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Abstract

We study bargaining networks, discussed in a recent paper of Kleinberg and Tardos [KT08], from the
perspective of cooperative game theory. In particular we examine three solution concepts, the nucleolus,
the core center and the core median. All solution concepts define unique solutions, so they provide testable
predictions. We define a new monotonicity property that is a natural axiom of any bargaining game solution,
and we prove that all three of them satisfy this monotonicity property. This is actually in contrast to the
conventional wisdom for general cooperative games that monotonicity and the core condition (which is a
basic property that all three of them satisfy) are incompatible with each other. Our proofs are based on a
primal-dual argument (for the nucleolus) and on the FKG inequality (for the core center and the core median).
We further observe some qualitative differences between the solution concepts. In particular, there are cases
where a strict version of our monotonicity property is a natural axiom, but only the core center and the core
median satisfy it. On the other hand, the nucleolus is easy to compute, whereas computing the core center or
the core median is #P-hard (yet it can be approximated in polynomial time).
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1 Introduction

Consider the following bargaining game that models mutually beneficial interactions between its players, and
how they choose to split the joint benefit. Given a graph, suppose that there is a dollar on every edge of the graph,
and a player at every node. Two players joined by an edge may split the dollar on that edge amongst themselves,
if they agree on how to split it. However, each player is allowed to split the dollar with at most one neighbor.
The proportion in which the players split the dollar may display asymmetries due to the position of the players in
the graph. The outcome of such a game has been a central focus of network exchange theory [Wil99], a subfield
of sociology. There has been extensive research [CE78, CEGY83] in this area in gathering experimental data
on such outcomes. The goal from a theoretical perspective is to provide models that not only predict outcomes
of actual experiments, but also have nice mathematical properties. In fact, game theory already provides us
with several solution concepts that can be applied to such games. We intend to study natural properties of these
solution concepts so as to provide a theoretical basis for comparison among them. In the process, we prove two
combinatorial lemmas that seem to be of independent interest.

The recent work of Kleinberg and Tardos [KT08] brought this problem to the attention of theoretical computer
science community. They consider balanced outcomes1, which can be seen as an extension of Nash’s bargaining
theory [Nas50] to networks. Nash’s bargaining theory considers a similar game where two players are allowed
to split a dollar between them, but they each have an alternative, which is the value they get if they disagree with
each other. Let a1 and a2 be the alternatives of the two players, and x1 and x2 be their corresponding share of
the dollar. Nash’s solution says that x1 and x2 are such that x1 + x2 = 1 and x1 − a1 = x2 − a2. (There is no
agreement if a1 +a2 > 1.) Note that an outcome of the bargaining game on a network corresponds to a matching
in the graph. For a node i, let xi be his share in the outcome. A basic notion is that of stable outcomes: an
outcome is said to be stable if for all edges (i, j) not in the matching, xi + xj ≥ 1. An outcome is balanced, if in
addition, each pair of matched players split the dollar according to Nash’s solution, with the alternative of player
i with a matching edge (i, j) being max(i,k)∈E:k 6=j{1 − xk}. Kleinberg and Tardos [KT08] gave a polynomial
time algorithm to compute the set of balanced outcomes, proving several structural properties along the way.

Another way to approach the bargaining game is via cooperative game theory, the branch of game theory that
deals with the problem of fair division. A co-operative game is defined by (v,N) whereN is a finite set of players
and v : 2N → R. A feasible allocation x ∈ RN

+ is a way to divide v(N) among the players:
∑

i∈N xi = v(N).
In fact, the bargaining game we defined is a cooperative game, with N = node set of the graph, and ∀S ⊆ N ,
v(S) = the size of the maximum cardinality matching in GS , the subgraph of G induced by S. This game, in
this form, was introduced by Shapley and Shubik [SS72] and is known as the matching game. The core and the
kernel (see Section 2 for formal definitions) are standard solution concepts for cooperative games. In fact, for the
matching game, the core is exactly the set of stable outcomes, and the set of balanced outcomes is exactly the
intersection of the core and the kernel.

One sees that these games have been independently discovered by multiple researchers in different areas and
different contexts. This is an affirmation of the fact that these games are natural and important objects of study.
Further, they display a rich combinatorial structure with connections to matching theory; for instance, it is well
known that for bipartite graphs, the core is always non-empty, and is exactly the set of all optimum solutions to
the dual of the standard linear program for maximum matching (the dual LP can be interpreted as a fractional
minimum vertex cover).

Uniqueness: Balanced outcomes coincide with the experimental data on many of the simple graphs. However,
there may be more than one balanced outcome for a given graph. In fact, for any biconnected bipartite graph,
any solution that gives x to one side of the graph and 1− x to the other side is a balanced outcome. For instance,
consider the graph K2,2, in which all vertices are symmetric. Yet, a balanced outcome may give very different
allocations to two vertices. This asymmetry seems to be in conflict with the goal of network exchange theory

1The notion of balanced outcomes was proposed earlier by Rochford [Roc84] and independently by Cook and Yamagishi [CY92].
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which is to identify the influence of the graph topology on the resulting allocations. Therefore, we’d like to
consider solution concepts that define unique outcomes, and hence provide testable predictions. Furthermore, if
a solution concept is used for a prescriptive purpose2 rather than a descriptive purpose, then uniqueness becomes
a necessity. Also, no one solution concept may be appropriate for all situations; hence we need multiple solution
concepts with nice properties.

Monotonicity: Further, uniqueness lets us define other natural properties such as monotonicity: suppose that we
introduced a new edge in the graph. Then the endpoints of this edge have more options for negotiation than
before, and one would expect that they only have a higher bargaining power in the new graph. For all graphs
G = (V,E) and (i, j) /∈ E(G), let G + (ij) be the graph obtained by adding the edge (i, j) to G. Let α be a
(unique) solution concept with αi(G) being the allocation to i. α is monotone if

for all i, j ∈ N,αi(G+ (ij)) ≥ αi(G).

Many other notions of monotonicity have been considered [GDSR07] for general cooperative games. α :
(v,N)→ RN is strongly monotone if whenever v, u : 2N → R and i ∈ N are such that ∀S ⊆ N, u(S ∪ {i})−
u(S) ≥ v(S ∪ {i}) − v(S), then αi(u,N) ≥ αi(v,N). α satisfies coalitional monotonicity if u(T ) > v(T )
and u(S) = v(S) for all S 6= T implies that for all i ∈ T , αi(u,N) ≥ αi(v,N). When this restriction is only
applied to the grand coalition, T = N , it is called aggregate monotonicity [Meg74]. Strong monotonicity implies
monotonicity, whereas coalitional and aggregate monotonicity are incomparable to monotonicity.

Although monotonicity properties are very natural to expect from a solution concept, most previous results
[Meg74, You85, HC98, Mas92, Hok00] conclude that monotonicity and the core condition are incompatible with
each other. The Shapley value is the unique solution concept that always satisfies strong monotonicity. However,
for matching games, the Shapley value may not correspond to any matching (which implies it is not in the core),
and is therefore not appropriate. For instance, for a path on 3 vertices, the Shapley value assigns 2/3 to the
center and 1/6 to the end points. We consider three solution concepts, the core center, the core median and the
nucleolus, all of which are unique and are guaranteed to be in the core. However, none of these satisfy any of
strong, coalitional or aggregate monotonicities in general games [Meg74, You85, HC98, Mas92, Hok00]. This is
in contrast to our main result.

Main result: We show that the core center, the core median and the nucleolus all satisfy monotonic-
ity for matching games on bipartite graphs.

One can also extend the game to weighted graphs, where the weight on an edge corresponds to the dollar
amount available for the end points to split. Shapley and Shubik [SS72] also studied the weighted version for
the case of bipartite graphs, under the name, assignment games. The motivation for such games comes from
two-sided markets, such as the housing market, where one side has all the buyers, each of whom is interested
in buying a house, and the other side has all the sellers, each of whom wants to sell one house. The weight on
an edge is the surplus generated by the exchange. Assignment games have also been thought of as the cardinal
version of the classic Gale-Shapley stable marriage problem, with transferable utility (by Schwarz and Yenmez
[SY09], for instance). Each man, instead of simply having a ranking over the women, places a value on each of
the women (and so do the women). The weight of an edge is the sum of the values the end points place on each
other. The outcome now involves not only a matching, but also a transfer of utility between matched nodes. The
corresponding notion of monotonicity is that increasing the weight3 of an edge by 1 leads to the endpoints of that
edge getting a higher allocation. For the core center and the core median, our proof also works for assignment
games, whereas it remains open if the nucleolus is monotone for assignment games.

2By a prescriptive purpose, we mean situations in which a central authority would propose an outcome to the players, such as the
National Resident Matching Program, which matches medical students to residency positions in hospitals.

3W.l.o.g we may assume that weights are integral and that G is complete, by letting weights of non-edges be 0.

2



Computability: The core [SS72], the set of balanced outcomes [KT08] and the nucleolus [SR94] can all be com-
puted in polynomial time. We show (via simple reductions to a problem considered by Rademacher [Rad07]) that
computing the core center and the core median4 is #P-hard; however, there are Polynomial Time Approximation
Schemes to compute them. It is an open problem whether there exist fast distributed algorithms that converge to
any of these concepts. Such algorithms would be particularly interesting, since they might suggest how people
actually negotiate a solution.
Organization: We give the formal definitions of the solution concepts and a comparison among them in Section
2. The proofs of the monotonicity for the core center and the core median are in Section 3 and the proof for the
nucleolus is in Section 4. The #P-Hardness and PTAS for core center and core median are deferred to the full
version.

2 Preliminaries

2.1 The core center

Let the set of all feasible allocations for a given game be denoted by A := {x ∈ RN
+ :

∑
i∈N xi = v(N)}. From

now on, ∀S ⊆ N , we write x(S) for
∑

i∈S xi. The core of a game is the set of allocations such that no coalition
has an incentive to secede: C := {x ∈ A : ∀S ⊆ N, x(S) ≥ v(S)}. Suppose that C 6= ∅, then the core center
[GDSR07], γ, is the center of gravity of the core:

γ :=

∫
x∈C xdx∫
x∈C 1dx

= Ex∈C [x],

where the expectation is taken over the uniform probability distribution.
Consider unweighted bipartite graphs; for these graphs it is well known that the core is a polytope5. Also,

adding an edge to the graph is equivalent to adding an extra constraint of the form xi + xj ≥ 1. In order to prove
monotonicity, we need to argue that intersecting the core with a hyperplane of this form moves the center in such
a way that both xi and xj co-ordinates increase. Such a property is not true for all polytopes in general, as can
be seen from the example in Figure 1.

By eliminating all the variables on one side of the bipartite graph, it can be shown that the core is isomorphic
to an order polytope in a lower dimensional space, with boundary conditions, 0 ≤ xi ≤ 1. Adding an edge is
now equivalent to adding a constraint of the form xi ≥ xj . We then show that for all such polytopes, adding an
inequality of the form xi ≥ xj only increases the i co-ordinate of the center.

In fact, we define a range of solution concepts, for all k ∈ N, called the k-core center. It is the center of
gravity of a discrete grid in the core, where k denotes the granularity of the grid. We show monotonicity for
k-core center for all k and conclude, by going to the limit, that the core center itself is monotone. Our proof uses
the FKG inequality, and is inspired by Shepp’s proof of the “XYZ” theorem [She82].

For all k ∈ N, let Λn
k ⊂ Rn be the lattice spanned by the scaled standard orthogonal basis { 1

ke1,
1
ke2, . . . ,

1
ken}.

The k-core center

γk :=

∑
x∈C∩ΛN

k
x

|C ∩ Λk|
= Ex∈C∩ΛN

k
[x].

Also, for ease of notation, let N̂ = N ∪ {∞} and γ∞ := γ. When k = 1, the k-core center is simply the average
of the vertices of the core polytope.

The core center is actually strictly monotone in the following sense: unless the new edge added is between
two vertices in the same biconnected component, both of their allocations strictly increase. The monotonicity

4[Sch09] asked about the computational complexity of the core median.
5It follows from the fact, mentioned earlier, that the core is the set of dual optimum solutions to the fractional vertex cover LP.
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x + y ≥ 1

Figure 1: Consider the shaded triangle, and suppose we add the constraint x + y ≥ 1. Note that as a result the
center moves in such a way that the x co-ordinate decreases.

for the core center holds also for assignment games. In this case the core is not an order polytope anymore, but
essentially the same techniques can be used for this larger class of polytopes. Formally,

Theorem 1. For all assignment games, and for all k ∈ N̂, γk is monotone.

2.2 The Core Median

The core median was defined by Schwarz and Yenmez [SY09] for assignment games. It is inspired by the notion
of a median stable matching for the Gale-Shapley stable marriage game. For a given player i in a Gale-Shapley
game, one can order all the stable matchings using i’s rank of the player matched to i. Now consider the stable
matching that is the median6 in this ordering and let i be matched to µ(i) in this matching. [TS98] showed that µ
actually defines a matching, that is, µ(µ(i)) = i, and that it is stable. That is, the same stable matching gives the
median matches to all the players simultaneously. This matching is called the median stable matching.

For an assignment game, similarly, for all i ∈ N , let µi be such that

Pr
x∈C

[xi ≤ µi] =
1
2

= Pr
x∈C

[xi ≥ µi].

The core median is the vector µ = (µ1, µ2, . . . , µN ). Schwarz and Yenmez [SY09] showed that µ is always in
the core for assignment games. This may not be true for general co-operative games.

The proof of monotonicity for the core median is very similar to our proof for the core center. We consider
the discrete grids of the core, and define a core median for the discrete grid. The monotonicity of this is shown
using similar techniques, via the FKG inequality. The monotonicity of the core median follows from taking the
limit.

For all k ∈ N, let µk be such that7 for all i ∈ N ,

|{x ∈ C ∩ ΛN
k : xi < µk

i }| = |{x ∈ C ∩ ΛN
k : xi > µk

i }|.
6If there are an odd number of stable matchings, then the median is well defined. Otherwise, if there are 2M stable matchings, we

define the median for one side of the bipartite graph as the M th stable matching and for the other side of the bipartite graph as the M +1st

stable matching.
7Again, assume that |{x ∈ C ∩ΛN

k }| is odd. The case that it is even can be handled as in the case of the Gale-Shapley stable marriage
game.
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Figure 2: A graph that illustrates the differences between the solution concepts. To the right is the projection of
the allocations on the x-y plane.

µk is called the k-core median.

Theorem 2. For all assignment games, and for all k ∈ N̂, µk is monotone.

2.3 The Nucleolus

As opposed to the core center, which is the center of gravity of the core, the nucleolus is the lexicographic
center of the core. That is, the nucleolus is that point in the core, that maximizes the minimum slack w.r.t all
of the hyperplanes defining the core. And subject to the minimum being maximized, maximizes the second to
minimum slack, and so on.

For all players S ⊆ N , let the satisfaction be s(S, x) := x(S)− v(S). Let θ(x) be the vector of satisfactions
for all S ⊆ N , sorted in the increasing order. The nucleolus [Sch69] ν := arg lex- max{θ(x) : x ∈ A}, where
lex- max is the maximum in the lexicographic ordering of vectors. It can be shown [Sch69] that the nucleolus is
unique, and is a balanced outcome.

Theorem 3. For all matching games in bipartite graphs, ν is monotone.

We prove the monotonicity for the nucleolus via a reduction to a combinatorial problem on lattices (A lattice
is a partially ordered set with a global minimum and a global maximum). We construct a lattice from the given
graph (very much like a construction in [KT08]) and design a primal-dual algorithm on the lattice that gives the
nucleolus. We then argue that by adding an edge to the graph, the run of the primal-dual algorithm changes in
such a way that it gives a higher weight to the node adjacent to the new edge.

2.4 Comparison between the different solution concepts

Consider the graph in Figure 2 This graph illustrates the difference between various solution concepts. All of
them lie in the unit hypercube, 0 ≤ x, y, z ≤ 1. The core is the region satisfying x ≥ y, x ≥ z; the set of
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balanced outcomes is such that y = z = x/2; the nucleolus is x = 2/3, y = z = 1/3; the core center is
x = 3/4, y = z = 3/8; the core median is x = 1/ 3

√
2, y = z = ω, ω is a root of the equation y3 − 3y + 1 = 0.

Also, in the absence of the second “tail”, the nucleolus remains the same, the core is the set x ≥ y and the set
of balanced outcomes is y = x/2. However, the core-center changes to x = 2/3, y = 1/3 and the core median
changes to x = 1/

√
2, y = 1 − x. On the other hand, if we add more tails then the x value increases for both

core center and the core median, while it stays the same for the nucleolus. Thus, if a node has multiple options
of the same value, then the nucleolus does not give the node a higher share, whereas the core center and the core
median do.

2.5 Previously Known Results

In this section, we state some known results for reference. For all pairs i, j ∈ N, i 6= j, the surplus

σij(x) := max
S⊆N :i∈S,j /∈S

{s(S, x)}.

The kernel of a game is K := {x ∈ A : ∀i, j ∈ N, i 6= j, σij(x) = σji(x)}. Schmeidler [Sch69] showed that the
nucleolus is always contained in the kernel. (This also shows that the kernel is always non-empty.) Further, if the
core is non-empty, then the nucleolus is also in the core.

Theorem 4 ([Sch69]). ν ∈ K. If C 6= ∅, then ν ∈ C.

Shapley and Shubik [SS72] showed that for assignment games, the core is always non-empty.

Theorem 5 ([SS72]). For any assignment game, C 6= ∅.

They also showed that the only coalitions “that matter” in an assignment game are those of size 1 and 2. Let
G = (N,E,w) be a weighted graph. Let M be any maximum weight matching in G. Let

C′ := {x ∈ RN : ∀(i, j) ∈M,xi + xj = w(ij),
∀(i, j) ∈ E, xi + xj ≥ w(ij),
∀i ∈ N unmatched by M,xi = 0,
∀i ∈ N, xi ≥ 0.}

Lemma 6 ([SS72]). C′ = C.

Given this equivalent definition of the core, it is easy to see that the core is exactly the set of stable outcomes
as defined in Kleinberg and Tardos [KT08]. Further, it can be shown that the set of balanced outcomes in
Kleinberg and Tardos [KT08] is K ∩ C.

3 Core Center and Core Median

In this section we focus on the proof of monotonicity of the core center, and mention the changes needed to prove
the monotonicity of the core median. (The proofs are very similar; the complete proof for the core median is
deferred to the full version of the paper.)

Consider an assignment game defined by a weighted bipartite graphG = (U, V,E,w). LetM be a maximum
weight matching in G. By adding dummy vertices and edges, if needed, we may assume that M is a perfect
matching. For i ∈ U , let M(i) denote the vertex in V that i is matched to by M . Let n = |U | = |V | = |M |.
Recall that our goal is to examine the effect of raising the weight of an edge e ∈ E by 1; the modified assignment
game is denoted by G+ e. Notice that we may choose M in such a way that M is a maximum weight matching
in G+ e as well, because the weights are assumed to be non-negative integers.
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Consider the core C(G) of the assignment game G. Every y ∈ C(G) is an assignment of non-negative values
to the nodes of G that satisfies yi + yj ≥ w(i, j) for every {i, j} ∈ E, and yi + yM(i) = w(i,M(i)) for every
i ∈ U . Define a vector x by setting, for every i ∈ U , xi = yi and xM(i) = w(i,M(i))− yM(i). Let P(G) denote
the projection of C(G) on the coordinates of U . Then

P(G) := {x ∈ Rn : ∀{M(i), j} ∈ E, xj − xi ≥ w(j,M(i))− w(i,M(i)),
∀i ∈ U, 0 ≤ xi ≤ w(i,M(i))}.

Now assume w.l.o.g that e = {M(1), 2}. Let

H12 = {x ∈ Rn : x2 − x1 ≥ w(2,M(1)) + 1− w(1,M(1))}.

Note that P(G + e) = P(G) ∩ H12. The core center of G (respectively, G + e) is easily derived from the
expectation E[x] under the uniform probability measure on P(G) (respectively, P(G + e)). In order to show
monotonicity of the core center, we need to show that E[x1] does not increase when the constraintH12 is added,
and similarly that E[x2] does not decrease. This essentially will follow by showing that H12 is negatively corre-
lated with x1 and positively correlated with x2. In fact, we use the following correlation inequality to prove the
above in a slightly more general setting, as explained below.

Lemma 7 (FKG Inequality). Let L = (X,�) be a finite distributive order lattice. Let κ be a log-super modular
positive function onX . Let f, g be two real valued functions onX . If both f, g are monotonically non-decreasing
in L then ∑

x∈X f(x)g(x)κ(x)∑
x∈X κ(x)

≥
∑

x∈X f(x)κ(x)∑
x∈X κ(x)

·
∑

x∈X g(x)κ(x)∑
x∈X κ(x)

(i.e., f, g are positively correlated). If f is monotonically non-increasing and g is monotonically non-decreasing
then ∑

x∈X f(x)g(x)κ(x)∑
x∈X κ(x)

≤
∑

x∈X f(x)κ(x)∑
x∈X κ(x)

·
∑

x∈X g(x)κ(x)∑
x∈X κ(x)

(i.e., f, g are negatively correlated).

As the FKG Inequality requires a finite lattice, we will need to discretize P(G) and then pass to the limit via
the Riemann integral.

3.1 Monotonicity of Order Polytopes

Let

P =

{
x ∈ Rn :

n∧
i=1

{ai ≤ xi ≤ bi} ∧
m∧

t=1

{xjt − xit ≥ ct}
}

be the (non-empty) feasible set of a non-homogeneous set of order constraints, where for all i ∈ [n], ai, bi ∈ Z,
and for all t ∈ [m], ct ∈ Z. Fix s ∈ Z. LetH = {x ∈ Rn : x2− x1 ≥ s}. Let Pk = P ∩Λn

k andHk = H∩Λn
k .

(Recall that Λn
k is the lattice in Rn spanned by 1

ke1,
1
ke2, . . . ,

1
ken.)

Lemma 8. For every k ∈ N, if Pk ∩ Hk 6= ∅ then E[x1 : x ∈ Pk ∩ Hk] ≤ E[x1 : x ∈ Pk] and E[x2 : x ∈
Pk ∩Hk] ≥ E[x2 : x ∈ Pk], where expectations are taken with respect to the uniform probability measure over
the corresponding (finite) set.

Proof. Let Q = {x ∈ Λn
k :

∧n
i=1{ai ≤ xi ≤ bi}}. Define a binary relation � on Q by setting x � y iff x1 ≥ y1

and for every j = 2, 3, . . . , n, xj − x1 ≤ yj − y1. By a lemma of Shepp [She82], (Q,�) is a distributive
order lattice. The join and the meet are given by (x ∨ y)j = min{x1, y1} + max{xj − x1, yj − y1} and
(x ∧ y)j = max{x1, y1}+ min{xj − x1, yj − y1}.
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Define f : Q → [0, 1] and g, κ : Q → {0, 1} as follows. For x ∈ Q, f(x) = x1, g(x) is the indicator of
x2 − x1 ≥ γ, and κ(x) is the indicator of x ∈ P . We now wish to apply the FKG Inequality. First we verify
that the conditions on f, g, κ hold. By definition of �, f is monotonically non-increasing. In order to show that
g is monotonically non-decreasing, we simply have to verify that if x � y and g(x) = 1, then g(y) = 1. This is
clearly true, as y2− y1 ≥ x2−x1 ≥ γ, where the first inequality follows from the definition of� and the second
inequality follows from g(x) = 1.

We now show that κ is log-super modular. In this case we simply have to verify that if κ(x) = κ(y) = 1
then κ(x ∨ y) = κ(x ∧ y) = 1. So, consider an arbitrary constraint in P . We will verify that if x and y
satisfy it, then so do x ∨ y and x ∧ y. There are three types of constraints in P , and we deal with each type
separately. Firstly, consider a constraint of the form xj − xi ≥ c. By our assumption, also yj − yi ≥ c. Now,
(x∨y)j−(x∨y)i = max{xj−x1, yj−y1}−max{xi−x1, yi−y1}. Without loss of generality, the second term
is maximized at xi−x1. Therefore, (x∨y)j−(x∨y)i ≥ (xj−x1)−(xi−x1) = xj−xi ≥ c. Similarly for x∧y
we have that (x∧ y)j − (x∧ y)i = min{xj − x1, yj − y1} −min{xi − x1, yi − y1}. Without loss of generality,
the first term is minimized at xj − x1, so (x∧ y)j − (x∧ y)i ≥ (xj − x1)− (xi− x1) = xj − xi ≥ c. Secondly,
consider a constraint of the form xi ≥ ai. So also yi ≥ ai Now, (x∨y)i = min{x1, y1}+max{xi−x1, yi−y1}.
Without loss of generality, the first term is minimized at x1, so (x ∨ y)i ≥ x1 + xi − x1 = xi ≥ ai. Similarly,
(x ∧ y)i = max{x1, y1} + min{xi − x1, yi − y1}. Without loss of generality, the second term is minimized
at xi − x1, so (x ∧ y)i ≥ xi ≥ ai. Thirdly, consider a constraint of the form xi ≤ bi. Using (x ∨ y)i =
min{x1, y1} + max{xi − x1, yi − y1}, assume without loss of generality that the second term is maximized at
xi − x1, so (x ∨ y)i ≤ xi ≤ bi. Using (x ∧ y)i = max{x1, y1} + min{xi − x1, yi − y1}, assume without loss
of generality that the first term is maximized at x1, so (x ∧ y)i ≤ xi ≤ bi. This completes the argument that κ is
log-super modular.

Thus, we can apply the FKG Inequality to conclude that∑
x∈Q f(x)g(x)κ(x)∑

x∈Q κ(x)
≤

∑
x∈Q f(x)κ(x)∑

x∈Q κ(x)
·
∑

x∈Q g(x)κ(x)∑
x∈Q κ(x)

,

or
E[f(x)g(x) : x ∈ Pk] ≤ E[f(x) : x ∈ Pk] · E[g(x) : x ∈ Pk].

As E[g(x) : x ∈ Pk] = Pr[g(x) = 1 : x ∈ Pk], dividing by E[g(x) : x ∈ Pk] gives

E[f(x) : x ∈ Pk ∧ g(x) = 1] ≤ E[f(x) : x ∈ Pk].

The second claim follows by symmetry. Set x′ = −x, reverse the inequalities by setting, for all i ∈ [n],
−bi ≤ x′i ≤ −ai, for all t ∈ [m], x′it − x′jt

≥ −ct, and x′1 − x′2 ≥ −s, and apply the above argument. �

Corollary 9. if P∩H 6= ∅ thenE[x1 : x ∈ P∩H] ≤ E[x1 : x ∈ P] andE[x2 : x ∈ P∩H] ≥ E[x2 : x ∈ P],
where expectations are taken with respect to the uniform probability distribution µ over the corresponding (finite
measure Borel) set.

Proof. Consider the polytope P (and similarly the polytope P ∩ H). This polytope has dimension n′ ≤ n and
its vertices have integer coordinates. Let L denote the n′-dimensional affine hull of P . For a positive integer k,
let Λn

k denote the lattice in Rn spanned by the scaled standard basis 1
ke1,

1
ke2, . . . ,

1
ken. As Λn

k ∩ L includes the
vertices of P , the affine hull of Λn

k ∩L has dimension n′, so it is a lattice in L. Consider the function f : L→ R,
defined by f(x) = x1 for x ∈ P and f(x) = 0 otherwise. As P has a measure 0 boundary, this function is
Riemann integrable, and therefore∑

x∈Λn
k∩P

f(x)

|Λn
k ∩ P|

→
∫
f(x)dµ = E[x1 : x ∈ P],

as k → ∞. A similar argument applies to E[x2 : x ∈ P], and to the same expectations over P ∩ H. Applying
Lemma 8 completes the proof. �
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3.2 Monotonicity of the Core Center and Core Median

Proof of Theorem 1. Notice that P(G) andH12 are special cases of P andH as needed by Lemma 8 and Corol-
lary 9. Hence, applying the Lemma gives us that for all k ∈ N̂, γk

2 (G + e) ≥ γk
2 (G), and γk

1 (G + e) ≤ γk
1 (G).

Since γk
M(1) = w(1,M(1)) − γk

1 for both G and G + e, we have that γk
M(1)(G + e) ≥ γk

M(1)(G). Thus γk is
monotone. �

The proof of Theorem 2 follows closely the above proof for the core center. Monotonicity is implied by
showing that the distribution of x1 (respectively, x2) in P ∩ H is dominated by (respectively, dominates) the
distribution of x1 (respectively, x2) in P . This simply requires replacing the function f in Lemma 8 by the
indicator functions for x1 ≥ a for every possible threshold a, then repeating the rest of the argument. The
complete proof will appear in the full version of the paper.

4 The Nucleolus

In order to prove the monotonicity of the nucleolus we look at the algorithm that computes the nucleolus in
assignment and matching games on a graph G using iterative linear programming.
Algorithm Lex-Center

• F ←M ; A← E \M ; X ← C.

• While A 6= ∅, do

– ε← maxx∈X min(i,j)∈A{xi + xj − w(ij)}.
– Y ← arg maxx∈X min(i,j)∈A{xi + xj − w(ij)}.
– F ′ ← {(i, j) ∈ A : ∀x ∈ Y, xi + xj − w(ij) = ε}.
– F ← F ∪ F ′.
– A← F \ F ′.
– X ← Y .

• Output X .

Theorem 10. [SR94] The output of Algorithm Lex-Center, X is {ν}.

For the case in which w(ij) = 1 for all e = (i, j) where G = (U, V,E) is unweighted bipartite graph we
simplify the algorithm as follows. Construct a graph H with U as its vertices: (i, j) ∈ E(H) if and only if
(M(i), j) ∈ E(G) where M is a maximum matching. The constraint xM(i) + xj ≥ 1 is equivalent to xj ≥ xi.
Hence if there is a cycle in H , then for any vector in the core xi is constant on the cycle. Further, in the first
iteration of Algorithm Lex-Center, εwould be zero and F ′ would correspond to the set of all edges in any strongly
connected component of H . X would remain equal to C.

Contract the strongly connected components of H to get a DAG. Add two additional vertices to this DAG,
s and t, and add edges from s to all the vertices and from all the vertices to t. The result DAG is denote by D.
We set xs = 0 and xt = 1. It is easy to see that the algorithm above is reduced to the following algorithm for
computing the projected Lex-Center on U using the DAG D:
Algorithm-new Lex-Center

• F ← ∅ ; A← E(D) ; X ← C|U .

• While A 6= ∅, do

9



– ε← maxx∈X min(i,j)∈A{xj − xi}.
– Y ← arg maxx∈X min(i,j)∈A{xj − xi}.
– F ′ ← {(i, j) ∈ A : ∀x ∈ Y, xj − xi = ε}.
– F ← F ∪ F ′.
– A← F \ F ′.
– X ← Y .

• Output X .

We note that the DAG D actually defines an order lattice L (the partial order relations are the transitive
closure of the DAG) on vertices V with global minimum (source) s and a global maximum (sink) t. We first
show the following lemma.

Lemma 11. Suppose L is a lattice with source s and sink t, and w gives weights on the edges of a DAG D
representing L. Then the system of inequalities:

∀(i, j) ∈ E(D), xi − xj ≥ w(e),
xs = 0, xt = 1,

is feasible if and only if all s-t paths in D have weight at most 1.

Proof. The proof is a simple application of Farkas’ Lemma. �

The above lemma motivates us to define the following algorithm.
Algorithm-primal-dual

• F ← ∅ ; w(e)← 0 for all e ∈ E(D).

• While F 6= E(D), do

– increase w(e) for e ∈ E(D)− F until there is a path from s to t of length 1.

– F be the set of edges on a length 1 path from s to t.

• for any v let d(v) be the distance (on any path) from s to v.

• output d(v)

We note that while running the primal-dual algorithm the longest path from s to v for each vertex v is
monotonically increasing until vertex v participates in a length 1 path from s to t. At that step d(v) is determined
as the distance from s on this path. We call that time the freezing time of x.

Theorem 12. The primal-dual algorithm computes the Lex-Center projected on U . That is d(v) = x(v) for all
v ∈ U .

Proof. Consider the primal-dual Algorithm run on D and any particular iteration. Using Lemma 11 with the
weights from the algorithm, we see that the weights of the new edges frozen in that iteration correspond to ε
in one iteration of the Lex-Center Algorithm. The new edges frozen in an iteration of Primal-Dual Algorithm
correspond to F ′ in the Lex-Center Algorithm. Thus d(i) = xi. �

Given a DAG D assume that the edge (u, v) is not in E(D) but it is a relation that follows from the lattice L.
Then D1 = D ∪ (u, v) is also a DAG that corresponds to the same lattice L. We first show that the output of the
primal-dual algorithm is the same if we apply it to D or D1 that correspond to L.

10



Lemma 13. Given a DAG D that corresponds to a lattice L. Let (u, v) a relation in the lattice (i.e. it is in the
transitive closure). Then Then the outputs of primal dual algorithm on D and on D1 are the same. In particular,
the output of the primal-dual algorithm on all D that correspond to the same lattice L are the same.

Proof. We run the algorithm on D1. The new edge (u, v) is in the transitive closure of D and hence there
is a directed path from u0 = u to uk = v denoted by (u0, u1), (u1, u2), . . . , (uk−1, uk). Clearly, any path
P that uses (u, v) has a corresponding path P ′ that replaces (u, v) by (u0, u1), (u1, u2), . . . , (uk−1, uk). We
note that while running the algorithm all non-frozen edges have the same value. Hence as long as not all edge
(u0, u1), (u1, u2), . . . , (uk−1, uk) are frozen the length of P ′ is always at least as long as the length of P . There-
fore (u, v) will be frozen no earlier than any of the edges (u0, u1), (u1, u2), . . . , (uk−1, uk). Hence the d(u) and
d(v) remains the same as in D and the edge (u, v) has not affected the value given for any edge or vertex. �

In order to show the monotonicity of the nucleolus we need to show that the primal-dual algorithm is mono-
tone.

We would like to compare the optimal assignment d on a DAG D that corresponds to a lattice L with the
optimal function d′ on the graph D′ which is created from L by adding an edge (u, v). There are 3 possibilities.
If (u, v) ∈ L then L′ = L. If (v, u) ∈ L then by adding (u, v) the graph would have a cycle and lattice collapses
to a new lattice L′ by contracting all cycles (they must contain (u, v)) to a single vertex (which we call z). In the
third case neither (u, v) nor (v, u) are in L and hence the new lattice L′ has the same set V as the lattice L and
the extra edge (u, v). Next we prove monotonicity of the function d.

Theorem 14. Given a DAG D that corresponds to a lattice L, let D′ be the graph D ∪ (u, v) after contracting
cycles. D′ corresponds to some latticeL′. Then, let d by the output assignment forD and d′ the output assignment
for D′. Then d′(v) ≥ d(v) and d′(u) ≤ d(u) if L′ has not collapsed and d′(z) ≥ d(v) and d′(z) ≤ d(u) and L′

collapsed (i.e. cycles have been contracted).

Proof. The first case where (u, v) ∈ L then L′ = L and by Lemma 13 above d′ = d and we are done. Next we
consider the third case where (v, u) is not in L. In this case D′ is still a directed acyclic graph on the same set
of vertices V . We will show that d′(u) ≤ d(u). In a symmetric fashion (by replacing the directions of all edges)
one would get that d′(v) ≥ d(v). We note that all paths in D′ are also in D. Run the primal-dual algorithm on
D′ until the vertex u freezes. If (u, v) has not been frozen yet, then running the algorithm on D would result in
the same freezing of u and hence d(u) = d′(u). If (u, v) has frozen, then d(u) ≥ d′(u) since in D the value
of d(u) may continue to increase. This completes the case that (v, u) is not in L. At last we consider the case
that (v, u) ∈ L. Then we have cycles which are contracted to a vertex z (hence we have a lattice L′ on less
points). Note that u was the maximum vertex in L that participates in any cycle and v was the minimum such
vertex. Next, we note that every path in D can be transformed to a path in D′ by contracting the appropriate
vertices to z. The path in D′ cannot be longer than the path in D. Run the primal-dual algorithm on L until the
first time a contracted vertex y freezes. Clearly, z could not freeze before in L′. Hence d′(z) ≥ d(y). Since v is
the minimum vertex in the contracted part we know that d(v) ≤ d(y). Hence, we conclude that d′(z) ≤ d(v).
Similarly, by replacing the directions of all edges we can conclude that d′(z) ≤ d(u). �

Proof of Theorem 3. By applying Theorems 12 and 14, we see that if one adds an edge (M(i), j) to G, it cor-
responds to adding (i, j) to D and as a result, d(j) increases and d(i) decreases. Therefore νj and νM(i) both
increase, and the nucleolus is monotone. �
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