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Abstract. A set of k mobile agents are placed on the boundary of a
simply connected planar object represented by a cycle of unit length.
Each agent has its own predefined maximal speed, and is capable of
moving around this boundary without exceeding its maximal speed. The
agents are required to protect the boundary from an intruder which
attempts to penetrate to the interior of the object through a point of
the boundary, unknown to the agents. The intruder needs some time
interval of length τ to accomplish the intrusion. Will the intruder be
able to penetrate into the object, or is there an algorithm allowing the
agents to move perpetually along the boundary, so that no point of the
boundary remains unprotected for a time period τ? Such a problem may
be solved by designing an algorithm which defines the motion of agents
so as to minimize the idle time I, i.e., the longest time interval during
which any fixed boundary point remains unvisited by some agent, with
the obvious goal of achieving I < τ .
Depending on the type of the environment, this problem is known as ei-
ther boundary patrolling or fence patrolling in the robotics literature. The
most common heuristics adopted in the past include the cyclic strategy,
where agents move in one direction around the cycle covering the environ-
ment, and the partition strategy, in which the environment is partitioned
into sections patrolled separately by individual agents. This paper is, to
our knowledge, the first study of the fundamental problem of boundary
patrolling by agents with distinct maximal speeds. In this scenario, we
give special attention to the performance of the cyclic strategy and the
partition strategy. We propose general bounds and methods for analyzing
these strategies, obtaining exact results for cases with 2, 3, and 4 agents.
We show that there are cases when the cyclic strategy is optimal, cases
when the partition strategy is optimal and, perhaps more surprisingly,
novel, alternative methods have to be used to achieve optimality.
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1 Introduction

Consider a Jordan curve C forming the boundary of a geometric, planar, simply
connected object. On the curve are placed k mobile agents, each agent capable of
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moving at any speed without exceeding its speed limit. The maximal speeds of
the agents may be distinct, and the agents are allowed to walk in both directions
along C. The main goal is to design the agents’ movements so that the maximal
time between two consecutive visits to any fixed point of the boundary is mini-
mized. The studied problem has genuine applications. For example, in order to
prevent an intruder from penetrating into a protected region, the boundary of
the region must be monitored, often with the aid of moving agents such as walk-
ing guards, illumination rays, cameras, etc. Since the feasibility of an intrusion
likely depends on the time during which the intruder remains undiscovered, it is
important to design patrolling protocols which minimize the time during which
boundary points are unprotected.

Notation. We assume here that the mobile agents are traversing a continuous,
rectifiable curve, where we are interested in the total distance travelled along
the curve where some parts can be visited more than once. If the curve is also
closed it is called a cycle C. Without loss of generality we may assume that
the cycle is represented by a circle. The set of mobile agents a1, a2, . . . , ak are
moving along C. The speed of each agent ai may vary during its motion, but
its absolute value can never exceed its predefined maximal speed vi. We assume
that a positive speed corresponds to the counterclockwise traversal of the circle
and the negative speed to the clockwise movement. Without loss of generality
we suppose that the agents are numbered so that v1 ≥ v2 ≥ . . . ≥ vk > 0. Using
a scaling argument we assume that the length of the circle is equal to 1 (unit of
length), and that in one unit of time an agent using constant speed 1 (one unit
of speed) makes exactly one complete counterclockwise tour around the circle.
The position of agent ai at time t ∈ [0,∞) is described by the continuous

function ai(t). Hence respecting the maximal speed vi of agent ai means that for
each real value t ≥ 0 and ǫ > 0, s.t., ǫvi < 1/2, the following condition is true

dist(ai(t), ai(t+ ǫ)) ≤ vi · ǫ (1)

where dist(ai(t), ai(t + ǫ)) denotes the distance along the cycle between the
positions of agent ai at times t and t+ ǫ.

Definition 1 (Traversal Algorithm). A traversal algorithm on the cycle for
k mobile agents is a k-tuple A = (a1(t), a2(t), . . . , ak(t)) which satisfies Inequal-
ity (1), for all i = 1, 2, . . . , k.

Definition 2 (Idle time). Let A be a traversal algorithm for a system of k
mobile agents traversing the perimeter of a circle with the circumference 1.

1. The idle time induced by A at a point x of the circle, denoted by IA(x), is
the infimum over positive reals T > 0 such that for each K ≥ 0 there exists
1 ≤ i ≤ k and t ∈ [K,K + T ] such that ai(t) = x.

2. The idle time of the system of k mobile agents induced by A is defined by
IA = supx∈C IA(x), the supremum taken over all points of the circle.

3. Finally, the idle time, denoted by Iopt, of the system of k mobile agents is
defined by Iopt = infA IA, the infimum taken over all traversal algorithms A.
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Related Work. Patrolling has been intensely studied in robotics, especially
in the last 4-5 years (cf. [3, 9–11, 14, 16, 21]). It is often viewed as a version
of coverage, a central task in robotics. It is defined as the act of surveillance
consisting in walking around an area in order to protect or supervise it. Patrolling
is useful, e.g., to determine objects or humans that need to be rescued from
a disaster environment. Network administrators may use mobile agent patrols
to detect network failures or to discover web pages which need to be indexed
by search engines, cf. [16]. Patrolling is usually defined as a perpetual process
performed in a static or in a dynamically changing environment.

Notwithstanding several interesting applications and its scientific interest,
the problem of boundary and area patrolling has been studied very recently (cf.
[2, 10, 11, 19]). On multiple occasions, patrolling has been dealt with using an
ad-hoc approach with emphasis on experimental results (e.g. [16]), uncertainty
of the model and robustness of the solutions when failures are possible (e.g.,
[10, 11, 14]) or non-deterministic solutions (e.g., [2]). In the largely experimen-
tal paper [16] one can also find several fundamental theoretical concepts related
to patrolling, including models of agents (e.g., visibility or depth of percep-
tion), means of communication or motion coordination, as well as measures of
algorithm efficiency. In most papers in the domain of patrolling, and also in our
paper, algorithm efficiency is measured by its capacity to optimize the frequency
of visits to the points of the environment (cf. [3, 9–11, 16]). This criterion was
first introduced in [16] under the name of idleness. Depending on the approach
the idleness is sometimes viewed as the average ([10]), worst-case ([21, 5]), prob-
abilistic ([2]) or experimentally verified ([16]) time elapsed since the last visit
of the node (see also [3, 9]). In some papers the terms of blanket time ([21]) or
refresh time ([19]) are used instead, meaning the similar measure of algorithm
efficiency.

Diverse approaches to patrolling based on the idleness criteria were surveyed
in [3] — they discussed machine learning methods, paths generated using nego-
tiation mechanisms, heuristics based on local idleness, or approximation to the
Traveling Salesmen Problem (TSP). In [4] patrolling is studied as a game be-
tween patrollers and the intruder. Some papers solved patrolling problem based
on swarm or ant-based algorithms ([12, 18, 21]). In these approaches agents are
supposed to be memoryless (or having small memory), decentralized ([18]), i.e.,
with no explicit communication permitted with other agents or the central sta-
tion, with local sensing capabilities (e.g., [12]). Ant-like algorithms usually mark
the visited nodes of the graph. The authors of [21] present an evolutionary pro-
cess. They show that a team of memoryless agents, by leaving marks at the
nodes while walking through them, after relatively short time stabilizes to the
patrolling scheme in which the frequency of the traversed edges is uniform to a
factor of two (i.e., the number of traversals of the most often visited edge is at
most twice the number of traversal of the least visited one), see also [5].

The author of [9] brings up a theoretical analysis of the approaches to pa-
trolling in graph-based models. The two fundamental methods are referred to as
cyclic strategies, where a cycle spanning the graph is constructed and the agents
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consecutively traverse this cycle in the same direction, and partition-based strate-
gies, where the region is split into either disjoint or overlapping portions assigned
to be patrolled by different agents. The environment and the time considered
in the studied models are usually discrete and set in a graph environment. In
geometric environments, the skeletonization technique is often applied, where
the terrain is first partitioned into cells, and then graph-theoretic methods are
used. Usually, cyclic strategies rely either on TSP-related solutions or spanning
tree-based approaches. For example, spanning tree coverage, a technique first
introduced in [13], was later extended and used in [1, 10, 14]. This technique is a
version of the skeletonization approach where the two-dimensional grid approx-
imating the terrain is constructed and a Hamiltonian path present in the grid
is used for patrolling. In the recent paper [19], polynomial-time patrolling solu-
tions for lines and trees are proposed. For the case of cyclic graphs [19] proves the
NP-hardness of the problem and a constant-factor approximation is proposed.
Related to our problem is the lonely runner conjecture, given this lifelike

name in [8], but first stated by J.M. Willis in 1967, [20]. It concerns k runners
(k ≥ 2) running laps on a unit length circular track with constant but pairwise
different speeds. It is conjectured that every runner gets at a distance at least
1/k along the circular track to every other runner at some time. The conjecture
has been proved for up to seven runners. For related work we refer the reader
to two recent papers [6] and [7]. Very recently, substantial progress has been an-
nounced in an unpublished work [15] using dynamical systems theory. In private
communication, the authors point out an equivalence between problems similar
to the lonely runner conjecture and certain types of problems from elementary
number theory (including Littlewood’s, Goldbach’s, and Polignac’s conjectures).

2 Boundary patrolling algorithms

This section contains our results for the patrolling problem with variable-speed
agents. The layout of the section is inspired by the categorization from [9] of
approaches to patrolling into partition-based strategies (when the environment
is partitioned into parts monitored by individual agents) and cyclic strategies
(when all agents patrol the environment walking in the same direction along
some cycle). In Subsection 2.1 we consider the problem of fence patrolling, for
which proportional partition-based strategies appear to be the most natural
approach. We provide a non-trivial proof that this strategy is indeed optimal for
any configuration of speeds for k = 2 agents. Next, we consider cyclic strategies
for patrolling a circular boundary. In Subsection 2.2 we show that such strategies
are optimal on the circle for all configurations of speeds with k ≤ 4 agents, under
the additional constraint that all the agents are restricted to motion in the same
direction around the boundary. In Subsection 2.3 we show by a technical analysis
that the cyclic strategy is optimal for k = 2 even for agents which can change
direction of motion. Surprisingly, we also show that in this general setting, the
cyclic strategy is no longer optimal for k = 3 agents, and that a new type of
strategy which is neither partition-based nor cyclic achieves a shorter idle time.
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Note. Due to space constraints, most proofs (especially the involved proofs of
lower bounds) are not present in this version of the paper.

2.1 Fence patrolling. The proportional solution.

We first consider the special case with an additional restriction that the bound-
ary contains a special cutting point through which no agent is permitted to cross
during its movement. This corresponds to the problem of patrolling a segment
S = [0, 1] and is known as fence patrolling in the robotics literature. We assume
that positive speed corresponds to the traversal of the unit segment in the direc-
tion from left to right, while negative speed traversal in the opposite direction.
We propose the following algorithm:

Algorithm A1 {for k agents to patrol a segment}
1. Partition the unit segment S into k segments, such that the length of the

i-th segment si equals
vi

v1+v2+···+vk
.

2. For each i = 1, . . . , k place agent ai at any point of segment si.
3. For each i = 1, . . . , k agent ai moves perpetually at maximal speed
alternately visiting both endpoints of si.

Proposition 1. Traversal algorithm A1 achieves idle time I = 2

v1+v2+···+vk
.

Proof. Since each agent covers a non-overlapping segment of the circle (except
for its endpoints, which may be visited by two agents) the interior points of each
segment si are visited by the same agent ai. The infimum of the frequency of
visits of point x inside si is achieved for x being its endpoint. Since between
two consecutive visits to the endpoint x of si agent ai traverses, using its speed
vi, the segment si of length

vi

v1+v2+···+vk
twice, the idle time of such a point is

I = 2 vi

v1+v2+···+vk
/vi =

2

v1+v2+···+vk
.

We prove below that the algorithm A1 is optimal for the case of two agents
patrolling a segment.

Theorem 1. The optimal traversal algorithm for two agents patrolling unit seg-
ment S = [0, 1] achieves idle time Iopt =

2

v1+v2

.

Proof idea.We suppose, by contradiction, that there exists an algorithm A with
an idle time of IA = IA1

−ǫ for some ǫ > 0. We consider the subsegments S1 and
S2 forming a decomposition of S, of lengths proportional to the speed bounds
of agents a1 and a2, respectively (|S1| ≥ |S2|), such that each agent belongs to
its subsegment at some specific time. We show that the first agent to visit the
common endpoint of S1 and S2 has to be the slower agent a2 (otherwise the
other endpoint of S2 cannot be revisited in time). This forces the faster agent a1
to visit the other endpoint of S1, since a2, in turn, cannot do this in time. As a
consequence, a meeting of a1 and a2 has to occur. When this meeting happens,
we bound from below four values of time, describing the times elapsed from the
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last visit to each endpoint of S and the times to the next visit to these endpoints.
We use for this purpose the information about their speeds and the distance of
the point of meeting of the agents from each of the endpoints. We show that the
sum of the four considered times is at least equal to twice the idle time of A1,
leading to the conclusion that one of the endpoints must remain unvisited for at
least a time of IA1

, a contradiction with IA < IA1
.

We conjecture that Theorem 1 extends to the case of any number of agents.

Conjecture 1. The optimal traversal algorithm for n agents patrolling a segment
achieves idle time Iopt =

2

v1+v2+...+vk
.

The approach from Proposition 1 results in a 2-approximation.

Proposition 2. For any environment (a segment or a circle), the idle time of
an optimal traversal algorithm for k agents with maximal speeds v1, v2, . . . , vk is
lower-bounded by Iopt ≥

1

v1+v2+···+vk
.

Proof. During any time interval of length Iopt all points of the boundary have to
be visited by at least one agent, hence the segments of the boundary covered by
the corresponding mobile agents must cover the entire boundary. The maximum
length of the segment traversed by agent ai during time Iopt equals Ioptvi. Since∑k

i=1
Ioptvi ≥ 1 we have Iopt ≥

1

v1+v2+···+vk
.

The idea of algorithm A1 was to balance the work of all agents according
to their maximal speeds. Hence the unit segment was partitioned in such a way
that the idle time for each sub-segment was equal. The above algorithm seems
to imply that we should use all available agents in the patrolling process, i.e.,
not using some of the agents results in a worse idle time. Indeed, it seems that,
if some agent ai is not being used (i.e., it stays motionless), the sub-segment
patrolled by agent ai in algorithm A must be covered, entirely or partially, by
some other agent aj . Since aj must then cover a longer segment using the same
maximal speed, this would result in longer idle time for its sub-segment and,
consequently, in longer idle time for the algorithm. However the results of the
next section indicate that this intuitive observation is not true in the case of
patrolling a circle.
Patrolling a segment seems to suffer from an inherent weakness. An agent,

after reaching an endpoint of the segment (or its sub-segment), performs a traver-
sal in the opposite direction, first moving through points which were visited very
recently, and only revisiting its starting location after two complete traversals of
the segment. On the other hand, algorithms on the circle can be designed so that
at any time the agent re-visits the location which has been waiting the longest.
Consequently, optimal algorithms for a single agent of maximal speed 1 offer
idle time 1 for the unit circle and idle time 2 for the unit segment. Therefore, in
order to profit from the circle topology it may seem natural to try to traverse
the cycle always in the same direction. In the next section we consider the case
when all the agents are required to do so.
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2.2 Patrolling a unidirectional boundary

We consider the case of the circle which must be traversed by all agents always
in the same direction, say counterclockwise. In another words, every agent must
use a strictly positive speed at each period of its movement. We now show an
algorithm for which we can prove optimality for a small number of agents. The
idea of the algorithm is to use only a subset of r agents having sufficiently high
maximal speeds. These agents are spaced on the circle at even distances and
ordered to move counterclockwise using the constant speed vr — the maximal
speed of the slowest agent from the subset. The value of r is chosen such that
the idle time is minimized.

Algorithm A2 {for k agents to patrol a unidirectional circle}
1. Let r be such that max1≤i≤k ivi = rvr.
2. Place the agents a1, a2 . . . ar at equal distances of

1

r
around the circle

3. For each i = 1, . . . , r agent ai moves perpetually counterclockwise
around the circle at speed vr.

4. None of the agents ar+1, ar+2 . . . ak are used by the algorithm.

Theorem 2. Consider k agents patrolling a unit circle having positive speeds
not exceeding the maximal values v1 ≥ v2 ≥ . . . ≥ vk > 0, respectively. Then
algorithm A2 achieves the idle time I = 1

max1≤i≤k ivi
.

Proof. Suppose that i mobile agents spaced at equal distances around the circle
walk with speed vi. Consider any time t. Each agent aj must visit at some
time t+∆ the point x which was visited at time t by another agent which was
predecessor of aj on the circle. The distance to this point x is equal to 1/i. Using
speed vi reaching point x takes time ∆ = 1

ivi
.

Note that the value of 1 ≤ r ≤ k such that rvr = max1≤i≤k ivi is the best
possible, since

1

rvr
= 1

max1≤i≤k ivi
= min1≤i≤k

1

ivi

We prove that algorithm A2 is optimal for any setting involving less than 5
mobile agents. For this purpose we introduce first the notion of a visit pattern.

Definition 3. Suppose that k agents a1, a2 . . . , ak patrol a unit circle according
to algorithm A. We say that algorithm A admits the visit pattern P = i1i2 . . . ip,
where 1 ≤ ij ≤ k for j = 1, 2, . . . , p, if there exists time t and a point x on the
circle, such that starting at time t the following, consecutive visits of point x are
made (in this order) by the agents ai1 , ai2 . . . aip .

For example, the visit pattern 131 implies that at some time during the
execution of the algorithm, a certain point x on the circle is visited by agent a1,
the next visit to x is made by agent a3 and the subsequent visit is made again
by agent a1. The notion of the visit pattern may be also extended to the case
when more than one agent visits point x at the same time.
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We prove below that algorithm A2 is optimal for the case of k < 5 agents.
We first make an important observation, which we will use in this proof.

Observation. In order to prove that no algorithm A′ provides a better idle time
than algorithm A2 it is sufficient to focus our attention on a class of algorithms
A′ in which the agents a1, a2, . . . , ak have speeds restricted to, respectively, v1 =
v, v2 = v/2, . . . , vk = v/k, for some v > 0.
Indeed, assume that the algorithm A′ must run for any sequence of speeds

v′1 ≥ v′2 ≥ · · · ≥ v′k, such that rv
′
r = max1≤i≤k iv

′
i. Suppose that we change

the speeds of the agents to v1 = rv′r, v2 = rv′r/2, . . . , vk = rv′r/k. Observe that
vr = v′r and vi ≥ v′i, for i 6= r. Increasing the speeds of the agents may never
result in a worse idle time since the algorithm may always choose to use some
smaller speeds.
We show below that if some algorithm A′ provides a better idle time than

algorithm A2, then between any two consecutive visits to any point x of the
circle by some agent ac, 1 ≤ c ≤ k, there must be at least c visits of point x
which are made by other agents.

Lemma 1. Consider any algorithm A run for the agents speeds v1 = v, v2 =
v/2, . . . , vk = v/k. If algorithm A admits a visit pattern ci1i2 . . . idc, where 1 ≤
d < c ≤ k, then algorithm A cannot result in a better idle time than I =

1

max1≤i≤k ivi
= 1/v (i.e., the idle time of algorithm A2).

Proof. Suppose that algorithm A admits some visit pattern ci1i2 . . . idc for some
point x of the circle, where 1 ≤ d < c ≤ k. Since vc = v/c, the time T between
the first and the last visit of point x by ac is at least

T ≥
1

vc
=

c

v
.

This time interval is split into d + 1 sub-intervals by the visits of agents
ai1 , ai2 , . . . , aid . The largest such sub-interval T

′ must be at least equal to their
average, i.e., since d+ 1 ≤ c,

T ′

≥
T

d+ 1
≥

c

v(d+ 1)
≥

c

vc
=

1

v
.

Hence, the idle time of algorithm A is not less than that of algorithm A2.

The visit patterns from the statement of Lemma 1, which can never be ad-
mitted by any algorithm supposedly offering a better idle time than A2, will be
called forbidden patterns.
We now show that for any case of k < 5 agents the algorithm A2 is optimal.

Theorem 3. Consider the case of k < 5 agents patrolling a unit circle having
positive speeds not exceeding the maximal values v1 ≥ v2 ≥ . . . ≥ vk > 0,
respectively. Algorithm A2 achieving the idle time I = 1

max1≤i≤k ivi
is optimal for

this case.
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Proof idea. The proof is performed for k = 4, and implies the result also for
k < 4. The idea of the proof for k = 4 is the following. We show first that,
when some particular pairs of agents meet, a forbidden pattern is forced. As a
consequence we will show that no agent can overtake agent a4 more than once.
Therefore, the number of agents’ visits to any point x of the circle is at most
four times the number of visits of this point by agent a4 (plus a small constant).
Hence for any ǫ > 0 no algorithm can offer the idle time smaller than 1

4v4

− ǫ
and the idle time of algorithm A2 cannot be improved.

We believe that Theorem 3 extends to any number of agents, hence we pro-
pose the following conjecture:

Conjecture 2. In the case of k agents patrolling the circle, which have to use
positive speeds not exceeding their respective maximal values v1 ≥ v2 ≥ . . . ≥
vk > 0, the algorithm A2 achieving the idle time I = 1

max1≤i≤k ivi
is optimal.

One can show that the idle time of 1

max1≤i≤k ivi
, achieved with positive speeds,

is always within a multiplicative factor of (1 + ln k) away from the theoretical
lower bound on idle time of 1∑

1≤i≤k
vi
(Proposition 2), which holds even when

we allow agents moving in both directions. In this context, it is natural to ask
whether using positive speeds by all agents, i.e., traversing the circle in the
same direction is always the best strategy. This problem is addressed in the next
section.

2.3 Allowing movement in both directions

In this section we consider patrolling of a circle which may be traversed in both,
clockwise and counterclockwise directions. It is important to understand whether
this additional ability of agents to change directions may be sometimes useful and
whether it may lead to a technique better than algorithm A2 from the previous
section. We show that this is not the case for any setting involving k = 2 agents.
We show, however, that there are settings already for k = 3 agents, when using
negative speeds by the participating agents leads to a better idle time.

Theorem 4. Consider two agents patrolling a unit circle with the possibility
of movement in both directions. For any pair of maximal speeds v1 ≥ v2 no
algorithm A permitting agents’ movement in both directions of the circle can
achieve an idle time IA which is better than min{ 1

v1

, 1

2v2

} (i.e., the idle time
provided by algorithm A2).

Proof idea.We first show that a pair of agents a1 and a2, following algorithm A,
may never meet. Then, we prove that at some point of time, the circle is uniquely
decomposed into a pair of arcs, each of which contains the set of points which
were last visited by the first and by the second agent, respectively. Moreover, the
location of each agent is confined to its corresponding arc. The endpoints of the
arcs perform a continuous motion in time. We show that one of the endpoints of
the arc of agent a1 is never visited by this agent, whereas the other endpoint is
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visited regularly for arbitrarily large values of time. Without loss of generality,
we will say that the clockwise orientation of the circle is the orientation given by
traversing the arc of agent a1 from the endpoint which this agent does not visit,
to the other endpoint. We prove that the trajectory of the arc endpoint which
is never visited by a1 is necessarily a monotonous clockwise rotation around the
circle (without a limit point). Within every such rotation, we show that each
point of the circle is visited by agent a1 at least twice, and that the distance
traversed clockwise in between any two such visits to the same point by agent is
at most 1

4
. Taking into account these observations, and the fact that the length

of the arc corresponding to agent a1 is always greater than
1

2
, we perform the

main part of the proof which consists in a technical analysis of the trajectory
of agent a1. We finally show that the idle time of algorithm A cannot be better
than min{ 1

v1

, 1

2v2

}.

The last theorem implies the following

Corollary 1. There exists settings when the optimal algorithm solving the bound-
ary patrolling problem does not use some of the agents.

Indeed, from Theorem 4 it follows that algorithm A2 is optimal for two agents
patrolling a circle. However if agent a2 has a speed at least twice slower than
a1, patrolling by a1 (disregarding the behavior of agent a2), using its maximal
speed, results in the optimal idle time.
The next theorem gives an example of the setting for three agents, where

using both directions is sometimes necessary to achieve the optimal idle time.
This would not be true for every speed setting for three agents (e.g., clearly not
for three agents with equal maximal speeds).

Theorem 5. Consider k = 3 agents patrolling a unit circle with the possibility
of movement in both directions. There exist settings such that in order to achieve
the optimal idle time, some agents need to move in both directions.

Proof. Consider the setting with k = 3 agents having maximal speeds v1 =
1, v2 = v1/2, v3 = v1/3. Suppose that all agents move in the same counterclock-
wise direction around the unit circle. By Theorem 3, A2 is the optimal algorithm
for this case and it achieves the idle time IA2

= 1

max1≤i≤k ivi
= 1. In order to

prove the claim of our theorem we need to give an example of an algorithm A′

controlling the movement of the three agents using v1, v2 = v1/2, v3 = v1/3 as
their maximal speeds, such that some agents move in both directions, and such
that its idle time IA′ < 1. Using the classical concept of distance-time graphs
due to E.J. Marey [17] the movement of the agents is described at Fig. 1, where
the horizontal axis represents time and the vertical axis refers to the position
of the corresponding agent on the circle (with 0 and 1 representing the same
point).
A detailed discussion of the construction and its analysis is omitted in this

version of the paper. We show that the maximal idle time is equal to 35

36
< 1 =

IA2
, proving the claim of the theorem.
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Fig. 1. Example of an algorithm achieving an idle time of 35

36
for three robots with

speeds v1 = 1, v2 = 1/2, v3 = 1/3

Note that for the speed setting from the example from Figure 1 the algo-
rithm A1 is not optimal as well since the partition of the circle into segments
proportional to the agents’ speeds would result in the idle time of 2

1+ 1

2
+ 1

3

> 1.

Therefore for this speed setting, neither the partition strategy of algorithm A1,
nor the cyclic strategy of algorithm A2 is the best.

3 Conclusion and open problems

The problem of boundary patrolling has been lately intensively studied by the
robotics research community. Optimality measures related to idleness — the
minimization of the time when a boundary point remained unvisited — are
applied in the vast majority of work in the field. This is also the measure of
algorithm efficiency adopted in our paper. We have shown that for agents with
distinct maximum speeds, in some settings of the problem the decisions made
by the optimal algorithms are to some extent counter-intuitive. For example, we
showed that it is sometimes advantageous not to make use of all of the agents.
We showed that the partition strategy, represented by algorithm A1, and the
cyclic strategy, performed by algorithm A2 are indeed optimal in certain cases.
However, as follows from Theorem 5, in some settings the optimal idle time
cannot be obtained by either of these two strategies.

Several problems remain open. The fundamental open problem is to design
the optimal strategy for any configuration of speed settings of k agents pa-
trolling a circle with the unit circumference. Two other problems, stated as
Conjecture 1 and Conjecture 2, concern the extension of our results to a larger
number of agents. Some other important questions include the following. Is it
possible that in some setting the optimal algorithm needs agents to overtake
(pass) one another? What is the solution to the problem in the case when agents
have some radius of visibility (i.e., a point is considered visited when an agent is
at some ε neighborhood of the point), potentially different for different agents?
Finally, it is interesting to study local coordination scenarios which would allow
variable-speed agents to stabilize to an efficient patrolling scheme in a distributed
manner.
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