would be substantially more involved.

There are several directions for further research.
Since our results were very promising and the general
art gallery problem is NP-hard, our main theoretical
objective is to obtain provable heuristics.

We note that in recent and forthcoming work of
Bottino and Laurentini [6, 7, 8, 9], experimental results
are obtained similar to our own: They perform experi-
ments on many input polygons, showing near optimality
of guarding sets computed using their proposed heuristic
(iterative) algorithms based on partitioning and cover-
ing.

References

[1] A. Aggarwal. The art gallery theorem: Its variations,
applications and algorithmic aspects. PhD thesis, John
Hopkins University, 1984.

[2] T. Auer and M. Held. Heuristics for the generation
of random polygons. In Proc. 8th Canad. Conf.
Computat. Geometry, pages 38–43, 1996.

[3] D. Avis and G.Toussaint. An efficient algorithm to
decompose a polygon into star-shaped pieces. Pattern
Recognition, 13:295–298, 1981.

[4] B. Ben-Moshe, O. Hall-Holt, M. J. Katz, and J. S. B.
Mitchell. Computing the visibility graph of points
within a polygon. In Symposium on Computational
Geometry, pages 27–35, 2004.

[5] B. Ben-Moshe, M. J. Katz, and J. S. B. Mitchell. A
constant-factor approximation algorithm for optimal
terrain guarding. In Proc. 16th ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 515–524, 2005.

[6] A. Bottino and A. Laurentini. Optimal positioning
of sensors in 2D. In Proc. CIARP, vol. 3287 of
Lecture Notes Comput. Sci., pages 53–58, Springer-
Verlag, 2004.

[7] A. Bottino and A. Laurentini. A practical iterative
algorithm for sensor positioning. In Proc. 10th IEEE
Conf.Emerging Technologies and Factory Automation,
Sept., 2005.

[8] A. Bottino and A. Laurentini. A new art gallery
algorithm for sensor location. In Proc. ICINCO, pages
242–249, Barcelona, 2005.

[9] A. Bottino and A. Laurentini. Experimental results
show near-optimality of a sensor location algorithm.
To appear, Proc. IEEE Internat. Conf. Robotics and
Biomimetics (ROBIO 2006), Kunming, China, Decem-
ber 17-20, 2006

[10] H. Brönnimann and M. Goodrich. Almost optimal set
covers in finite VC-dimension. Discrete and Computa-
tional Geometry, 14:263–279, 1995.

[11] O. Cheong, A. Efrat, and S. Har-Peled. On finding a
guard that sees most and a shop that sells most. In
Proc. 15th ACM-SIAM Sympos. Discrete Algorithms,
pages 1098–1107, 2004.

[12] V. Chvatal. A combinatorial theorem in plane geome-
try. J. Combin. Theory Ser. B, 18:39–41, 1975.

[13] A. Efrat and S. Har-Peled. Guarding galleries and
terrains. Information Processing Letters, to appear,
2006.

[14] S. Fisk. A short proof of Chvátal’s watchman theorem.
J. Combin. Theory Ser. B, 24:374, 1978.

[15] S. K. Ghosh. Approximation algorithms for art gallery
problems. Proc. of the Canadian Information Process-
ing Society Congress, pages 429–434, 1987.

[16] S. K. Ghosh and D. M. Mount. An output-sensitive
algorithm for computing visibility graphs. SIAM J.
Comput., 20(5):888–910, 1991.

[17] H. González-Banos and and J-C. Latombe. A ran-
domized art-gallery algorithm for sensor placement. In
Proc. 17th Annu. ACM Sympos. Comput. Geom., pages
232–240, 2001.

[18] J. Hershberger. An optimal visibility graph algo-
rithm for triangulated simple polygons. Algorithmica,
4(1):141–155, 1989.

[19] B. Joe and R. B. Simpson. Correction to Lee’s visibility
polygon algorithm. BIT, 27:458–473, 1987.

[20] G. D. Kazakakis and A. A. Argyros. Fast position-
ing of limited visibility guards for inspection of 2D
workspaces. In Proc. IEEE/RSJ Internat. Conf. In-
telligent Robots and Systems, pages 2843–2848.

[21] J. M. Keil. Decomposing a polygon into simpler
components. SIAM J. Comput., 14:799–817, 1985.

[22] J. King. A 4-approximation algorithm for guarding
1.5-dimensional terrains. In Proc. 7th Latin Ameri-
can Sympos. on Theoretical Informatics, vol. 3887 of
Lecture Notes Comput. Sci., pages 629–640, Springer-
Verlag, 2006.

[23] D. T. Lee and A. K. Lin. Computational complexity
of art gallery problems. IEEE Trans. Inform. Theory,
32(2):276–282, 1986.

[24] B. J. Nilsson. Approximate guarding of monotone and
rectilinear polygons. In Proc. 32nd Internat. Colloq.
Automata Lang. Prog., vol. 3580 of Lecture Notes
Comput. Sci., pages 1362–1373, Springer-Verlag, 2005.

[25] J. O’Rourke. Art gallery theorems and algorithms.
Oxford University Press, Oxford, 1987.

[26] T. Shermer. Recent results in art galleries. Proc. of
the IEEE, 80(9):1384–1399, 1992.

[27] J. Urrutia. Art gallery and illumination problems. In
J. Sack and J. Urrutia, eds, Handbook of Computational
Geometry, pages 973–1027. Elsevier Science Publishers,
Amsterdam, 2000.

[28] C. Worman and M. Keil. Polygon decomposition
and the orthogonal art gallery problem. Internat. J.
Comput. Geom. Appl., to appear, 2006.

