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ABSTRACT

The study of bargaining has a long history, but many basic
settings are still rich with unresolved questions. In particu-
lar, consider a set of agents who engage in bargaining with
one another, but instead of pairs of agents interacting in
isolation, agents have the opportunity to choose whom they
want to negotiate with, along the edges of a graph represent-
ing social-network relations. The area of network exchange
theory in sociology has developed a large body of experi-
mental evidence for the way in which people behave in such
network-constrained bargaining situations, and it is a chal-
lenging problem to develop models that are both mathemat-
ically tractable and in general agreement with the results of
these experiments.

We analyze a natural theoretical model arising in network
exchange theory, which can be viewed as a direct extension
of the well-known Nash bargaining solution to the case of
multiple agents interacting on a graph. While this gener-
alized Nash bargaining solution is surprisingly effective at
picking up even subtle differences in bargaining power that
have been observed experimentally on small examples, it has
remained an open question to characterize the values taken
by this solution on general graphs, or to find an efficient
means to compute it.

Here we resolve these questions, characterizing the possi-
ble values of this bargaining solution, and giving an efficient
algorithm to compute the set of possible values. Our result
exploits connections to the structure of matchings in graphs,
including decomposition theorems for graphs with perfect
matchings, and also involves the development of new tech-
niques. In particular, the values we are seeking turn out to
correspond to a novel combinatorially defined point in the
interior of a fractional relaxation of the matching problem.
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1. INTRODUCTION

The study of bargaining has a long history in economics
and sociology, with considerable attention devoted even to
cases where just two agents are involved. To take perhaps
the most basic example, suppose that two parties are nego-
tiating over how to divide one unit of money, and that each
has an alternate option — a fallback amount that it can
collect in case negotiations break down without a division.
Then the prediction of a number of models, including Nash’s
celebrated bargaining solution [13], is that the two agents in
such a case will agree on a division that lies halfway between
the extremes of their alternate options.

To phrase this principle precisely, suppose agents A and
B have alternate options a and [ respectively. Then the
Nash bargaining solution posits that they split the surplus
s =1 — a — 3 evenly between them: if s < 0 then there is
no solution that will make them both happy, while if s > 0,
then they will agree on o + %s for A and (B + %5 for B.
Note that any division — even a very unbalanced one —
in which A and B each get more than o and [ respectively
is “stable,” in the sense that both agents prefer it to the
breakdown of negotiations. Thus, the theory of bargaining
in some sense can be viewed as a way to refine the set of pos-
sible negotiation outcomes, selecting a particular one that is
most “reasonable.” The Nash bargaining solution in partic-
ular has a central role in the history of this theory, and has
been motivated by axiomatic approaches, optimization ap-
proaches, and as the outcome of particular game-theoretic
formulations [15].

Despite this history, the problem of bargaining quickly en-
ters unsettled theoretical territory once we consider multiple
agents residing at the nodes of a network, with edges rep-
resenting the pairs that have the opportunity to negotiate.
At an experimental level, there has in fact been a long and
active history of research in sociology on the way in which
people behave in precisely this type of setting; such questions
form the foundation of the sociological field of network ex-
change theory [19], which has developed empirical principles
for the kinds of positions in networks that confer particular
bargaining power. The theoretical challenge in network ex-
change theory has been to formulate graph-theoretic models



that align with the results of these experiments.

One particularly clean theoretical model arising in net-
work exchange theory, a proposal of Cook and Yamagishi
in 1992 [6], can be formulated as a natural generalization
of the Nash bargaining solution to arbitrary networks, in
which the outside options for each agent arise directly from
the network structure, rather than having to be specified ex-
ternally. It (along with related formalisms) has been found
to be surprisingly effective at picking up even subtle differ-
ences in bargaining power that have been discovered through
experimental work on human subjects [19]. Unfortunately,
while it is possible to work out the values predicted by this
generalized Nash bargaining solution on small examples, it
has remained an open question to characterize these values
on general graphs, including the questions of which graphs
have a well-defined solution under this notion, and whether
such solutions can be computed by an efficient algorithm.

Here we resolve these questions, characterizing the possi-
ble values that this generalized Nash bargaining solution can
take on arbitrary graphs, and giving an efficient algorithm
to compute the set of possible values. Our result exploits
connections to the structure of matchings in graphs, via the
Edmonds-Gallai structure theorem and the decomposition
of a perfectly matchable graph into elementary subgraphs
[11]; this in turn provides some further insight into the qual-
itative observations that arise from experiments in network
exchange theory.

We now describe some background on network exchange
theory, including the experimental observations that moti-
vate the need for such a model, before turning to the formu-
lation of our results.

Network exchange theory. Network exchange theory orig-
inates from the goal of understanding power imbalances in
the relationships between pairs of people [8]. This includes
relationships in economic or political settings, as well as in
social interaction more generally — such as the roles people
play in groups of friends, communities, or organizations. A
common theme here is to view social relations between two
individuals as producing value for both; the extent to which
this value is divided between them can be seen as a kind
of latent bargaining known as social exchange, and power is
then related to the imbalance in this division — with the
powerful party in the relationship getting the majority of
the value. We will be deliberately vague in specifying what
this value is, since it clearly depends on the type of social re-
lation — in a business partnership, the more powerful party
may get better terms, while in a friendship, the more power-
ful party may be more the focus of attention, may get their
way more often, and so forth.

Network exchange theory begins from the hypothesis that
these power imbalances may arise in part for structural rea-
sons — that is, based on an individual’s position in a social
network. How, then, should we characterize a powerful po-
sition in a network? For example, in the set of friendships
within a group of five people depicted in Figure 1, node v
intuitively holds a powerful position: nodes u and w are
completely dependent on v for their social relations in the
group, while v occupies a central position and has the power
to focus his or her social energies on multiple options.

To make such intuitions precise, exchange theorists begin-
ning in the 1970s developed a bargaining-based experimen-
tal framework [4, 5] that has continued to be used up to the

Figure 1: A social network on five people, with node
v occupying an intuitively powerful position.

present. In a controlled laboratory setting, n» human sub-
jects are asked to each play the role of one of the n nodes
of a graph such as the one in Figure 1. The value in each
social relation is captured by placing a fixed sum of money
(say, $1) on each edge. Nodes now engage in free-form nego-
tiation (say, via instant messaging from different computer
terminals) over how to divide the units of money on each
edge. By the end of the time limit, each node v is sup-
posed to reach an agreement with at most one neighbor w
on how to divide the money on their incident edge; if v is
able to reach such an agreement, then she gets her agreed-
upon share of the money on this edge, and if v is not able
to reach an agreement with any neighbor, then she gets 0.
A central question is whether certain nodes tend to make a
disproportionate amount of money in such an experiment,
in a reproducible way across different sets of subjects.

The network in Figure 1 is one that has been studied
extensively in these experiments, with predictable results.
Since v can only complete one successful transaction, one of
nodes u or w in this network will necessarily be left out and
hence get 0. Node v uses this power over uv and w to obtain
close to the full amount on the edge where she does reach
an agreement, and so even the node among u and w that
completes a transaction gets close to 0. Meanwhile, node =
quickly realizes that it’s useless to bargain with v, and so he
spends most of his energy bargaining with y on essentially
equal terms, reaching a split close to %—%

Network exchange theory experiments have been carried
out under many different conditions — for example, partici-
pants can have knowledge of the full graph or only the names
of their neighbors; negotiation can be done in free text or
through a highly restricted interface that limits communi-
cation — and the results are robust, in the sense that the
general properties of power imbalances that we discuss here
are present essentially regardless of these how these experi-
mental design decisions are made.

Gradations of power. The outcomes of experiments on
the network in Figure 1 are relatively simple to understand,
and they conceptually arise from the consequences of nego-
tiation on two even simpler graphs: a 3-node path, in which
the middle node acquires almost all the value; and a 2-node
path, in which the two sides tend to split the value approxi-
mately equally. Other small examples show that the results
of negotiation cannot be reduced to superficial statements
about “central” positions in the network structure. For ex-
ample, in experiments on the 5-node path in Figure 2(a),
nodes v and z acquire almost all the value: although w in-
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Figure 2: Three small graphs studied extensively in network exchange theory.

tuitively occupies the “central” position in the network, this
does not confer any real bargaining power, since his two po-
tential partners v and x each have alternate, and very weak,
neighbors.

The results of the experiments take on further subtleties
when we look at other small graphs in which the negotiation
outcomes on edges do not gravitate toward the extremes of
%—% or 0-1. On the 4-node path in Figure 2(b), for example,
v has the power to exclude wu, but it is costly to exercise
this power: it requires v to negotiate with w, who has an
alternate, weak partner. (The argument for w is symmetric.)
Experiments bear out this “weak power”, showing that v
tends to obtain between 7/12 and 2/3 — but not more — in
transactions with w [12, 17]. A similar kind of weak power
applies to node v in the graph in Figure 2(c); in experiments
here, v tends to obtain strictly between 1/2 and 1, and in
fact consistently a bit higher than the node labeled v obtains
in the 4-node path.

A natural question — pursued by exchange theorists con-
currently with the experimental work — has been to find
simple graph-theoretic measures that could explain these
gradations in bargaining power as a function of position in
the network.

Balanced outcomes. We begin by introducing some ter-
minology that will make the discussion easier. We will focus
here on the final outcomes experienced by the nodes, rather
than the fine-grained dynamics of negotiation that lead to it
— that is, with the experimental results providing guidance
as to the outcomes that arise in practice, we wish to formal-
ize a prediction for the result of simultaneous negotiation
across the edges of a graph G, when each node can engage
in at most one transaction.

To begin with, then, we say that an outcome of network
exchange on a graph G consists of a matching M (indicating
the pairs that transact), and a value 7, obtained by each
node v, such that each pair of nodes (v,w) that forms an
edge in M divides the one unit of value on this edge: (v, w) €
M implies v, + v, = 1. Nodes v that are unmatched receive
Y» = 0. Given an outcome, we can define a, to be the
best alternative that v could obtain if it broke its current
agreement and formed another one: «, is the maximum,
over all w to which v is connected by an edge not in M,
of 1 — 7,; we set a, = 0 when v has no other alternatives.
(That is, v has the option of stealing u away from its current
transaction — which yields it v, — by offering any value
exceeding 7, by an arbitrarily small amount, and keeping
the remainder. Note also that o, is well-defined even for
nodes that are not matched by M.) We will say that an
outcome is stable if a, < 7, for all nodes v. Stability is an
essential but very weak property; there is generally a wide

range of possible (but experimentally implausible) outcomes
satisfying it.

To formalize a kind of outcome that agrees with the re-
sults of the experiments, Cook and Yamagishi proposed the
following natural notion, which can be viewed as a direct
extension of the Nash bargaining solution to a network con-
text [6]. One defines a balanced outcome to be an outcome
in which, for each pair (v,w) € M, the values v, and 7
represent the Nash bargaining solution for v and w, given
their alternatives o, and au,. Thus, we are simply seeking
a set of self-consistent values at the nodes, such that each
transaction follows the Nash bargaining solution given the
values in the rest of the network.

It is striking to consider how the balanced outcomes align
with experimental observation. First, in Figure 1 they assign
a value of 1 to node v and % each to nodes x and y. (While
the matching M in this case is not unique, the values are.)
The balanced outcomes in Figure 2(a) all give values of 1
to nodes v and . And perhaps most interestingly, balanced
outcomes identify the various gradations of weak power in
Figures 2(b) and 2(c): the reader can check that in both
cases, the balanced outcome is unique, and it gives % to
nodes v and w in Figure 2(b), and 2 to node v in Figure 2(c)
(i.e. slightly more than on the 4-node path, but still bounded
away from 1).

However, the application of this formalism was restricted
in the network exchange theory literature to the analysis of
small examples, due to the open question mentioned at the
outset: Beyond individual examples, it has remained un-
known how to characterize and compute the balanced out-
comes for an input graph in general. For example, given the
fixed-point nature of the definition, it is not even a priori
clear whether the values in a balanced outcome are neces-
sarily rational or finitely representable.

Our results. In this paper, we resolve this set of questions.
We prove that a balanced outcome exists if and only a stable
outcome exists, and we provide an algorithm that efficiently
computes the set of balanced outcomes for a graph G. The
existence of stable outcomes provides a natural condition
for the existence of a balanced outcome, and we also find a
tractable description of the set of all balanced outcomes in
a given graph G. (When balanced outcomes exist for G, at
least one outcome — but not necessarily all — consists en-
tirely of rational values.) We also extend the algorithmic and
existence results to the case of weighted graphs, in which the
value being divided across an edge can vary from one edge
to another — this too has been an object of experimental
work in network exchange theory.

An interesting aspect of the solution is that while bal-
anced outcomes have a very natural definition, they do not



map naturally onto standard values associated with match-
ings in graphs. It is not hard to see that any stable outcome
(and hence any balanced outcome) must involve a maxi-
mum matching M, and that the values 7, must satisfy the
constraints for dual variables supporting a fractional relax-
ation of the maximum matching problem. However, as the
examples in Figures 2(b) and 2(c) make clear, a balanced
outcome’s node values do not generally occur at or near the
extreme points of the dual polytope. While matching the-
ory has tended to focus on questions that are answered by
values at these extreme points, balanced outcomes provide
a natural instance of a notion whose very definition requires
us to consider solutions in the interior of the polytope (or
in the relative interior of a face) — a part of the space that
has tended to be less well-explored by matching theory.

We begin by partially separating a balanced outcome into
its “extreme” and “interior” parts, using the Edmonds-Gallai
structure theorem for matchings in graphs [11]. We show
that the values in a balanced outcome on certain parts of
the decomposition must be 0 or 1, leaving us with a remain-
ing part where the values are generally balanced between
these extremes. This remaining part, which always possesses
a perfect matching, is where the main source of complexity
lies; it is handled by a further decomposition into elementary
subgraphs [11], and an algorithm that iteratively sets values
on edges starting with long (possibly non-simple) paths on
which the Nash bargaining solution is as constrained as pos-
sible.

Further related work. A number of lines of work in eco-
nomics have modeled the behavior of buyers and sellers in-
teracting in a network, and this is related in a thematic
sense to the special case of our model restricted to bipartite
graphs. Indeed, if we designate one side of a bipartite graph
as the set of sellers, and the other as the set of buyers, then
we can re-cast the model underlying balanced outcomes as
an equivalent one in which sellers and buyers bargain about
the prices at which various copies of a good — having zero
value to sellers and unit value to buyers — will be sold. In
this way, our model can be compared at a general level to
lines of work in matching markets [16], competitive equilib-
rium in networks [9, 18], graph-structured auctions [10], and
price-determination through bargaining [2, 3, 7, 14].

These economic models differ significantly from our ap-
proach in their specifics. Perhaps the most closely related is
a model of Corominas-Bosch [7], though it remains quite dif-
ferent as well: it incorporates explicit bargaining dynamics
in a graph but leads to a model in which all nodes essen-
tially receive values of 0, %, or 1. Thus, it deals only with
“extreme” outcomes, and is not able to capture the kinds of
weak power that are essential both to our model and to the
observations of network exchange theory experiments. (We
note that follow-up work by Charness, Corominas-Bosch,
and Frechette [3] ran human-subject experiments in qual-
itative agreement with the model of Corominas-Bosch [7].
It is an interesting question to consider the divergence be-
tween the experiments of [3] and the wide range of exper-
iments in network exchange theory; while this is not fully
settled, it quite possibly involves the rigid synchronization
of alternating simultaneous seller proposals and buyer pro-
posals imposed by Charness et al., together with the fact
that buyer-seller pairs immediately dropped out of the sys-
tem as transactions were completed.)

2. BIPARTITE GRAPHS WITH UNIQUE PER-

FECT MATCHINGS

As a first step toward a general characterization of bal-
anced outcomes, we consider a restricted but illuminating
special case: bipartite graphs that possess unique perfect
matchings. As the earlier discussion around Figure 2(b) in-
dicates, this special case already contains some of the main
sources of subtlety. And for our presentation here, it is use-
ful as a controlled setting in which to introduce some of the
arguments; it also has an interesting equivalent formulation
as a problem on partially ordered sets.

The connection to posets arises as follows. Let G = (V, E)
be a bipartite graph, with color classes X and Y, and sup-
pose that G has a unique perfect matching M. Consider the
orientation of G with edges in M oriented from X to Y, and
all other edges oriented from Y to X. Since M is the only
perfect matching in G, the resulting directed graph must
be acyclic. We define a poset on the nodes of X, declaring
v X w if and only if w is reachable from v in the directed
graph. We also add to the poset two additional elements:
an element L below all minimal elements, and an element
T above all maximal elements. We write Xt = X U {1, T}
and refer to this partially ordered set as the poset induced
by M on X,

Now, recall the definitions of stable and balanced out-
comes in G from Section 1. We define a corresponding no-
tion of “balance” in posets as follows. Let P be a poset, and
suppose it has a unique minimal element | and a unique
maximal element T. We will refer to all elements of P other
than | and T as internal. We say that a consistent labeling
of P is an assignment of a number 7, € [0, 1] to each element
a € P, subject to the condition that v, = 0, y7 = 1, and
Yo < b whenever a < b in the partial order. (Although it is
not important for the discussion here, we note that the set
of all labelings satisfying this latter condition, viewing each
as a vector (o : @ € P) € R!7!, forms the order polytope
of P.) For any set A C P containing L and T, we can also
speak of a consistent labeling of A, by simply considering
the partial order restricted to A.

We say that a consistent labeling is balanced at an inter-
nal element b if the value 7, is the midpoint of max,<p Va
and mingyp .. More generally, we say that the labeling is
balanced at a set of internal elements S C P if it is balanced
at each b € S.

We connect balanced outcomes in G to balanced poset la-
belings via the following fact; the translation between these
two notions follows from the definition of «, in Section 1.

PROPOSITION 2.1. Let G = (V,E) be a bipartite graph
with color classes X,Y , and with a unique perfect matching
M. Let P be the poset induced by M on Xt. Consider an
outcome of network exchange G with matching M and values
{0 : v € V}}, where we also define vy =0 and vt = 1.

(a) The outcome is stable in G if and only if {y» : v € X}
is a consistent labeling of P.

(b) The outcome is balanced in G if and only if {7, : v €
XY} is a balanced labeling of P.

Constructing a balanced poset labeling. We now prove
by an efficient construction that every poset (with unique
minimum and maximum) has a unique balanced labeling; in
view of Proposition 2.1, this will prove that bipartite graphs



with unique perfect matchings have unique balanced out-
comes. In fact, we prove the following slightly more general
statement, in which certain poset elements can be pre-set to
constant values; this will also be useful in the next section
when we consider general bipartite graphs.

THEOREM 2.2. For every poset P with unique minimum
and mazimum, every set A C P containing this minimum
and mazimum, and every consistent labeling v of A, there
erists a unique consistent labeling v* extending v that is
balanced at every element of P — A. Moreover, this labeling
~* can be efficiently computed.

We will prove this by analyzing an algorithm to construct
the labeling v*. The algorithm works in stages, as follows.
At the start of each stage s, a subset Bs O A has already
been labeled, and the remaining elements are unlabeled. Ini-
tially, B1 = A. At the start of a given stage, we say that a
chain C' = by < by < --- 2 b, in P is anchored if r > 2, the
endpoints b; and b, of C' are labeled, and all its other ele-
ments are unlabeled. Notice that as long as Bs # P, there
is at least one anchored chain at the start of stage s.

In a given stage s, we find an anchored chain Cs = b; <
ba <X .-+ =X b, that minimizes the following gap parame-

65 — u 7bT71 that

r
are equally spaced between v, and s,.. This increases the
set of labeled elements: we have Bs+1 = Bs UCs. We con-
tinue iterating through stages until all elements are labeled.

This is the full algorithm. Clearly it terminates with a
labeling of P; we now argue that this labeling is balanced at
P — A. The first key step in doing this is to show that the
gap values 91, 02, d3, . .. found in sequence by the algorithm
are non-decreasing.

ter: . We assign values to bs,...

LEMMA 2.3. For all s > 1, we have ds < 541

Proof.  Suppose by way of contradiction that for some s
we have ds41 < ds. Now, if the endpoints of the chain Cs41
were already labeled at the start of stage s, then Cs41 could
have been chosen in stage s, a contradiction. Thus, at least
one endpoint of Cs11 was labeled during stage s — in other
words, at least one endpoint of Cs41 lies on Cs. Let us
consider the case in which the lower endpoint does but the
upper one does not. (The cases in which only the upper one
does, or in which both do, are analogous.)

ThllS, let CS = b1 j b2 j j br, let Cs+1 = C1 j
c2 = -+ =X ¢q, and suppose that ¢; = b, for some p. Then
since (534,_1 < (Ss, the chain Cé =b < bo <. =X bp <c X
-+ = ¢q is anchored at the start of stage s, and has a strictly
smaller gap than Cs. This contradicts our choice of Cs in
stage s. W

An analogous argument, applied to two-element chains
with one newly-labeled end, forms the induction step in an
argument that after each stage, the labeling is balanced on
all elements that have been labeled up through the end of
that stage. We omit the proof.

LEMMA 2.4. For each s, the labeling at the end of stage s
is balanced on each element of Bst1.

Hence, by induction, the labeling at the end of the algo-
rithm is balanced on all elements of P — A, as required.

We now argue that the labeling produced by our algo-
rithm is the unique balanced labeling. Indeed, consider any

consistent labeling 3 that agrees with 4™ on the elements of
A, and is balanced on the elements of P — A. The follow-
ing fact provides the induction step in proving that 8 must
in fact agree with v* everywhere; the proof argues that the
smallest gap created by (8 on elements labeled after stage s
must in fact be the gap 0.

LEMMA 2.5. For each s > 1, if B agrees with v* on the
elements of Bs, then it must agree with v* on the chain Cs
as well.

Proof. Consider the labelings v* and (3 restricted to the
elements of Bs, where they are assumed to agree. Among
all pairs of elements a < b, at least one of which does not
belong to Bs, choose a pair for which £, — 8, is minimum.
Let § denote this difference.

Suppose b € Bs. (The case in which b € B; is analogous.)
Then b € A, so the labeling 3 is balanced at b, and hence
there is an element b2 such that B, — B = 0. (Note that we
have equality here since § was chosen as the minimum dif-
ference between any comparable pair, at least one of which
is not in Bs.) If by & A, then by the same argument there
is an element bz such that [y, — By, = 6. We continue this
process until we first reach an element b, € B;.

Now, if a is also not in Bs, then we can perform an analo-
gous procedure moving downward in the partial order, pro-
ducing elements aq X aq—1 = --- = a2 <X a such that the
labels of consecutive elements under § differ by exactly &,
and such that a4 is the only element in this sequence be-
longing to Bs.

Now, if we consider the chain C = aq X ag—1 <X --- =X
az = a =b=<by <. <X b, it is anchored at the start of
stage s and has gap value 6. Moreover, by the minimality of
d, this must also be the gap d; = § of the chain C,s (which
may or may not be the same as C).

Finally, suppose that there are two consecutive elements ¢
and ¢’ on C; for which 8. — 3. # . Then there would be two
consecutive elements for which this difference is strictly less
than 4, again contradicting the minimality of 6. This shows
that 3 agrees with v* on the elements of Cs, as required. H

3. GENERAL BIPARTITE GRAPHS

Next we will extend this solution to the case of bipartite
graphs without the assumption that G has a unique perfect
matching. Our main result for bipartite graphs is that

THEOREM 3.1. For any bipartite graph G, and any match-
ing M in G, there is a balanced outcome involving M if and
only if M is a maximum matching. In particular, there ex-
ists a balanced outcome for every bipartite graph G.

The proof uses a structure called the Edmonds-Gallai decom-
position [11], which lets us separate the graph into a portion
containing a perfect matching, and a portion on which all
stable outcomes take 0-1 values. For the portion of the graph
containing a perfect matching, we use a further decomposi-
tion into elementary subgraphs [11], as we explain below. We
will see that the special case considered in the previous sec-
tion is the case in which each elementary subgraph in the
decomposition consists of a single edge; larger elementary
subgraphs will give us more flexibility in assigning values in
a balanced outcome.



The Edmonds-Gallai decomposition. Our proof of this
theorem begins with the following observation, whose proof
is straightforward.

PROPOSITION 3.2. In any stable outcome for a bipartite
graph G, the matching M must be maximum; and if v is
a node that is not part of every maximum matching, then
Yo = 0.

Let D be this set of nodes v that are not part of every
maximum matching. The Edmonds-Gallai decomposition of
a graph G = (V, E) partitions V into three parts: the set
D, which in a bipartite graph forms an independent set; a
set A consisting of all nodes with a neighbor in D; and a set
C =V — D — A in which there is always a perfect matching
[11]. In any stable outcome, we have v, = 0 for all v € D by
Proposition 3.2; we have 7, = 1 for all v € A; and hence we
can essentially reduce the problem to one in which we need
to find values for the subgraph G[C] — i.e. for bipartite
graphs containing at least one perfect matching.

Note that the graph in Figure 1 gives a succinct example
of this decomposition: in that graph, D = {u,w}, A = {v},
and C = {z,y}; and we have v, = vy, = 0, while v, = 1 and
Yz = vy = 3. Other general principles are reflected in this
graph as well: for example, the fact that it is useless for x to
negotiate with v is an instance of the more general principle
that for any graph G, if a node z € C has a neighbor v € A,
then this neighbor provides = only with 1 —1 = 0 as an
alternate option.

Bipartite graphs with perfect matchings. Most of the
complexity, then, arises for graphs G[C] with perfect match-
ings. To analyze such a graph, we further decompose C' into
elementary subgraphs [11]: if E' C E is the set of edges that
occur in some perfect matching of C, then the connected
components Hy, ..., H, of (C, E') are called the elementary
subgraphs. We call an elementary subgraph trivial if it con-
sists of just two nodes, and non-trivial otherwise.

We now connect the structure of the elementary subgraphs
to the poset problem defined in the previous section. To do
this, we define a notion of reachability on the elementary
subgraphs, by constructing a directed graph I' as follows: We
take an arbitrary a perfect matching M, orient the matching
edges from X to Y, and orient all other edges from Y to X.
Each non-trivial elementary subgraph corresponds to a non-
trivial strongly connected component of I', and each trivial
elementary subgraph consists of two singleton strongly con-
nected components joined by an (oriented) edge in M.

Using the structure of I', we can construct the set of all
possible balanced outcomes by a reduction to the poset la-
beling problem. The directed graph I' defines a poset P on
the components H; according to reachability. We also add
to P two new elements | and T to serve as the unique mini-
mum and unique maximum. We first consider how to define
the labels on each elementary subgraph, and then look at
how the labels relate to each other.

If we focus on a non-trivial elementary subgraph H; as a
graph in isolation, its balanced solutions consist of an as-
signment of a single number 0 < «; < 1 to each node of H;
on the X-side, and the number 1 — v; to each node on the
Y-side. If such a labeling is extended to a stable solution on
G, the labeling will necessarily be balanced on the subgraph
H;, as a,, = 7y, for all nodes v € H;. Given this observation,
any stable outcome on G[C] corresponds to a labeling of the

partially ordered set P, where the label of component H; is
the value of the labels of the nodes on the X-side of H;.

Now consider two elementary subgraphs H; and H; as
subgraphs of GG; we can relate the values a balanced solution
takes in each of them as follows. If H; is an immediate
predecessor of H; in P, then there is an edge (w, v) from the
Y -side of H; to the X-side of H;. Then we have v, +7v» > 1,
which means (1 — ;) +v; > 1, and hence v; < ;. Thus,
the values «; corresponding to the non-trivial elementary
subgraphs form a consistent labeling of P (adding in v, =0
and y1 =1).

This is a property that all balanced solutions must have.
Conversely, we can use the result of the previous section to
show that any consistent labeling v of the non-trivial ele-
mentary subgraphs can be uniquely extended to a balanced
solution for all of G. In the notation from Theorem 2.2, we
treat the non-trivial elementary subgraphs (together with L
and T) as the set A, and we find a consistent labeling v* of
P extending . We use these values to fill in the balanced
solution on the trivial elementary subgraphs using Theorem
2.2. This completely describes all balanced outcomes on G,
as we summarize in the next theorem.

THEOREM 3.3. Stable outcomes on the graph G are in
one-to-one correspondence with consistent labelings of the
poset P. A stable outcome is balanced if and only if the
labeling of P is balanced at all elements corresponding to
trivial elementary subgraphs. Any set of consistent values
at all elements corresponding to non-trivial elementary sub-
graphs extends uniquely to a set of values associated with a
balanced outcome.

4. GENERAL GRAPHS: FIRST STEPS

From the analysis in the previous section, we see that
balanced outcomes exist for every bipartite graph G, and
the values in a balanced outcome are unique if and only if
G[C] (in the Edmonds-Gallai decomposition) has a unique
perfect matching. The situation with non-bipartite graphs
becomes more complicated in many directions, including the
breakdown of both these facts. This short section highlights
some of the issues that arise in the non-bipartite case, to
lead into the general solution that will be described in the
next section.

To begin with, stable outcomes (and hence balanced out-
comes) do not exist for every non-bipartite graph. The 3-
node clique (i.e., a triangle) forms a simple example where
there is no balanced or even stable outcome: any matching
consists of a single edge, and the excluded node would be
happy to accept any small value offered. As a more inter-
esting small example with no balanced or stable outcome,
consider a 10-node graph G containing a node v such that
G — {v} consists of three disjoint triangles — that is, the
triangles can only reach each other through v.

In fact, the existence of stable and balanced outcomes can
be characterized via the Edmonds-Gallai decomposition.

THEOREM 4.1. In a graph G, the following are equivalent.
(a) There is a balanced outcome.
(b) There is a stable outcome.

(¢) The set D in the Edmonds-Gallai decomposition forms
an independent set.
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Figure 3: Examples of balanced outcomes in weighted network exchange problems.

The equivalence of (b) and (c) here is straightforward us-
ing Proposition 3.2, which applies to all graphs, not just
bipartite ones. The non-trivial content of the theorem, that
any graph with a stable outcome has a balanced one, will
follow from our characterization of balanced outcomes in the
next section.

The first step in this characterization is to reduce the
problem — as we did for bipartite graphs as well — to the
case in which there is a perfect matching. Specifically, if D
forms an independent set, we will be able to set v, = 0 for
allv € D and v, = 1 for all v € A, leaving us with the graph
G[C] that we again (as in the bipartite case) decompose into
elementary subgraphs. For bipartite graphs, recall that in a
balanced outcome one could choose any value for the X-side
of a non-trivial elementary subgraph; but in general graphs,
even these values can be constrained. For example, the 4-
node clique is an elementary graph; yet although it has mul-
tiple perfect matchings, any balanced outcome assigns value
Yo = % to each node v.

In the next section — working within the more general
framework of weighted graphs — we show how the values in
non-trivial elementary subgraphs are constrained, and how a
generalization of the procedure to find balanced poset label-
ings can extend the balanced outcome from the non-trivial
elementary subgraphs to the trivial ones as well.

5. BALANCED OUTCOMES IN GENERAL
WEIGHTED GRAPHS

Finally, then, we consider the general version of the prob-
lem — network exchange on an arbitrary graph, where the
value being divided on each edge can be an arbitrary positive
number. We first need to make clear how to generalize the
notion of a balanced outcome to this weighted case. Then,
to construct balanced outcomes, we will no longer be able
to use a direct reduction to the poset labeling problem, but
we will be able to extend the approach there to our more
general setting.

Stable and balanced outcomes in weighted graphs.
To begin with, let G = (V| E) be a graph, with values wyw >
0 on the edges (v,w) € E. As before, each node v represents
an agent who is trying to reach an agreement to split the
value on at most one of its incident edges. By analogy with

the case of unit-weight edges, an outcome of this process is a
matching M together with an assignment of a real number
Y» > 0 to each node v, so that v, + Yw = wyw for all edges
(v,w) € M, and v, = 0 for unmatched nodes v. We say that
the outcome is stable if in addition we have v, + Y > Wyw
for each edge (v,w) € E. To extend the notion of a balanced
outcome we need to define for each node v the best alternate
value «,, it can obtain by breaking the its current agreement.
Formally, this is

)+

Qy = max (Wou — Yu

o (v,u)€E:uzw ’

where w is the matched pair of v, we take the maximum
to be 0 over the empty set, and for a real number a we
use (a)t to denote its positive part max(c,0). We say a
stable outcome is a balanced if, in addition to the stability
properties, we have v, — @y = Y — uy for every edge (v, w)
in the matching.

Figure 3 illustrates some sample instances of weighted net-
work exchange; edge weights are drawn inside the edges, and
the values 7, from the (in these cases, unique) balanced out-
comes are shown next to the nodes.

It is not hard to show that a matching M in a stable
or balanced outcome may no longer be of maximum size;
however, it must be of maximum weight.

ProposiTION 5.1. The matching M in a stable outcome
must be a maximum-weight matching. If an outcome v is
stable with a matching M, then it is also stable with any
other mazimum-weight matching M’ .

To make the discussion cleaner we introduce the following
piece of additional notation: we define the slack of an edge
(v,w) to be

Ovw = Yo + Yw — Wyw-

Note that an outcome is stable if an only if o4, > 0 for all
edges (v,w) € E. Further, we will define the slack of a node
to be 0, = vy — a,. Using the notion of node slacks, we can
say that a stable outcome < is balanced if and only if for
every edge (v,w) in the matching, we have o, = 0.

The slack of a node is closely related to the slacks of the
adjacent edges. To see this connection consider an edge
(v,w) in the matching, with values v, and vu = Wyw — Yo,
and assume the value o, is determined by edge (v, u); that
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iS Qy = Wyy — Yu- In this case, v, — oy = 0yuy. When a,, =0
we get 0y = Y, so if v is matched to w then

v mln(/y'u, (v,u)léuEr:luqéw qu)7
the minimum of the value ~, and the smallest slack of an
unmatched edge adjacent to v.

In three of the four examples of Figure 3, the slack at each
internal node is determined by the unique unmatched edge.
In Figure 3(b), however, the internal node v has value ~,
exceeding the weight of the adjacent unmatched edge (v, w),
and so we have oy, = 0.

Overview of the main result. Our main result shows
that a graph has a balanced outcome whenever it has a stable
one, and it gives a procedure to compute balanced outcomes,
along with a characterization of all balanced outcomes.

THEOREM 5.2. If a graph G has a stable outcome, then it
has a balanced outcome, and the set of all balanced outcomes
can be constructed in polynomial time.

We start by characterizing the graphs that have stable
outcomes, and understanding the connection of slack values
with the slack variables of a certain linear program. By
Proposition 5.1 if an outcome consisting of a matching M
and values =y is stable, then this same set of values together
with any other maximum-weight matching must also form a
stable outcome. So we can use any maximum-weight perfect
matching M in our stable outcome without loss of generality.
We can think of the stability requirement as a linear program
with two variables per inequality:

Yo = 0VveV

Y = 0 Vv €V unmatched
Yo + Yw Wow Y(v,w) € M
Yo+ Y = wew V(v,w) € E\M

Aspvall and Shiloach [1] show how to solve such linear pro-
grams via a dynamic programming algorithm, and give a
characterization of the existence of the solution using al-
ternating paths and cycles that are possibly not simple, as
shown on Figure 4. In particular, the structures relevant to
their characterization are simple alternating paths (Figure
4(a)), alternating cycles (Figure 4(b)), and blossoms and
bi-cycles: non-simple alternating paths and cycles that con-
tain within them simple odd alternating cycles, as shown
in Figures 4(c) and 4(d). We say that an alternating path
or blossom is anchored at its degree-1 node(s), and in the
characterization only consider copies of these structures that
are anchored either at unmatched nodes or matching edges.

Aspvall and Shiloach show that an instance of the linear
program is infeasible if and only if, for a subgraph of G
consisting of one of these structures, the total weight on un-
matched edges exceeds the total weight on matched edges.
(To do this, we need to count each edge on the path por-
tions of the blossoms and bi-cycles twice, as these structures
should be viewed as non-simple walks that traverse this part
twice.)

PROPOSITION 5.3. In a graph G, a stable outcome can be
found if one exists by computing a marimum-weight match-
ing M, and then solving the inequality system above to get
the values s .

We can think of the values 7, in a stable outcome as dual
variables for a fractional relaxation of the matching prob-
lem in which the (primal) constraints are simply that the
fractional degree of each node should be bounded by 1. A
matching M and set of values v form a stable outcome if
v is feasible for the dual of this fractional matching relax-
ation, and the matching M and dual v satisfy complemen-
tary slackness. In a bipartite graph such values always exist,
as the matching polytope is described by the degree con-
straints. In the non-bipartite case, however, we do not al-
ways get such primal-dual solutions: the degree constraints
form only a relaxation of the matching polytope, since the
odd-subset constraints are missing.

Constructing a balanced outcome in weighted graphs.
We prove Theorem 5.2 via a procedure to find all balanced

outcomes. After showing how to construct one balanced

outcome we show that our procedure can generate any bal-

anced outcome. The approach is analogous to finding a bal-

anced labeling of a poset from Section 2. We start with a

maximum-weight matching, and we set values on the matched
edges (v, w) gradually, spreading out the slack through the

graph as much as possible, similar to how we spread out the

gaps between labels in posets. A key difference, however, is

that with posets we spread out the slack by considering only

paths (i.e. chains); here, we have to consider the range of

structures (paths, cycles, blossoms and bi-cycles) arising in

the Aspvall-Shiloach characterization.

At the first iteration we find stable outcome values =, such
that the slacks of all unmatched edges, and the slacks of all
nodes, are at least a parameter o, for as high a value of o as
possible. For example, if there are any unmatched nodes v
in M then o, = 7, = 0 in all outcomes, and hence the first
phases will have maximum o = 0, and we will set v, = 0
for all unmatched nodes v. In a general step, we have a
subset A of the nodes where the outcome values =, for all
v € A have already been set, and we seek to maximize the
slack on nodes and edges where values have not been set



by A. The process will set the small slack values first. In
general, it is useful to consider analogies between the process
as we specify it here, and the simpler process in Section 2
for producing a balanced labeling of a poset; there too, we
committed gradually to the values at the elements, starting
with small gaps (the analogues of slacks for poset elements).

To describe our process we need a few definitions. Let
G = (V,E) be a graph, and let M together with values ~,
be a stable outcome of network exchange on G. Let A be a
subset of the nodes. We will consider the values v, “set” for
v € A, but we’ll maintain values for all nodes v € V. (The
values on nodes V — A are viewed as still changeable.) We
will only work with sets A having the property that edges
in the matching M are either contained in A or are disjoint
from A; the set A will also have the property that it contains
all unmatched nodes, with «, = 0 for each unmatched node
.

For running the process to find a balanced outcome, we
will let o, be defined only by the values that are “set”; that
is, we let 0, (A) for a node v € A be

0v(A) = min(vy, Ouv)s

min
(v,u)€E:u#w,uc A
the minimum of the value =, and the smallest slack of an
unmatched edge adjacent to v inside A. We say that the
outcome is balanced in A if for all matching edges (v, w)
with v,w € A, we have 0,(A) = 0, (A); and we will assume
that for all nodes v € A, we have 0,(A) < o, while all slacks
of nodes and edges not contained in A are at least o.
To prove that this process finds a balanced outcome we
will use the following strengthening of Theorem 5.2.

THEOREM 5.4. Consider a graph G = (V, E), with a match-

ing M and values 7, constituting a stable outcome of net-
work exchange on G. Let A be a subset of the nodes such
that o, < o for all nodes v € A, and o, > o for all nodes
v & A, and suppose 7, is balanced in A. Then there is a
balanced outcome ' such that v, = v, on all nodes v € A.

Consider the following linear program seeking to maximize
the smallest slack of all edges and nodes not in A. Let E(A)
be the set of edges contained in A.

max o’

vy > o WweV\A

Yot Yo =  wew Y(o,w)EM

Yot > wewt 0 Y(o,w) € E\(MUE(A))
Yo = Yo Y EA.

We will proceed using the Aspvall-Shiloach characteriza-
tion of feasibility mentioned above. We find a structure C
from their theorem that limits the maximum ¢’ in the linear
program, and we “spread out” this available slack ¢’ across
C. Recall that an alternating path or blossom is anchored at
the end(s) of the path; because values 7, are already set for
nodes in A, we consider only alternating paths and blossoms
anchored either at a matching edge or at a node in A.

To do this, we need to define the available slack o(C) for
any of the structures arising from the Aspvall-Shiloach the-
orem. This available slack will be built from a simpler quan-
tity ¢(C), defined for all these structures as the difference
in weight between matched and unmatched edges, counting
the path portions of blossoms and bi-cycles twice. Also, the
extent to which we can spread out the slack depends on a

quantity n(C') that captures the number of distinct slack
values over which it can be spread out.

We now define the slack o(C'), as well as n(C), in several
cases, depending on the structure of C'. First, for a cycle, or
a path anchored in matching edges, we simply define o(C) =
¢(C). If 0(C) < 0 then augmenting the matching along C'
results in a matching of larger weight. If o(C) > 0 then in
any stable solution the sum of the slacks of the unmatched
edges along C (plus the slacks of the end nodes) sum to o(C),
and hence o(C)/n(C) is a bound on the maximum slack o,
where n(C) is the number of unmatched edges along C for
a cycle, and the number of unmatched edges plus two for a
path, so as to also count the slack variables of the end nodes.

This observation also extends to a bi-cycle or blossom C'
anchored at matching edges: again we define o(C) = ¢(C).
We define n(C) by counting the edges (and the end node)
along the path portion twice. It is not hard to see that if
o(C) < 0, then no stable outcome can exist (even though
the matching may be of maximum weight). Also, since o(C')
is the sum of the slacks of the unmatched edges (and end
node) along the structure, o(C)/n(C) bounds the maximum
slack.

For a blossom C' anchored at a node v € A, we define
o(C) = ¢(C)—2r,; for a path P anchored at nodes v, w € A,
we define o(P) = ¢(P) — vo — Yw; and finally, if a path P is
anchored at one end at a node v € A, and at a matched edge
at the other end, we define o(P) = ¢(P) — 7». Note that
the value depends only on the values ~, for the nodes v € A
and the structure, and doesn’t depend on any values not
yet “set”. Let n(C) for such structures denote the number
of slack variables not yet set along the structure, i.e., not
counting slacks for the ends anchored in A. As before we
have that o(C) is the sum of the slacks of the unmatched
edges along the structure plus the ends not anchored in A,
and hence o(C)/n(C) is a bound on the maximum slack.

From the Aspvall-Shiloach characterization of feasibility
[1] we get that the highest possible value ¢’ is limited by the
smallest ratio over the structures C.

PROPOSITION 5.5. The mazimum value of o’ of the linear
program above is equal to the smallest value of o(C)/n(C),
where C ranges over all possible alternating cycles, paths,
blossoms, and bi-cycles.

Proof of Theorem 5.4. First we put each unmatched
node v into A and set 7, = 0 for such nodes. We then
proceed by induction on the number of nodes in V' '\ A. We
use the Aspvall-Shiloach dynamic programming algorithm
[1] with ¢’ as a parameter to solve this linear program. Let
~* be a solution with value ¢*. Recall that by assumption
we have o™ > 0.

By Proposition 5.5 the maximum of ¢* is limited by a
path, cycle, blossom or bi-cycle C'. We find such a limiting
structure C, and let A* = AU C. Note that the slacks oy
for unmatched edges in C' must equal o* as well as v, = o*
if C is anchored at a node v € A, as these values average to
o*.

We claim v*, o™ and A* satisfy the theorem’s conditions,
which will finish the proof by induction on the size of V'\ A.

First note that the nodes v € A remain balanced in A.
This is true as all slacks not fully contained in A are at least
o* > o and hence for nodes in A the minimum slack value
is attained as before: o, does not change for v € A. Second,
matching edges do not leave A*. This follows as the limiting



structure C' contains the matched edge adjacent to each of
its nodes. Finally, note that all nodes newly added to A*
are balanced, as all nodes in A* \ A have slack o*. R

Representing all balanced outcomes. Finally, we want
to argue that all balanced outcomes can be obtained by this
procedure. Before turning to the proof of this statement,
we consider to what extent the execution of the procedure
was uniquely determined. If C' is a path or blossom, then
the values ~; are fully determined by ¢* and the values of
the anchored ends (if anchored in A), and hence the values
set in this iteration are unique. In this case, we can show
that all balanced solutions 4’ that agree with v on A (i.e.,
have 7y, = 7y, for all v € A) must also have v, = v, for all
v € C. However, when the limiting structure C is a cycle
or bi-cycle, then the values set in this iteration may not be
fully determined just by o* and the structure. Setting a
value ~, for a node v € C fully determines the values at
the other nodes, but there may be a range of values possible
for ~;. (Note that this is a more complex analogue of the
freedom we had to set values on nodes in the non-trivial el-
ementary subgraphs of a unit-edge-weight bipartite graph.)
The interval of possible values for such a node v can also be
determined by the Aspvall-Shiloach [1] dynamic program.

THEOREM 5.6. Consider an exchange network G = (V, E)
with stable outcome values vy, and a value o, and let A be
a subset of nodes v such that o, < o for all nodes v € A,
and o, > o for all nodes v & A. Suppose all matching edges
(v, w) internal to A are balanced (i.e., have o = o).

Ifv* is a set of balanced outcome values that satisfies vy, =
Yo for all nodes v € A, then it is an optimal solution for the
above linear program.

Proof. Let v* be a balanced outcome that agrees with
on all nodes in A. Let 0" be the smallest slack of any un-
matched edge or node not contained in A. We need to argue
that o* > o’. We will find a structure (alternating path, cy-
cle, blossom or bi-cycle) containing v with slack equal to this
minimum value o*. The average slack o(C)/n(C) for this
structure is now also ¢* and hence ¢* > ¢’ as claimed.

We find the structure by following an alternating walk on
nodes and edges with slack equal to o*. We start with the
edge or node where the smallest slack occurs outside of A.
Now suppose we have followed such a walk for some number
of nodes, and consider an alternating path P found so far;
we describe how to extend P in both directions. Let v be
the last node of the path. Assume first that P so far ends
with an unmatched edge (u,v) (and hence oy, = o*). If
v € A this will anchor the path. Otherwise we have v € A,
and now consider v’s matched pair w. The outcome ~v* is
balanced, so o} = o5, = ¢*, and we add the matched edge
(v,w) to the path P. If P so far ends with a matched edge,
let w be the last node. If o}, = ~. then node w will anchor
our path, else we extend the path with the unmatched edge
(w, z) that is defining the slack o}, = o5,,.

Following the walk P in both directions, P can either get
anchored, or close a cycle. If the cycle C closed is even, then
we have found the structure C, as claimed. If the cycle C
is odd, we continue the walk P. Note that the walk may
now visit nodes and edges for the second time, but these
visits will occur in the opposite direction. This process will
result in finding the claimed structure: we either close an

even alternating cycle; or find two odd cycles, closing a bi-
cycle; or we get both ends of the walk anchored, closing an
alternating path or blossom. B
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