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of network bargaining games∗
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Abstract

We study bargaining games between suppliers and manufacturers in a network context. Agents wish
to enter into contracts in order to generate surplus which then must be divided among the participants.
Potential contracts and their surplus are represented by weighted edges in our bipartite network. Each
agent in the market is additionally limited by a capacity representing the number of contracts which
he or she may undertake. When all agents are limited to just one contract each, prior research applied
natural generalizations of the Nash bargaining solution tothe networked setting, defined the new solution
concepts ofstableandbalanced, and characterized the resulting bargaining outcomes. We simplify and
generalize these results to a setting in which participantsin only one side of the market are limited to
one contract each. The heart of our results uses a linear-programming formulation to establish a novel
connection between well-studied cooperative game theory concepts (such ascoreandprekernel) and the
solution concepts ofstableandbalanceddefined for the bargaining games. This immediately implies
one can take advantage of the results and algorithms in cooperative game theory to reproduce results
such as those of Azar et al. [1] and Kleinberg and Tardos [29] and also generalize them to our setting.
The cooperative-game-theoretic connection also inspiresus to refine our solution space using standard
solution concepts from that literature such asnucleolusand lexicographic kernel. The nucleolus is
particularly attractive as it is unique, always exists, andis supported by experimental data in the network
bargaining literature. Guided by algorithms from cooperative game theory, we show how to compute the
nucleolus by pruning and iteratively solving a natural linear-programming formulation.

1 Introduction

Common wisdom has it that the whole is more than the sum of the parts. In more economic terms, this
proverb is a translation of the fact that two cooperative agents are often capable of generating a surplus
that neither could achieve alone. For example, the owner of amusic studio, together with a music band,
can record and sell an album; a publishing house, together with an author, can print and sell a book. The
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proceeds from the album or the book are the surplus generatedby the cooperation of the agents.Bargaining
theoryasks how agents divide this jointly generated surplus.

In the 1950s, John Nash proposed a solution to this problem for the special case of two agents [36]. His
solution, known as theNash bargaining solution, is based on the intuition that, all else being equal, agents
will tend to divide the surplus equally. If things are not equal, i.e., if some agents have better outside options
than others, then thenet surplus will be divided equally.1 Since Nash’s result, various economists and
computer scientists have extended this solution concept toa networked setting and defined new equilibrium
concepts as well [6, 29]. In these settings, each agent has a set of potential contracts, represented by the
network. The “outside options” of the Nash bargaining solution are now endogenous to the model and
generated by the network structure itself.

We propose looking at the network bargaining game through the lens ofcooperative game theory.2 In
a cooperative game, sets of agents are mapped to values representing the surplus they alone can generate.
A solution then assigns a payoff to each agent. The literature has a rich history exploring various solution
concepts, their axiomatic properties, and their computability. By interpreting the network bargaining game
in this context, we are able to leverage the valuable tools and concepts of cooperative game theory when
studying network bargaining. Not only does this enable us toreproduce previous results (with arguably
little effort) and derive these previous results for more general models, but more importantly perhaps, we
are introduced to new refined solution concepts such asnucleolusandlexicographic kernel. These concepts
are often arguably more predictive than those previously studied.

Our Results. In most prior work on networked bargaining, researchers assume each agent can enterat
most onecontract, i.e., the set of contracts form amatching.3 Additionally, contracts are often assumed to
be of equal worth. In this paper, we generalize these models by assigning each agent a capacity constraint
and allowing him or her to participate in a number of contracts limited by this capacity. We also allow
contracts to generate varying amounts of surplus. We mainlyfocus our efforts on the important special case
of bipartite networks, or networks like the music and literature examples above, in which each agent can be
divided into one of two types depending on which type of agents he or she contracts with.

The most basic question in these models is to develop predictions regarding which contracts will form
and how much each agent will earn as a result. A successful prediction should beintuitive, computationally
tractable, andunique. To this end, Kleinberg and Tardos [29] proposed a solution concept for the matching
case calledstableand a refinement calledbalancedthat are natural generalizations of the Nash bargaining
solution for the two-player case [36].

We first show how to characterize all stable solutions in our general setting using a linear-programming
formulation which is a generalization of one developed by Shapley and Shubik [42] for the matching case.
We then introduce a special case of our problem in which one side of the market is severely capacity-
constrained. In particular, we assume agents on one side of the market can enter intoat most onecontract
each while the other side has general constraints. In this constrained setting, we draw connections between
balanced and stable outcomes and the cooperative-game-theoretic notions ofcoreandprekernel. These no-
tions look for solutions that are stable with respect to deviating coalitions of any size. Unlike the general

1Nash’s solution concept is actually defined for a slightly more general problem where the feasible contracting region need not
be linear; in the special case described herein, Nash’s solution corresponds to other standard notions as well. Nonetheless, we adopt
the terminologyNash bargaining solutionto be consistent with prior work on this topic in the computerscience literature.

2This was done in the economics literature for the matching game described below [42], but the connections we draw between
the computer-science-defined notions and the cooperative-game-theory notions are novel.

3An exception is the model of Chakraborty and Kearns [6] whereagents make multiple deals, but the utilities are non-linear.
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setting, we prove that the set of stable solutions and the core coincide in this setting, as do the set of bal-
anced solutions and the prekernel. This result is of particular interest as the core and prekernel are axiomatic
solution concepts of exponential description size (essentially they require that certain conditions hold for
everysubset of agents), whereas the notions of stable and balanced solutions have inherently polynomial
descriptions. These connections allow us to leverage existing results in the cooperative game theory litera-
ture (such as those for computation of core, prekernel, nucleolus, and lexicographic kernel) to motivate and
derive solutions in our setting.

As for leveraging tools from cooperative game theory, the connections we draw imply that the techniques
of Faigle, Kern, and Kuipers [20] for finding a point in the prekernel of a game can be adapted to find
a balanced solution for our constrained bargaining game. Indeed, the resulting algorithm as well as its
analysis is essentially the same as the local dynamics givenin Azar et al. [1]. These connections also have
implications for the model of Kleinberg and Tardos [29]. In their model, the set of possible contracts is
not necessarily bipartite, but instead each agent is restricted to participate in at most one contract. Our
aforementioned results regarding stable and balanced solutions can be adapted to this setting. Since the set
of stable solutions and core coincide, we are able to characterize all graphs which have at least one stable
outcome. Namely, a graph has a stable outcome if and only if the simple maximum-weight matching LP
relaxation has integrality gap one. Since the set of balanced solutions and the prekernel coincide, we can
obtain the Kleinberg-Tardos result for constructing a balanced outcome in polynomial time using simple and
well-known results from the economics literature rather than combinatorial constructs such as posets and
Edmonds-Gallai decompositions.

Perhaps more importantly, this connection to cooperative game theory guides us in our search for so-
lution concepts for our game. The set of stable/balanced andcore/kernel solutions previously proposed
may be quite large and hence not terribly predictive. With the goal of computing a unique and predictive
outcome for our game, we propose and motivate the cooperative-game-theoretic notion ofnucleolusas the
“right” outcome. The nucleolus is unique and symmetric in that agents with similar opportunities have sim-
ilar earnings. It is also supported by economic experiments, as discussed in Section 2.2. Additionally, for
the above model, we show that the nucleolus is computationally tractable. We prove this by following an
iterative linear-programming-based approach used previously by economists [24, 18, 46, 20] and computer
scientists [16] in unrelated contexts. In order to adopt this approach to our setting, we show how to prune
the linear programs, creating programs of polynomial size.The main technical difficulty is to prove that this
pruning maintains the essential relationships between theiterated linear programs and thus still computes
the nucleolus.

Related work. The most closely related work to ours is that of Kleinberg andTardos [29]. That paper
defines stable and balanced solutions for the matching case mentioned above. They then give an efficient
characterization of stable/balanced solutions based on posets and the Edmonds-Gallai decomposition. Our
work re-derives and generalizes some of their results usingsimple and well-known results from the eco-
nomics literature. Very recently, Azar et al. [1] show that local dynamics does in fact converge to a stable
and balanced solution. Incidentally, the connection that we establish between the solution concepts of prek-
ernel and balanced would immediately imply the same local algorithm via a former result of Stearns [47];
see Section 4.1 for more details. We also learned of two othervery recent results: Kanoria et al. [27]
addresses the problem of finding a “natural” local dynamics for this game, and Azar, Devanur, Jain, and
Rabani [2] also study a special case of our problem through cooperative game theory and propose nucleolus
as a plausible outcome of the networked bargaining game. Thework of Chakraborty et al. [7] as well as
that of Chakraborty and Kearns [6] considers a related problem, in which there is no capacity constraints on
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the vertices but agents have non-linear utilities. They explore the existence and computability of the Nash
bargaining solution as well as the proportional bargainingsolution in their setting.

Much recent literature has focused on the computability of various solution concepts in the economics
literature. In the noncooperative game theoretic setting,the complexity of Nash and approximate Nash equi-
libria has a rich recent history [48, 31, 30, 12, 13, 9, 10, 5, 14]. In cooperative-game-theoretic settings, the
core of a game defined by a combinatorial optimization problem is fundamentally related to the integrality
gap of a natural linear program, as observed in numerous prior work [4, 43, 26, 32, 25]. The computability
of the nucleolus has also been studied for some special games[16, 28, 46, 20, 21, 19, 24].

Much of our work leverages existing results in the cooperative game theory literature; these results will
be cited as they are used.

2 Preliminaries

In the network bargaining game, there is a setN of n agents. For bipartite graphs, the setN is partitioned
into two disjoint setsV1 andV2 (i.e., N = V1 ∪ V2 andV1 ∩ V2 = ∅) and all edges of the network pair
one vertex ofV1 with one vertex ofV2. Each agenti ∈ N is assigned acapacityci limiting the number
of contracts in which agenti may participate. For each pair of agentsi, j ∈ N , we are given a weightwij

representing thesurplusof a contract betweeni andj (a weight ofwij = 0 meansi andj are unable to
contract with each other). The capacities together with theweights jointly define a node-and-edge-weighted
graphG = (N,E) whereE = {(i, j) : wij > 0}, the weight of edge(i, j) is wij, and the weight of nodei
is ci. Our game is fully defined by this construct.

The(bipartite) bargaining gameis a (bipartite) graphG = (N,E) together with a set of node capacities
{ci} and edge weights{wij}. There are two special cases of the above game that we consider separately.
The first is thematching gamein which ci = 1 for all i ∈ N (note the graph need not be bipartite in the
matching game). The matching game was studied by Kleinberg and Tardos [29] in the context of bargaining,
as well as many economists in the context of cooperative gametheory [28, 18, 46]. The second special case
is theconstrained bipartite gamein which the graphG = (V1 ∪ V2, E) is bipartite and the capacities of all
agents on one side of the market are one (ci = 1 for all i ∈ V2).

2.1 Solution Concepts

Our main task is to predict the set of contractsM ⊆ E and the division of surplus{zij} that result from
bargaining among agents. We call a set of contractsM feasibleif each nodei is in at mostci contracts: i.e.,
for eachi ∈ N , |{j : (i, j) ∈ M}| ≤ ci. A solution({zij},M) of a bargaining game is a division of surplus
{zij} together with a set of feasible contractsM such that the total surplus generated is divided among the
agents involved: i.e., for all(i, j) ∈ M , zij + zji = wij, and for all(i, j) 6∈ M , zij = 0. We interpretzij
as the amount of moneyi earns from contracting withj. We also define the aggregate earnings of nodei by
xi =

∑

j∈N zij and sometimes refer to the set of earnings{xi} as theoutcomeof our game.
The set of solutions of our game is quite large, and so it is desirable to define a subset of solutions that

are likely to arise as a result of the bargaining process. There are two approaches one might take in this
endeavor. The first is to generalize the bargaining notions introduced by Nash [36] and later extended to
networked settings [29]. The second is to study our game fromthe perspective of cooperative game theory.

In keeping with the bargaining line of work, we define theoutside optionof an agenti to be the best deal
he or she could make with someone outside the contracting setM . For a fixed agentk with (i, k) ∈ E \M ,
the best deali can make withk is to matchk’s current worst offer. Ifk is under-capacitated inM , i can
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offer k essentially0 and soi’s outside option withk would bewik. If k is utilized to capacity, then so
long asi offersk at least the minimum ofzkj over all j such that(j, k) ∈ M , thenk will accept the offer.
Generalizing this, we get the following definition.

Definition 2.1. Theoutside optionαi of agenti in solution({zij},M) is

max
k:(i,k)∈E\M

max
j:(j,k)∈M

(wik − Ikzkj),

whereIk is a zero-one indicator variable for whetherk is utilized to capacity. If the set{k : (i, k) ∈ E \M}
is empty, we define the outside option ofi to be zero. The inner maximization is defined to bewik if its
support set is empty.

Intuitively, if an agent has a deal in which he or she earns less than the outside option, then he or she will
switch to the other contract. Hence, we call a solutionstableif each agent earns at least the outside option.

Definition 2.2. A solution isstableif for all (i, k) ∈ M , zik ≥ αi, andαi = 0 if i has residual capacity.

Nash [36] additionally argued that agents tend to split surplus equally. If agents are heterogeneous in
that they have different outside options, then they will split the net surplus equally. Using the terminology
of Kleinberg and Tardos [29], we define a solution to bebalancedif it satisfies Nash’s conditions where
outside options are defined according to the network structure.

Definition 2.3. A solution isbalancedif for all (i, k) ∈ M , zik − αi = zki − αk or equivalentlyzik =

αi +
wik−(αi+αk)

2 .

Another approach to refining the set of solutions for our gameis to study it from the cooperative game
theory perspective. A cooperative game is defined by a set of agentsN and a value functionν : 2N →
ℜ+∪{0} mapping subsets of agents to the nonnegative real numbers. Intuitively, the value of a set of agents
represents the maximum surplus they alone can achieve. Cooperative game theory suggests that the total
earnings of agents in a cooperative game is fundamentally related to the values of the sets in which they are
contained. To cast our game in the cooperative game theory terminology, we must first define the value of a
subset of agents. We will define this to be the best set of contracts they alone can achieve.

Definition 2.4. Thevalueν(S) of a subsetS ⊆ N of agents is the maximum
∑

(i,j)∈M wij over all feasible
sets of contractsM such thati, j ∈ S for all (i, j) ∈ M .

In graph-theoretic terminology, this is simply the maximumweightedf -factor4 of the subgraph restricted to
S and can be computed in polynomial time.

Cooperative game theory suggests that each set of agents should earn in total at least as much as they
alone can achieve. In mathematical terms, we require that the sum of the earnings of a set of agents should
be at least the value of that same set. We additionally require that the total surplus of all agents is fully
divided among the agents. These requirements together yield the cooperative game-theoretic notion of the
core [23, 40, 37].

Definition 2.5. An outcome{xi} is in thecore if for all subsetsS ⊆ N ,
∑

i∈S xi ≥ ν(S), and for the grand
coalitionN ,

∑

i∈N xi = ν(N).

4Given a graphG(V,E) and a functionf : V 7→ Z
≥0, anf -factor is a subsetF ⊆ E of edges such that each vertexv has

exactlyf(v) edges incident on it inF . See West [49] for a discussion and for a polynomial-time algorithm to find anf -factor.
The approach can be extended to the case wheref(v) values are upper bounds on the degrees, and we are interestedin finding the
maximum-weight solution.
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The core may be empty even for very simple classes of games, and it may be hard to test whether it is
empty or not [11]. However, for our games, we are able to characterize the set of matching games having a
nonempty core and show that all bipartite bargaining games have a nonempty core.

Other solution concepts proposed in the cooperative game theory literature are that ofkernelandprek-
ernel [15]. Unlike the core, the kernel and prekernel always exist. As these concepts are closely related and
we only work with the prekernel, we only define the prekernel in this paper.5 The prekernel is defined by
characterizing the power of agenti over agentj, and requiring that these powers are in some sense equalized.
Intuitively, thepowerof i overj is the maximum amounti can earn without the cooperation ofj.

Definition 2.6. Thepowerof agenti with respect to agentj in the outcome{xi} is

sij(x) = max

{

ν(S)−
∑

k∈S

xk : S ⊆ N,S ∋ i, S 6∋ j

}

.

Theprekernelis then the set of outcomesx that satisfysij(x) = sji(x) for everyi andj.

Although the definition of the prekernel is not completely intuitive, it turns out to be similar to the
notion of balanced solutions in certain networked settings. A further refinement of this definition is that of
lexicographic kernelwhich is, roughly speaking, a subset of the prekernel that lexicographically maximizes
the vector of allsij values. In some sense, this definition tries to be as impartial as possible to different
players. As thenucleolusdefined below is a more widely accepted solution concept and achieves complete
impartiality, we do not give detailed information about thelexicographic kernel. We simply note that it
has been studied in [22, 33, 50], and the result of [22] in addition to Lemma 4.6 allows us to compute the
lexicographic kernel for any general bipartite (or even nonbipartite) bargaining game.

2.2 A unique outcome

None of the solution concepts proposed above are unique. Forany given game instance, and any of the
solution concepts above, there may be many outcomes which satisfy it. For example, consider a bipartite
bargaining game with two vertices on each side. Each of the four possible edges has value one, and the
capacities of the vertices are also one. It can be easily verified that any solution assigning valuex to the
vertices of one side and1 − x to the other side for0 ≤ x ≤ 1 is a stable, balanced solution, and hence
(as we will show later) also in the core and kernel. However, the solution corresponding tox = 0 seems
in some sense unfair. After all, all agents appear symmetric, as can be formalized by the fact that there
exists an automorphism of the game mapping any agent into anyother agent. Hence, we expect the agents
to have similar earnings after the bargaining procedure. Among all the plausible solution concepts, the one
we expect to see is that for whichx = 1/2, i.e., each agent earns1/2. This intuition was tested and verified
in the laboratory experiments of Charness et al. [8]. The solution x = 1/2 turns out to be thenucleolusof
the example game. In general, the nucleolus is that outcome which maximizes lexicographically the excess
earnings of any given set.

Definition 2.7. Given an outcome{xi}, the excessǫ(S) of a setS is the extra earnings ofS in {xi}:
ǫ(S) =

∑

i∈S xi − ν(S). Let ǫ = (ǫS1
, . . . , ǫS

2N
) be the vector of excesses sorted in nondecreasing order.

Thenucleolusof a bargaining game is the outcome which maximizes, lexicographically, this vectorǫ.

5In fact, kernel and prekernel coincide in our game becauseν({i}) = 0 for anyi ∈ N—indeed, the two closely-related solution
concepts coincide for anyzero-monotonic TU-game[35], and our game is one of this class.
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The nucleolus was first introduced by Schmeidler [41]. It is apoint in the kernel [41], and also part
of the core if it is nonempty. We will show later that any pointin the intersection of core and kernel must
be stable and balanced (at least for the matching and constrained games), and hence the nucleolus inherits
all the nice properties of stable and balanced solutions. Inaddition, the nucleolus is unique [17], and is in
fact characterized by a set of simple, reasonable axioms [39, 44, 34, 45] including our intuitive notion of
symmetry mentioned above.

2.3 Results

In this paper, we are primarily interested in developing natural solution concepts for our bargaining game.
We posit that such a solution concept should beintuitive, computationally tractable, andunique. Building on
prior work, we offer the set of stable solutions as an intuitive solution concept and provide a complete char-
acterization of this set based on a linear-programming interpretation of the bargaining game. The following
theorem is proved in Section 3.2.1.

Theorem 2.8. The set of all stable solutions to the network bargaining game can be constructed in polyno-
mial time.

The set of stable solutions in our game might be quite large, and so, following prior work, we propose
balanced solutions as a refinement. We first study the relationship between the stable/balanced concepts and
the core/kernel concepts from cooperative game theory. We find that, while these solutions may differ in
general, for the constrained bargaining game they exactly coincide. This provides additional motivation for
these solution concepts and additionally gives us computational insights from the cooperative game theory
literature. We prove the following theorem via Lemmas 3.4 and 3.5. and 3.2.2.

Theorem 2.9. An outcome{xi} of the constrained bipartite bargaining game is in the core if and only if it
corresponds to a stable solution({zij},M). That is,{xi} is in the core if and only if there exists a stable
solution({zij},M) such thatxi =

∑

j zij for all agentsi.

Section 3.2.2 proves the following theorem.

Theorem 2.10. An outcome{xi} of the constrained bipartite bargaining game is in the core intersect
prekernel if and only if it corresponds to a balanced solution ({zij},M). That is, {xi} is in the core
intersect prekernel if and only if there exists a balanced solution ({zij},M) such thatxi =

∑

j zij for all
agentsi.

The proofs of theorems 2.8, 2.9 and 2.10 can also be adapted tothe matching game studied by Kleinberg
and Tardos [29], enabling us to recover some of their resultsusing simple and well-known cooperative-
game-theoretic constructs; see Section 4.

Using the work of Faigle, Kern, and Kuipers [20], Theorem 2.10 implies an algorithm for computing
somebalanced solution in constrained bipartite bargaining games (as well as the matching game studied by
Kleinberg and Tardos [29]). The following theorem is provedin Section 4.1.

Theorem 2.11.There is a local dynamics6 that converges to an intersection of prekernel and core, which is
a stable, balanced solution of the KT game.

6In fact, the resulting algorithm is quite similar to the recent local dynamics proposed in Azar et al. [1].

7



v1 v2

u1 u2 u3

1
2

1
2

1
2

1
2

0

1

(a)

i

u1 u2 u3

1
2

1
2

1
2

1
21

0

v2v1

(b)

Figure 1: Reducing to matching game model via the copying idea fails.

However, the set of balanced solutions can be quite large, and not all balanced solutions are intuitive.
A unique and intuitive balanced solution is the nucleolus, motivated by its symmetry properties. Our final
result is an algorithm for computing the nucleolus in constrained bipartite bargaining games. Section 5 is
devoted to proving the theorem below.

Theorem 2.12.The nucleolus of the constrained bipartite bargaining gamecan be computed efficiently.

3 Characterizing Solution Concepts

In this section, we study the solution concepts posed in Section 2 for bipartite graphs with arbitrary capacity
constraints. We first define a polytope characterizing all stable solutions (even for non-bipartite graphs).
This demonstrates that stable solutions can be computed efficiently and hence helps us understand likely
outcomes of our game. We also use our characterization to illustrate the connection between the sets of sta-
ble/balanced solutions and the core/kernel of the corresponding cooperative game. This allows us to compute
a balanced solution by leveraging existing algorithms for finding a point in the kernel of a cooperative game.

3.1 Characterizing Stable Solutions

We begin by characterizing all stable solutions in the general network bargaining game. In order to do this,
a natural approach would be to make “ghost” copies of each node, thereby transforming the general case to
the matching case. We first demonstrate that this approach does not work even in the constrained bipartite
case.

Given a (constrained) bipartite bargaining gameG = (N = V1 ∪ V2, E), we replace each agenti ∈ N
with ci “ghost” copies. For each(i, j) ∈ E and each ghost copy ofi and ghost copy ofj, we additionally
add an edge of weightwij . Consider the example in Figure 1(a). The agents in the upperrow have capacities
two, whereas the agents in the bottom row have capacities one. All edges have weight one. The solid edges
depict a feasible set of contracts. First, we observe that the given solution is stable. We only consider the
agentsu2 andv2, since the outside options for the other agents are zero. Theprofit of the agentu2 is $1
and her outside option cannot be better than $1. On the other hand, the outside option ofv2 is zero since
his only outside option is to make an agreement withu2 whose current option has value $1. Looking at the
transformed instance in Figure 1(b), one can verify that theoutside option of agenti is 1

2 while his profit is
zero. Hence, the previously stable solution is no longer stable in this transformed instance.

Therefore, we are unable to use the existing poset-based characterization of Kleinberg and Tardos [29]
for the matching case to solve the general case. Instead, we define a linear program describing the set of op-
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timal contracts and its dual, and use these to characterize the stable solutions, thereby proving Theorem 2.8.
Our linear program is a generalization of the one used by Shapley and Shubik [42] to describe the core for
the simpler matching version of the network bargaining game. The optimal contracts can be described by
the following linear program:

maximize
∑

ij wijxij
subject to

∑

j xij ≤ ci ∀i ∈ N

0 ≤ xij ≤ 1 ∀(i, j) ∈ E(G),

(LP1)

where there is a variablexij for every edge(i, j) ∈ E. The dual of LP1 is:

minimize
∑

i uici +
∑

ij yij
subject to ui + uj + yij ≥ wij ∀(i, j) ∈ E(G)

0 ≤ yij ≤ 1 ∀(i, j) ∈ E(G)
0 ≤ ui ≤ 1 ∀i ∈ N.

(LP2)

Given an optimal pair of solutions to these LPs, we show how toconstruct a stable solution. The primal
variables indicate the set of optimal contractsM . We use the dual solution to divide the surpluswij of
the contracts inM . For each contract(i, j) ∈ M , we giveui to i, uj to j, and then divide arbitrarily the
remainingyij . Thuszij = ui + αijyij andzji = uj + (1 − αij)yij for an arbitraryαij ∈ [0, 1] (different
αij yield different stable solutions). Conversely, to convertany stable solution to a pair of optimal solutions,
we set the primal variables based on the contractM . We define the dual variables as follows: (1) for every
unsaturated vertexi, setui = 0; (2) for every saturated vertexi, setui = minj∈Ni

zij ; (3) for everyxij = 0,
setyij = 0; (4) for everyxij = 1, setyij = wij − ui − uj . To prove that these constructions work, we use
the complementary slackness conditions (see Lemmas 3.1 and3.2 below):

1. (ci −
∑

j xij)ui = 0,

2. (1− xij)yij = 0, and

3. (ui + uj + yij − wij)xij = 0.

3.2 Relating bargaining solutions to cooperative game theory solutions

Whereas the notions of stable and balanced solutions have been only recently introduced, the cooperative
game theoretic notions of core and kernel are well-studied.Hence it is interesting to relate these two seem-
ingly different notions. There is no general reason why we would expect these notions to coincide, and in
fact, as we demonstrate via an example below, they do not for the general bipartite bargaining case. Nonethe-
less, for the constrained bipartite bargaining game, we areable to prove that stable/balanced and core/kernel
do coincide. In the discussions below, we say outcome{xi} has been produced by solution({zij},M) if xi
is equal to total amount of money that agenti earns in solution({zij},M).

3.2.1 The general bipartite bargaining games

Consider the bargaining game in Figure 2, with the depicted outcome vector{xi} consisting of0.8 and
1.2 values. All the contract values are one, and the capacities of the agents are two. Let us first see that
this cannot correspond to a stable solution. The grand coalition has value8, and the edge(v2, u3) cannot
participate in any maximum feasible set of contracts. Consider the agentsv2 andu3. Each has a contract
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v1 : 0.8 v2 : 0.8 v3 : 1.2 v4 : 1.2

u1 : 1.2 u2 : 1.2 u3 : 0.8 u4 : 0.8

Figure 2: Core6⊆ Stable in unconstrained bipartite bargaining games.

from which she earns less than0.5. So, they have the incentive to cancel those contracts and sign the contract
(v2, u3) between themselves. Hence, this is not a stable outcome.

We now prove that the vector{xi} is indeed in the core of the game. The total surplus (8 dollars) is
all distributed among the agents. Coalitions of size zero orone are satisfied because their game value is
zero. No coalition of size two has value more than one, whereas they have secured at least2 ∗ $0.8 = $1.6.
Coalitions of size three secure at least$2.4 while their game value is at most two. A coalition of size four
cannot have value larger than four (one side has at most two vertices and the capacities are two. However,
any four agents obtain at least$3.2, and if the game value is indeed larger than three, it has to beeither of
the left or right four green edges, in which case the four vertices are guaranteed four dollars. Coalitions of
size 5 and 7 have values at most 4 and 6, respectively (by the same argument as the above). Such coalitions
receive$4.4 and$6.8, respectively. This leaves us to consider coalitions of size six. They are guaranteed to
receive$5.6 while their game value is no more than5; since to have more than five feasible contracts, both
sides should contain three vertices, and it is clear two vertices cannot exhaust their capacities.

The above example shows that core is not necessarily contained in the set of stable solutions, however,
we show below that for the general bipartite bargaining games, the converse is true; i.e., the set of stable
solutions is indeed a subset of the core of the game.

We first show how to use solutions to LP1 and LP2 to produce stable solutions. Later on, we prove that
all stable solutions can be obtained in this way. The following two lemmas imply Theorem 2.8.

Lemma 3.1. For every integer optimum solutionX of LP1 and every real optimum solutionY of LP2, we
can construct a set of stable solutions{({zij},M)}.

Proof. Consider an integer optimum solutionX of LP1 and a real optimum solutionY of LP2. For every
xij = 1, there will be a contract betweeni andj. HenceM = {(i, j) : xij = 1}.

To setzij, we use the dual solutionY . We first setzij = ui for everyi andj with xij = 1 andzij = 0
for everyi andj with xij = 0. We then divideyij arbitrarily betweenzij andzji. Thuszij = ui + αijyij
andzji = uj + (1− αij)yij for an arbitraryαij ∈ [0, 1] (differentαij yield different stable solutions).

Note that, by complementary slackness,(ui + uj + yij − wij)xij = 0. Soui + uj + yij = wij for
everyxij = 1. This shows we divide exactlywij betweeni andj for everyxij = 1. In order to prove
stability we should prove that no vertex has a better outsideoption. By construction any vertexi gets at least
ui in each contract. We showi cannot get more thanui from an outside option. Assumej is an outside
option for i. Thusxij = 0, and so the complementary slackness condition(1 − xij)yij = 0 implies that
yij = 0. On the other hand, by feasibility of the dual,ui + uj + yij ≥ wij . Thusui ≥ wij − uj. If j
is not saturated (i.e.,j has enough capacity to enter into another contract), then complementary slackness
condition (ci −

∑

j xij)ui = 0 implies thatuj is zero and soui ≥ wij meaning thati’s current options
are superior to a contract withj. Alternatively, if j is saturated, thenj receives at leastuj in each of his
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contracts by construction and soi can earn at mostwij − uj in a contract withj. Again, asui ≥ wij − uj,
i’s current options are superior to a contract withj, and so our solution is stable. ⊓⊔

For every integer solutionX and real solutionY of LP1 and LP2 we have constructed a setSX,Y of stable
solutions (one for each possible choice ofαij ’s). In the following lemma we prove the setS =

⋃

X,Y SX,Y

is equal to the set of all stable solutions.

Lemma 3.2. For every stable solution({zij},M), there exists an integer optimum solutionX of LP1 and
real optimum solutionY of LP2 for which({zij},M) ∈ SX,Y .

Proof. Assume({zij},M) is a stable solution of our game. If there is no agreement betweeni andj then
zij = zji = 0. If there is an agreement betweeni andj thenzij + zji = wij . First we construct an integer
solution of LP1 by settingxij = 1 if and only if (i, j) ∈ M . Next we construct a real solution of LP2.
First defineNi to be the set of verticesj such that(i, j) ∈ M . We sayi is saturated if|Ni| = ci. Now
we define the real solutions of LP2 as follows: (1) for every unsaturated vertexi, setui = 0; (2) for every
saturated vertexi, setui = minj∈Ni

zij; (3) for everyxij = 0, setyij = 0; (4) for everyxij = 1, set
yij = wij − ui − uj (note thatzij + zji = wij in this case, andui ≤ zij , anduj ≤ zji, soui + uj ≤ wij

andyij will be non-negative).
We prove the above solutions are optimum solutions for LP1 and LP2 using complementary slackness.

In the first and second steps we setui’s such that(ci −
∑

j xij)ui = 0 holds. In the third step we setyij
such that(1−xij)yij = 0 holds. By definition ofyij in the last step, we have(ui + uj + yij −wij)xij = 0.
Using complementary slackness, we can conclude that both ofour solutions are optimal for LP1 and LP2.

⊓⊔

Implicit in the above construction is that any stable solution corresponds to a maximum-weightf -factor
in the graph. With slight abuse of notation, we redefine anf -factor as any subsetE′ of edges of the graph
in which |{u|(u, v) ∈ E′}| ≤ f(v) for all v ∈ V (G). Notice that in the conventional definition, the degree
condition holds with equality.

Corollary 3.3. A network bargaining game has a stable solution if and only ifLP1 has integrality gap one
for finding a maximum-weightf -factor.

It is well-known that the condition holds true for all bipartite graphs [38]. The condition however can
be verified for any given graph to test whether the given instance has any stable solutions or not.

Lemma 3.4. For every integer optimum solutionX of LP1 and every real optimum solutionY of LP2, all
the vectors inSX,Y are in the core.

Proof. Consider an arbitrary element({zij},M) of SX,Y and assumeyij = y′ij + y′ji has been divided
betweeni andj such thati getsy′ij andj getsy′ji. Playeri earnsxi = ciui +

∑

j y
′
ij from all her contracts

since (1) she earnsui + y′ij from her contract toj, and (2) she has exactlyci contracts ifui 6= 0.
We prove thatx = (x1, . . . , xn) is in the core. First we show that the core condition holds forthe grand

coalitionN , i.e.,
∑

i xi = ν(N):
∑

i∈N

xi =
∑

i∈N

(ciui +
∑

j∈N

y′ij) =
∑

i∈N

ciui +
∑

i,j∈N

y′ij =
∑

i∈N

ciui +
∑

i,j∈N

yij

which is the value of an optimal dual solution, hence by strong duality,

= ν(N).
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Next consider a setR ⊂ N . If we write LP2 restricted to setR, it is clear that valuesui andyij, i, j ∈ R,
construct a feasible solution for this linear program. Therefore, their sum is a dual feasible solution, hence
by weak duality, at leastν(R). In other words, we have

∑

i∈R

xi =
∑

i∈R

(ciui +
∑

j∈N

y′ij) ≥
∑

i∈R

ciui +
∑

i,j∈R

y′ij =
∑

i∈R

ciui +
∑

i∈V1∩R,j∈V2∩R

yij

which is the value of a feasible dual solution restricted to vertices inR, and by weak duality,

≥ ν(R). ⊓⊔

3.2.2 The constrained bipartite bargaining game

Now we focus on the constrained case and show that stable/balanced coincides with core/kernel as promised.

Stable = Core. We already proved that an outcome{xi} produced by any stable solution({zij},M) is in
the core, even for a more general case (i.e., in the general bipartite case). Now we prove the other direction
(i.e., Core is a subset of Stable) for the constrained bipartite case. We show that for every{xi}, there is a
stable solution({zij},M) producing{xi}. In the constrained bipartite graphcj = 1 for everyj ∈ V2, and
thus given the set of contractsM , the{zij} are uniquely determined by the core outcome{xi} (for every
(i, j) ∈ M with j ∈ V2 we setzji = xj andzij = wij − xj). The crux of the problem is therefore in
choosingM and using the core inequalities to prove that the resulting solution is stable.

Lemma 3.5. Every outcome{xi} in the core is produced by some stable solution({zij},M).

Proof. Consider any optimal set of feasible contractsM . For all (i, j) ∈ M with i ∈ V1 andj ∈ V2, set
zij = wij − xj andzji = xj. We claim the solution({zij},M) is stable and produces{xi}.

In order to show our solution is feasible, we should prove that for everyj ∈ V2 eitherxj = 0 or0 < xj ≤
wij and(i, j) ∈ M . Supposexj > 0. We know thatν(N) =

∑

k∈N xk >
∑

k∈N\{j} xk ≥ ν(N \ {j}).
Thus,ν(N \ {j}) 6= ν(N) implying j participates in all maximum feasible set of contracts. Hence there
is some(i, j) ∈ M . If we remove edge(i, j), then we have a feasible solution forN \ {j}. Therefore
ν(N \ {j}) ≥ ν(N)−wij. On the other hand, we know

∑

i∈N xi = ν(N) and
∑

i∈N\{j} xi ≥ ν(N \ {j})
by core properties, which impliesxj ≤ wij. Therefore our solution is feasible.

To see that it is stable, note that the edges inM form a union of stars each of which has exactly one
vertex inV1, namely its “center”. Denote these stars byR1, . . . , Rm and their centers byr1, . . . , rm. Let
w(Rk) =

∑

j∈Rk∩V2
wrk,j be the sum of weights of edges inRk. It is clear thatν(Rk) = w(Rk) and

ν(N) =
∑

k w(Rk) =
∑

k ν(Rk). We know that{xi} is in the core, so we have: (1) for the grand coalition
N ,

∑

i∈N xi = ν(N) =
∑m

k=1w(Rk); and (2) for each starRk,
∑

i∈Rk
xi ≥ ν(Rk) = w(Rk). From this,

we can conclude that for each star,
∑

i∈Rk
xi = w(Rk) = ν(Rk). We prove no vertex inV1 wants to change

his contracts. This guarantees stability, since if a vertexof V2 prefers to change her contract to another
vertexv in V1, this implies thatv should also prefer this new contract to one of her existing contract which
is a contradiction. Consider an arbitrary vertexrk ∈ V1. We sayrk is saturated if it has exactlycrk edges
in M . There are two possibilities. Ifrk is not saturated, then consider an edge(rk, j) 6∈ M . We know that
∑

i∈Rk
xi = w(Rk) and

∑

i∈Rk∪{j}
xi ≥ ν(Rk ∪{j}) = w(Rk)+wrk,j. Thereforexj ≥ wrk,j andrk gets

zero in any contract withj. If rk is saturated, then consider an edge(rk, j) 6∈ M and an edge(rk, j′) ∈ M .
We provewrk,j

′ − xj′ ≥ wrk,j − xj and sork will not change contracts. We know
∑

i∈Rk
xi = w(Rk)

and
∑

i∈Rk∪{j}\{j′}
xi ≥ ν(Rk ∪ {j} \ {j′}) = w(Rk) − wrkj

′ + wrkj. Thereforexj − xj′ ≥ wij − wij′

implying wij′ − xj′ ≥ wij − xj. ⊓⊔
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Balanced = Kernel. Next, we prove that Stable∩ Balanced is equivalent to Core∩ Kernel. From the
discussion above, we can assume we are provided with a stablesolution ({zij},M) and associated core
outcome{xi}. The goal is to show that the solution is balanced if and only if the outcome is in the kernel.

Recall that the outcome{xi} is in kernel if and only ifsij = sji for all pairs of playersi, j. On the other
hand, a solution is balanced if and only if for any(i, j) ∈ M , zij − αi = zji − αj . We define the net gain7

of playeri after losing the contract withj ass̃ij := αi − zij and prove in the following that̃sij = sij for all
edges(i, j) ∈ M . This finishes the proof.

We show that the maximum forsij occurs necessarily at a setT such thatT = Ri′ \ {j′} ∪ {j′′} for
somei′ ∈ V1, j

′, j′′ ∈ V2 or atT = Ri′ \ {j
′} for somei′ ∈ V1, j

′ ∈ V2, whereRi′ denotes the star rooted
at i′. Clearly,T has at least one vertexi′ ∈ V1, since otherwise,ν(T ) = 0.

First suppose for the sake of reaching a contradiction that there are at least two vertices ofV1 in T ,
sayi′ = i1, i2, . . . , ik. Let M ′ be a maximum feasible set of contracts in the subgraph induced by T . M ′

partitionsV2 ∩ T into T0, T1, . . . , Tk whereTl for 1 ≤ l ≤ k should sign a contract withil ∈ V1 while
T0 will not be saturated. Clearly, we can assumeT0 = ∅, since removing it fromT does not change the
value ofν(T ) whereas it may decreasex(T ), thus increasing the expressionν(T ) − x(T ). Notice that
x({il} ∪ Tl) ≥ ν({il} ∪ Tl) for all 1 ≤ l ≤ k, because{xi} is in the core. Therefore, we get

ν(T )− x(T ) =
∑

1≤l≤k [ν({il} ∪ Tl)− x({il} ∪ Tl)]

sinceν(T ) =
∑

l

∑

j∈Tl
wil,j andν({il} ∪ Tl) =

∑

j∈Tl
wil,j,

≤ ν({i1} ∪ T1)− x({i1} ∪ T1).

Hence, we can assume we only have one vertex ofV1 in the sets we consider.
Next, assumei′ is the only vertex inV1∩T . We show that|T \{i′}| ≤ ci′ . Since no more thanci′ vertices

of T can be connected toi′ in any feasible set of contracts, there is a setT ′ ⊆ T such that|T ′ \ {i′}| ≤ ci′

andν(T ′) = ν(T ). Removing the vertices inT \T ′ does not changeν(T ), and it cannot increasex(T ). So,
we assume|T \ {i′}| ≤ ci′ .

Furthermore, we may assume there is only onej′ ∈ Ti′ \ T . We add the other vertices one at a time,
without decreasing the valueν(T ) − x(T ). Take any other vertexj1 ∈ Ti′ \ T . Add j1 to T . If ν(T )
goes up bywi′,j1, ν(T )− x(T ) cannot decrease, sincexj1 ≤ wi′,j1. However, ifν(T ) does not increase as
much, the number of edges ofi′ has to stay the same; we then remove the unique vertexj2 ∈ T \ Ti′ that
was exchanged forj1 in the maximum feasible set of contracts. The stability of the solution guarantees that
wi′,j1 − xj1 ≥ wi′,j2 − xj2 , thus this step does not decreaseν(T )− x(T ) either.

Having established the structural property, we can now prove thatsij = s̃ij. First assume thati ∈
V1, j ∈ V2. We first note that the definition ofsij := maxT∋i,T 6∋j[ν(T )− x(T )] impliessij ≥ s̃ij , since the
latter corresponds to one of the terms over which the maximization is performed:T = Ri ∪ {j′} \ {j} if i’s
outside option is nonzero, andT = Ri \ {j} otherwise. The restriction on the setsT to consider narrows
down the definition to the outside options considered fors̃ij: i has to be included and is the only vertex in
V1 ∩ T , j has to be removed, and we may add another vertexj′′ ∈ V2.

Next, consider the case ofsji. By the above arguments, we restrict ourselves to setsT ∋ i′ for some
i′ ∈ V1 \ {i}, such that at most one vertex fromRi′ is removed inT , and hence, at most one vertex is added.
The latter has to bej itself. Therefore, this precisely models the outside options of j threatened byi, and
sji = s̃ji.

7In fact, it is more intuitive to define the net loss (which is equal to−s̃ij in our notation), however, we define the gain to be
consistent with the actual definition ofsij .
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4 Kleinberg-Tardos Matching Game

In this section, we consider the matching game studied by Kleinberg and Tardos [29] (KT-model). As a main
result, Kleinberg and Tardos give a combinatorial characterization of stable outcomes which are balanced.
Here, we present an economic characterization. Note that though the graph is a general network and not
necessarily a bipartite graph, the capacity constraints onthe agents are one. Thus the approach here, which
is a special case of our more general approach in the rest of the paper, is much simpler and more intuitive
for this setting.

Since the parameters and definitions are much simpler in matching game, we re-state them for the sake
of better intuition. We model market structure as a networkG = (V,E) and each edgee = (i, j) ∈ E(G)
has valuewe which can be divided unequally amongi andj and each agenti is allowed to participate in at
most one contract. The outcome of the game is a matchingM and a vectorx ∈ RN , wherexi is the income
of agenti (from its sole contract, if any). The outside optionαi is simplymaxj{w(i,j) − xj : (i, j) 6∈ M};
we take the maximum to be0 over an empty set. An outcome is stable if for alli, xi ≥ αi, and is balanced
if for all pair (i, j) ∈ M we havexi − αi = xj − αj . For everyS ⊆ V (G), ν(S) is equal to the size of
a maximum-weight matchingMS in the induced subgraphG[S] (as Kleinberg and Tardos [29] also point
out it is very easy to see that a matching in a stable outcome must be a maximum-weight matching.). The
definitions of core, the power of an agent with respect to another agent, prekernel, and excess are exactly
those in Definitions 2.5- 2.6.

First we consider the core and simplify its first condition asfollows: for all edgese = (i, j), xi +
xj ≥ we. Note that though this condition is weaker, indeed it is equivalent: for a setS for all edges
e = (i, j) ∈ MS , xi + xj ≥ we and thus

∑

i∈S xi ≥ ν(S). Next, we consider the power of agenti
with respect to agentj and simplify it as follows:sij = max {wik − xi − xk : (i, k) ∈ E(G), k 6= j}, we
take the maximum to be−xi over an empty set. Again though this condition is weaker (sayby taking all
S = {i, k} : (i, k) ∈ E(G)), indeed it is equivalent since in any (non-empty) maximum matchingMS , each
edgee = (i′, j′) ∈ MS contributeswe to ν(S) and at leastwe to

∑

k∈S xk sincexi′ + xj′ ≥ we and thus
they cannot be of any help.

Now we are ready to prove two main theorems of this section relating stable and balanced with core and
prekernel.

Theorem 4.1. An outcome(M,x) is stable if and only if payoff vectorx is in the core.

Proof. We use the strong duality theorem and complementary slackness conditions to prove the lemma.
First we prove if outcome(M,x) is stable thenx is in the core. First we consider the second condition of
the core. Since by definition

∑

i∈N xi = wM , wherewM =
∑

e∈M we, we only need to prove thatM is a
maximum-weight matching. First we consider the following LP and its dual.

minimize
∑

i xi
subject to xi + xj ≥ we ∀(i, j) ∈ E(G)

xi ≥ 0 ∀i ∈ V (G)
(LP3)

maximize
∑

eweye
subject to

∑

j:e=(i,j)∈E(G) ye ≤ 1 ∀i ∈ V (G)

ye ≥ 0 ∀e ∈ E(G)

(LP4)

Note thatx andM (i.e., ye = 1 if e ∈ M , andye = 0 otherwise) are feasible solutions for LP3 and
LP4. Sinceν(V (G)) =

∑

k∈V (G) xk = wM , by the strong duality theorem we can conclude thatM is
a maximum-weight matching. Now we consider the aforementioned first simplified condition of the core.
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Consider an edgee = (i, j). Fore ∈ M we havexi+xj = we by the definition of an outcome. Fore 6∈ M ,
by the definition of an outside option,αi ≥ we − xj , and by the definition of stable,xi ≥ αi, which results
in xi + xj ≥ 1 as desired.

Next we prove there is a stable solution(M,x) with respect to any vectorx in core. We prove this by
showing a maximum matchingM for which for all e = (i, j) ∈ M , xi + xj = we. Note thatx is feasible
solution for the LP3. Consider any maximum-weight matchingM and setye = 1 if e ∈ M , andye = 0
otherwise. Thusy is a feasible solution for the dual LP4. Sinceν(V (G)) =

∑

k∈V (G) xk = |M |, by the
strong duality theoremx andy are optimum solutions of LP1 and its dual LP4. By complementary slackness
conditionsye(xi + xj − we) = 0, for eache = (i, j). It means ifye > 0, i.e.,e ∈ M , thenxi + xj = we,
as desired. ⊓⊔

Indeed the proof of Theorem 4.1 gives a characterization of graphs with a non-empty set of stable
outcomes.

Corollary 4.2. A graph has non-empty core (and thus has a stable outcome) if and only if LP3 has integrality
gap 1 for finding a maximum-weight matching.

Note that it is well-known that LP3 has integrality gap 1 for bipartite graphs and thus for bipartite graphs
always we have non-empty cores. On the other hand, it is well-known that if we add the following condition
∑

e∈G[S] ye ≥ ⌈ |S|−1
2 ⌉ for all subsetsS ⊆ V (G), then the integrality gap of LP3 is 1 for all graphs [38].

Finally, we prove the following theorem.

Theorem 4.3. An outcome(M,x) is stable and balanced if and only if the payoff vectorx is in the inter-
section of core and prekernel.

Proof. By Theorem 4.1, we know that an outcome(M,x) is stable if and only if vectorx is in the core. In
addition, according to its proof, we can always construct a maximum matchingM corresponding to a vector
x in the core. We now prove if(M,x) is balanced thenx is in the prekernel set. For two agentsi andj we
consider two cases.

1. (i, j) ∈ M : Indeed the samek 6= j which maximizeswik − xi − xk in the aforementioned simplified
definition ofsij should maximizeαi too. Similarly, the samek′ 6= i which maximizeswjk′ − xj −
xk′ in the aforementioned simplified definition ofsji should maximizeαj too. Thus the balanced
conditionxi − αi = xj − αj impliesxi − wik + xk = xj − wjk′ + xk′ which impliessij = sji.

2. (i, j) 6∈ M : Now if there is ak such that(i, k) ∈ M , thensij ≥ wik − xi − xk = 0. Sincex is in
the core,sij ≤ 0 and thussij = 0. If there is no suchk, xi = 0. Consider any edge(i, k) ∈ E(G),
k 6= j. If there is no suchk, thensij = 0 by the definition. Otherwise sincexi = 0, xk = wik. Thus
sij ≥ wik − xi − xk = 0, which again impliessij = 0 sincex is in the core. Thussij = 0. Similarly
sji = 0 and thussij = sji as desired.

Finally, we prove ifx is in the prekernel thenx with its corresponding matchingM is balanced. By the
definition of prekernel, for every edgei, j ∈ V (G) we know thatsij = sji. For an edge(i, j) ∈ M , by the
simplified definitionsij, sij = αi − xi. Similarly sji = αj − xj . Thussij = sji impliesxi −αi = xj −αj

and thus(M,x) in a balanced outcome. ⊓⊔

Kleinberg and Tardos [29] via a combinatorial proof establish the following main theorem of their paper.

Theorem 4.4. If a graphG has a stable outcome, then it has a balanced outcome, and the set of all balanced
outcomes can be constructed in polynomial time.
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Indeed the proof of Theorem 4.4 follows simply from Theorem 4.3 and the known economic fact that if
the core is non-empty (i.e., there is a stable outcome), the core intersection prekernel is non-empty (in this
case the nucleolus is in the intersection of core and prekernel [41]). Constructibility simply follows because
of constructibility of core intersection prekernel [21, 35] for this special case of a cooperative game.

To compute a point in the prekernel, Faigle et al. [21] only need an oracle that computessij(x) given any
vectorx (which is trivial in our case). The approach is a local searchthat converges to a point in the preker-
nel. They begin with a pointx in the core, and so long as there are playersi, j for whomsij(x) < sji(x),

a transfer ofsji(x)−sij(x)
2 is made fromi to j. This idea is generally attributed to Maschler, but Stearns[47]

was the first one to propose a transfer scheme with provable convergence. His scheme always performs a
transfer involving playersi, j with the minimalsij, and among all such possibilities, he picks a pair which
maximizes the transfer amount. To prove convergence, one strategy is to show the total amount of transfers
is bounded—this is done via a potential function approach. Some more work is required to show the local
search procedure converges to a point in the prekernel. The number of steps, though, need not be polyno-
mially bounded (or even finite). To guarantee this property,Faigle et al. [21] suggest alternating between
transfer steps and a linear programming-based move. An LP move comes after eachO(n2) transfers, which
removes forever at least one pair from the set of players involved in the transfers.

Meinhardt [35] gives an LP-based algorithm that can find (almost) the entire prekernel in certain cases
including the games we consider. They show how to find the prekernel via a sequence of LPs. In other words,
their main contribution is a way to compress the transfer phases between the LP moves of the previous
algorithm. He also presents a single linear program for finding one point of the prekernel.

4.1 Local dynamics for finding a balanced solution

This section proves Theorem 2.11. Stearns proposes a convergent scheme to find the prekernel in certain
classes of cooperation games. Recall thatsij := minS⊆N\{j},i∈S{x(S)− ν(S)} for any two verticesi and
j.

Theorem 4.5([47]). Provided that thesij vector is computable for a given bargaining game, there is a
local scheme whose output converges to a point in the intersection of the prekernel and the least-core.

Indeed, Faigle et al. [20] improve on this algorithm and makeit run in polynomial time. We show how to
apply this convergent scheme to our constrained bipartite bargaining game, in effect reproducing the result
of [1]. The main task is showing that we can compute thesij vector. Unfortunately, as in [1], we are unable
to prove that the resulting dynamics converge in polytime.

Lemma 4.6. Given a graphG, the degree upper boundscv, verticesi, j, and a vectorx in the core of the
game, we can computesij in polynomial time for the matching game, as well as for the constrained bipartite
bargaining game.

Before starting to prove this lemma, we notice that Theorem 2.11 is immediate from Lemma 4.6 and
Theorem 4.5.8 The resulting algorithm is quite similar to what Azar et al. [1] recently suggested for this
problem. One advantage of our result, though, is that we do not need to have a maximum-weight matching
to carry out the procedure. Unlike the recent work, our algorithm is able to find the profit vectorxi for all

8The assumption thatx is in the core does not hurt the generality of the approach since it is easy to find a core solution. There
are even local dynamics finding it. In addition, the convergence algorithm has the property that it always gives a core solution to
thesij subroutine.
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the agents without the knowledge of any matching. However, one should note that producing the actual
contracts is an inevitable part of describing the outcome ofthe bargaining game.

Proof of Lemma 4.6.We first prove the result for the matching game. The algorithmcomputes the value of
x(S)− ν(S) for all setsS : i ∈ S, j 6∈ S such that|S| ≤ 2, and outputs their minimum value.

Let θ denote the output of our solution, and letS∗ be aminimal optimal set in the definition ofsij.
Clearly, sij ≤ θ. Let E′ ⊆ E denote a maximum matching ofS. Sincex is in the core, we havexu +
xv − wuv ≥ 0 for any edge(u, v) ∈ E′. Thus we can remove any edges not incident oni from E′ without
increasing the value of the set. Suppose we end up with a matching E′′. There is at most one edge inE′′.
Let S′′ be the endpoints of this edge if there is any, or the vertexi otherwise. We knowθ ≤ x(S′′)− ν(S′′)
since|S′′| ≤ 2.

Now we provide the proof for the case of the constrained bipartite game: suppose the vertices are
partitioned intoV1 andV2 and degree bound of all the vertices inV2 is one. A similar argument shows it
is sufficient to consider all the connected graphs that have only one vertex fromV1. We look at an optimal
f -factor in an optimal setS. Then we only consider the connected component containingi since all the
other components can be removed without increasing the value of the set; this follows from membership of
x in the core.

These structures do not have a constant size, so simple enumeration does not give a polynomial time
bound.

Supposei ∈ V1. Sort all the other verticesj′ in increasing order ofx({j′}) − wij′ . We can ignore any
vertexj′ for which this parameter is not negative. Among the remaining vertices, we pick the bestci vertices
or simply all the vertices ifci is larger than their count. It is easy to see this gives the best solution.

If i ∈ V2, we guess a vertexj′ ∈ V1 as the “center” of the star. The rest of the argument is similar to
the above paragraph except that we have to include vertexi in the star. Another alternative is to consider
the singleton set{i}. This shows that we can computesij in polynomial time for the constrained bipartite
game. ⊓⊔

5 Finding the Nucleolus

In this section we propose an algorithm to find the nucleolus for our constrained bipartite bargaining game in
polynomial time. Previous works [28, 46, 20] show how to compute the nucleolus via an iterated LP-based
algorithm, and we also adopt this approach. The main complication in applying this algorithm is that the
natural LP does not have polynomial size, and hence we must prune it without sacrificing the correctness of
the algorithm.

We describe this general approach as it applies to our setting. As the core is not empty in our con-
strained bipartite bargaining game (see Section 3), the nucleolus will be in the core. Hence, our task is
to search for a core outcome{xi} which maximizes the lexicographically-sorted sequence ofset excesses
ǫ = (ǫS1

, . . . , ǫS
2N

); see Definition 2.7. We proceed iteratively. In each iteration, we search for the “next”
elementǫSi

of ǫ by solving a linear program whose objective definesǫSi
. In doing so, we must be careful

to constrain certain variables appropriately such that thecomputations of previous iterations carry through.
As there are exponentially many elements of the vectorǫ, we cannot simply introduce an equality for each
element that we wish to fix. Rather, we show how to construct a polynomially-sized set of “representatives”
and argue that these suffice to describe the excesses of sets fixed in all previous iterations.
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5.1 LP formulation

We begin by introducing a linear program that defines the excesses. This LP will have exponential size; we
will show how to prune it in later sections. Consider the firstiteration. In this iteration, we want to find
a core outcome with the largest smallest excess. That is, we must maximizeαk, the excess, subject to (1)
∑

i∈T xi ≥ ν(T )+αk for all non-emptyT ⊂ N (all sets have excess at leastαk), and (2)
∑

i∈N xi = ν(N)
(x is in the core).

After solving this LP, we will have fixed some of the excesses in our solution. In all following iterations,
we must make sure that the excesses fixed in this iteration remain unchanged. In order to do this, we
introduce additional inequalities. LetFk denote the set of sets for whichǫSi

= αk, andF∗
k =

⋃k
i=1 Fi.

Clearly, the excess of sets inF∗
k must remain constant. This requirement implies conditionson the values

of x which in turn may force the excesses of additional sets to be fixed. For example, given two setsT1 and
T2 in F∗

k and a third setT3 for which ǫT3
= ǫT1

+ ǫT2
, thenT3 has excess fixed to2αk althoughT3 is not

in F∗
k . We letF+

k denote the set of sets whose excess is fixed by iterationk. Note thatF+
k is a superset of

F∗
k asF+

k contains any set which has been fixed using fixed values for sets inF∗
k . In order to find the next

excess values, we must now solve the following LP.

maximize αk

subject to
∑

i∈T xi = ν(T ) + αj ∀j < k,∀T ∈ Fj
∑

i∈T xi ≥ ν(T ) + αk ∀T ⊆ N,T 6∈ F+
k−1, T 6= N,T 6= ∅

∑

i∈N xi = ν(N)
xi ≥ 0 ∀i ∈ N,

(LP5)

where the first inequality guarantees that the sets inF+
k remain fixed, and the second inequality is only

written for unfixed sets (note that fixed sets might really violate this inequality).

5.2 Solving the LP

Our proposed algorithm is to iteratively solve a sequence ofLPs defined by LP5. As has been observed
previously, this algorithm will have at mostn iterations [20]. In each iteration, at least one inequalitygoes
tight, and as the core consists ofn variables,n equalities suffice to define it.

The main technical difficulty we face is that the size of our LP5 is exponential. In this section, we
show how to prune our LP in each iteration to get an LP of polynomial size. Consider an arbitrary set
of optimal contractsM in our network. Note that as we discussed in Section 3, any outcome in the core
(including nucleolus) can construct a stable solution withthis optimalM . Note that, as we are considering
the constrained bipartite bargaining game, the set of edgesin M is simply a union of stars, each of which
has its center vertex inV1 and the remaining vertices inV2. We denote these stars byR1, . . . , Rm, and their
centers byr1, . . . , rm. We will call edges inM “green” edges and the remaining edges in the graph “black”
edges. Recall that the vertices inV2 all have capacity one. We now prune LP5 by eliminating all inequalities
involving any setT for which

1. T has more than1 vertex inV1: |T ∩ V1| > 1 (Lemma 5.1);

2. some vertexi ∈ T ∩ V1 has degree greater thanci + 1 (Lemma 5.2);

3. some vertexi ∈ T ∩ V1 has degree equal toci + 1 and≥ 3 black edges, or degree at mostci and≥ 2
black edges (Lemma 5.3); or

4. some vertexi ∈ T ∩ V1 has at mostci − 2 green edges (Lemma 5.4).
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Before giving a precise proof of the above claim, let us develop some intuition into the idea. Suppose
we want to prove that we could ignore a setT . We look for some setsT1, ..., Tm and proveǫ(Ti) ≤ ǫ(T ),
for every1 ≤ i ≤ m. So everyTi has been fixed beforeT (or at the same time). Now if we prove we can
write ǫ(T ) asλ1ǫ(T1)+ ...+λmǫ(Tm)+λ, then we can show it causes no harm to ignoreT in LP5. In fact,
if all the setsTj : 1 ≤ j ≤ m have been fixed at some timet ≤ k, then we haveT ∈ F+

t .
Because of properties one and two above, we only need to consider sets which have one vertex inV1

and at mostci + 1 vertex inV2. By property two, we know that among these sets we should consider those
which have at most two black edges (that we can try all). Note that however still the number of such sets can
be exponential, since they can have any subset of green edgesplus zero, one, or two black edges. Property
four indeed restricts the number of excluded green edges to at most two (that again we can try all). As a
result, only a polynomial number of sets remain. Therefore,the linear program can be solved in polynomial
time and we are done with the proof of Theorem 2.12.

Lemma 5.1. In solving LP5 we can ignore any setT which has more than one vertex inV1.

Proof. Consider a setT ∈ Fk, and suppose it has more than one vertex inV1, sayr1, ..., rp. Run LP1 for
the graph induced byT and find a solution corresponding toν(T ). LetxTi denote the sum of the weights of
green edges connected tori in the optimum solution of LP1 forT . Also callri with all its green edgesRT

i .
We know thatν(T ) = xT1 + · · ·+ xTp andν(RT

i ) = xTi . Therefore, we haveǫ(T ) = ǫ(RT
1 ) + · · ·+ ǫ(RT

p ).
Nonnegativity of the excess values implies thatRT

i has been fixed beforeT or at the same time for every
i : 1 ≤ i ≤ p. So if we ignoreT we could solve LP5 and we haveT ∈ F+

k . In fact if all RT
i sets have been

fixed at timet ≤ k, we can computeǫ(T ) based on equationǫ(T ) = ǫ(RT
1 ) + · · · + ǫ(RT

p ) . Therefore,
T ∈ F+

t . ⊓⊔

Lemma 5.2. In LP5 we can ignore any setT with exactly one vertexi in V1 whose degree inT is larger
thanci + 1.

Proof. Consider a setT ∈ Fk with oneV1 vertex, sayi, that has edges tom > ci + 1 vertices ofT ∩ V2,
sayj1, . . . , jm, as shown in Figure 3. Assumewi,jk ≥ wi,jk′

for every1 ≤ k < k′ ≤ m. We know that
ν(T ) = ν(T \ {jl}) =

∑ci
k=1wi,jk for everyl > ci. Therefore, for everyl > ci, ǫ(T ) ≥ ǫ(T \ {jl}). Let

T ′ = T \ {jci+1, . . . , jm}. It is clear thatν(T ′) = ν(T ) =
∑ci

k=1wi,jk and soǫ(T ′) ≤ ǫ(T ). Thus, the
values ofT \{jl} andT ′ have been fixed beforeT or at the same time. Suppose setsT \{jl} for all l : l > ci
andT ′ have been fixed at timet ≤ k. It is now sufficient to show thatǫ(T ) can be inferred from looking at
ǫ(T \{jl}) andǫ(T ′) values to proveT ∈ F+

t . By adding up all the equationsǫ(T \{jl}) =
∑

i∈T\{jl}
xi−

ν(T ) for l > ci, we get
∑m

l=ci+1 ǫ(T \ {jl}) = (m− ci)
∑

i∈T xi −
∑m

l=ci+1 xjl − (m− ci)ν(T ). In fact,
we can writeǫ(T ) asǫ(T ) =

∑

i∈T xi − ν(T ) = 1
m−ci−1

(
∑m

l=ci+1 ǫ(T − {jl})− ǫ(T ′)
)

. Therefore we
can findǫ(T ) based on already-fixed values ofǫ(T − {jl}) for everyl > ci andǫ(T ′). ⊓⊔

Lemma 5.3. In solving LP5 we can ignore any setT with exactly one vertexi in V1 if

• degree ofi in T is at leastci + 1 and it has at least3 black edges, or

• degree ofi in T is at mostci and it has at least2 black edges.

Proof. Consider a setT ∈ Fk with {i} = T ∩ V1 fitting the description in the statement of the lemma.
We can prove the statement using Lemma 5.2 if degree ofi in T is greater thanci + 1. Suppose thus that
the degree ofi in T is dTi ≤ ci + 1, andi hasm1 black edges to verticesj1, . . . , jm1

in T , andi hasm2
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j1 jci jm. . . . . .

Figure 3: Degree ofi is greater thatci + 1

i

k1 km3

. . . i1 im2
j1 jm1

. . . . . .

Tl

T

Figure 4: Vertexi with at least2 black edges

green edges to verticesi1, . . . , im2
in T , andi hasm3 green edges to verticesk1, . . . , km3

in V2 \ T ; refer
to Figure 4. Letν(T ) be equal to

∑

t∈Tl
wit. Note that ifdTi ≤ ci thenTl = T \ {i}. There are at least two

black edges inTl, becausem1 ≥ 2 (see the statement of the lemma). On the other hand, ifdTi = ci + 1
thenTl = T \ {i, l} wherel ∈ T ∩ V2 has the minimum weight edge toi among all vertices ofT ∩ V2. We
know thatm1 ≥ 3 in this case. So there are at least two black edges inTl in this case too. Without loss of
generality, call these two black edges(i, j1) and(i, j2). Now we have two cases to consider:

Vertex i is used up to its capacity: In this case, we know thatm2 +m3 = ci andm1 +m2 = dTi , which
imply m3 = m1+ci−dTi . Thereforem3 ≥ 2 for dTi ≤ ci. But if dTi = ci+1, we havem1 ≥ 3 which
givesm3 ≥ 2. So, we havem3 ≥ 2 in both cases. LetT ′ = T ∪{k1}\{j1}. We proveǫ(T ′) ≤ ǫ(T ).
First, note thatν(T ) =

∑

h∈Tl
wih. On the other hand, we have a solution

∑

h∈Tl−{j1}∪{k1}
wih for

ν(T ′) which impliesν(T ′) ≥
∑

h∈Tl∪{k1}\{j1}
wih. So we have

ǫ(T )− ǫ(T ′) = xj1 − xk1 − ν(T ) + ν(T ′)

≥ xj1 − xk1 − wij1 + wik1 .

We know that(i, k1) is a green edge and(i, j1) is a black edge, thus,i prefers to have an agreement
with k1 instead ofj1. Hence, we concludewik1 −xk1 ≥ wij1 −xj1 implying ǫ(T ′) ≤ ǫ(T ). The same
arguments hold for setsT ′′ = T ∪ {k2} \ {j2} andT ∗ = T ∪ {k1, k2} \ {j1, j2}, and we can prove
ǫ(T ′′) ≤ ǫ(T ) andǫ(T ∗) ≤ ǫ(T ). Thus, all setsT ′, T ′′ andT ∗ have been fixed beforeT at some time
t ≤ k. We now show we can computeǫ(T ) based onǫ(T ′), ǫ(T ′′) andǫ(T ∗). Note that

ǫ(T ′) + ǫ(T ′′)− ǫ(T ∗) + ν(T ′) + ν(T ′′)− ν(T ∗)− ν(T ) =
∑

h∈T ′

xh +
∑

h∈T ′′

xh −
∑

h∈T ∗

xh − ν(T ) =
∑

l∈T

xl − ν(T ) = ǫ(T ).

Therefore,T ∈ F+
t can be ignored in the LP computation.
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Vertex i does not exhaust its capacity:Consideri with all its green edges in the graph. Let us name this
setRi. Becausei is not saturated, we haveν(Ri ∪ {j1}) = ν(Ri) + wij1. On the other hand, from
the core constraints, we have

∑

l∈Ri∪{j1}
xl ≥ ν(Ri) + wij1 =

∑

l∈Ri
xl + wij1 ,9 and so we know

xj1 ≥ wij1. LetT ′ = T \{j1}. It is clear thatν(T ) =
∑

h∈Tl
wih. Sincej1 ∈ Tl we can conclude that

ν(T ′) ≥
∑

h∈Tl
wih−wij1 = ν(T )−wij1 . Thereforeǫ(T ′)−ǫ(T ) ≤

∑

h∈T ′ xh−
∑

h∈T xh+wij1 =
wij1 − xj1 ≤ 0, which meansǫ(T ′) ≤ ǫ(T ). AssumeT ′′ = T − {j2} andT ∗ = {j1, j2}. With the
same argument, we can proveǫ(T ′′) ≤ ǫ(T ) andǫ(T ∗) ≤ ǫ(T ). So all setsT ′, T ′′ andT ∗ has been
fixed beforeT at some timet ≤ k. To computeǫ(T ) based onǫ(T ′), ǫ(T ′′) andǫ(T ∗), notice that

ǫ(T ′) + ǫ(T ′′)− ǫ(T ∗) + ν(T ′) + ν(T ′′)− ν(T ∗)− ν(T ) =
∑

h∈T ′

xh +
∑

h∈T ′′

xh −
∑

h∈T ∗

xh − ν(T ) =
∑

l∈T

xl − ν(T ) = ǫ(T ).

This concludes the proof of this case, as well as the lemma. ⊓⊔

Lemma 5.4. To solve LP5, it does not cause any harm to ignore a setT with exactly one vertex inV1

excluding at least2 green edges.

Proof. Consider a setT ∈ Fk with {i} = T ∩ V1 fitting the description of the lemma. We can apply
Lemma 5.2 if the degree of vertexi is greater thatci + 1. Moreover, if the degree of vertexi is ci + 1 or
ci and excludes at least2 green edges, Lemma 5.3 can be invoked. So suppose the degree of vertex i is at
mostci − 1. We first show thatxj ≤ wij for every green edge(i, j). Consider vertexi with all its green
edges and call this setR. We know from the discussion of Section 3.2 that

∑

l∈R xl = ν(R). If we remove
a green edge(i, j) from R, we have

∑

l∈R\{j} xl ≥ ν(R \ {j}) = ν(R)− wij. Soxj ≤ wij . Consider the

setT . BecausedTi ≤ ci − 1, ν(T ) =
∑

l∈T∩V2
wil. Also there are at least two green edges(i, j1) and(i, j2)

which are not inT as shown in Figure 5. Now there are two possibilities:

• Degree of vertexi it less thatci − 1: ConsiderT1 = T ∪ {j1} andT2 = T ∪ {j2}. Degree ofi in T1

andT2 is at mostci − 1, so we haveν(T1) =
∑

l∈T1∩V2
wil andν(T1) =

∑

l∈T2∩V2
wil. Our goal is

to proveǫ(Tq) ≤ ǫ(T ) for q = 1, 2.

ǫ(Tq)− ǫ(T ) =
∑

l∈Tq

xl −
∑

l∈Tq∩V2

wil −
∑

l∈T

xl +
∑

l∈T∩V2

wil = xjq −wijq .

But we know that(i, jq) is a green edge and we have proved thatxjq ≤ wijq in this case, which
means thatǫ(Tq) ≤ ǫ(T ). Degree ofi is at mostci in the setT3 = T ∪ {j1, j2}. Therefore, the same
arguments hold for the setT3 and we can proveǫ(T3) ≤ ǫ(T ). Therefore,Tq has been fixed beforeT
for 1 ≤ q ≤ 3. Suppose allTq has been fixed at timet ≤ k. We also have

ǫ(T ) = ǫ(T1) + ǫ(T2)− ǫ(T3) + ν(T1) + ν(T2)− ν(T3) + ν(T ).

Hence, the value ofǫ(T ) has been fixed at a timet when all valuesǫ(T1), ǫ(T2) andǫ(T3) have been
fixed. Thus,T ∈ F+

t .

• Degree of vertexi is exactlyci−1. Becausei excludes at least2 green edges(i, j1) and(i, j2), it has at
least one black edge tob. Note that ifi has more than one black edges, we can use Lemma 5.2 to solve
the problem. So assumei has exactly one black edge; see Figure 5. Observe that if it has no black

9For the equality, see Section 3.
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j1 j2 i1 im2
b. . .

T

Figure 5: Vertexi without at least2 green edges

edges, it should have all its green edges inT except at most one, which is in contradiction with the
lemma’s statement. Consider the setsT1 = T ∪{j1}\{b}, T2 = T ∪{j2}, andT3 = T ∪{j1, j2}\{b}.
Because(i, j2) is a green edge, we havexj2 ≤ wij2 , which givesǫ(T2) ≤ ǫ(T ). On the other hand,
we know that(i, b) is a black edge and(i, j1) is a green edge, implying thati prefers to have an
agreement withj1 instead ofb. Thus,wij1 −xj1 ≥ wib−xb. Let us now compute valuesǫ(T1)− ǫ(T )
andǫ(T3)− ǫ(T2):

ǫ(T1)− ǫ(T ) = xj1 − wij1 − xb + wib ≤ 0

ǫ(T3)− ǫ(T2) = xj1 − wij1 − xb + wib ≤ 0.

We conclude that all these sets have been fixed beforeT . Now we show that if all these sets have
been fixed at some timet ≤ k, thenT ∈ F+

t . To prove this result, we writeǫ(T ) in terms of values
ǫ(T1),ǫ(T2), andǫ(T3). First let us write all excesses in this form:

ǫ(T ) =
∑

w∈T

xw − ν(T )

ǫ(T1) =
∑

w∈T

xw + xj1 − xb − ν(T1)

ǫ(T2) =
∑

w∈T

xw + xj2 − ν(T2)

ǫ(T3) =
∑

w∈T

xw + xj1 + xj2 − xb − ν(T3),

to deriveǫ(T ) = ǫ(T1) + ǫ(T2)− ǫ(T3) + ν(T1) + ν(T2)− ν(T3)− ν(T ). This finishes the proof of
T ∈ F+

t . ⊓⊔
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