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Naturally occurring networks exhibit quantitative features reveal-
ing underlying growth mechanisms. Numerous network mecha-
nisms have recently been proposed to reproduce specific proper-
ties such as degree distributions or clustering coefficients. We
present a method for inferring the mechanism most accurately
capturing a given network topology, exploiting discriminative
tools from machine learning. The Drosophila melanogaster protein
network is confidently and robustly (to noise and training data
subsampling) classified as a duplication–mutation–complemen-
tation network over preferential attachment, small-world, and a
duplication–mutation mechanism without complementation. Sys-
tematic classification, rather than statistical study of specific prop-
erties, provides a discriminative approach to understand the design
of complex networks.

machine learning � systems biology � motifs � classification � evolution

Recent research activity in biological networks has often
focused on understanding the emergence of specific features

such as scale-free degree distributions (1–3), short mean geo-
desic lengths, or clustering coefficients (4). The insights gained
into the topological patterns have motivated various network
growth and evolution models to determine what simple mech-
anisms can reproduce the features observed. Among these are
the preferential attachment model (3, 5), exhibiting scale-free
degree distributions, and the small-world model (4), exhibiting
high clustering coefficients despite short mean geodesics. Ad-
ditionally, various duplication–mutation mechanisms have been
proposed to describe biological networks (6–11) and the World
Wide Web (12). However, in most cases model parameters can
be tuned such that multiple models of widely varying mecha-
nisms perfectly fit the motivating real network in terms of single
selected features such as the scale-free exponent and the clus-
tering coefficient (compare Fig. 1). Because networks with
several thousands of vertices and edges are highly complex, it is
also clear that these statistics can capture only limited structural
information.

Here, we make use of discriminative classification techniques
recently developed in machine learning (13, 14) to classify a
given real network as one of many proposed network mecha-
nisms by enumerating local substructures. Determining what
simple mechanism is responsible for a natural network’s archi-
tecture (i) facilitates the development of correct priors for
constraining network inference and reverse engineering (15–18);
(ii) specifies the appropriate null model relative to which one
evaluates statistical significance (19–29); (iii) guides the devel-
opment of improved network models; and (iv) reveals underlying
design principles of evolved biological networks. It is therefore
desirable to develop a method to determine which proposed
mechanism models a given complex network without prior
selection of features or null models.

Enumeration of subgraphs has been successfully used in the
past few years to find network motifs (19, 20, 23–29) and is
historically a well established method in the sociology commu-
nity (30–32). Recently, the idea of clustering real networks based
on their ‘‘significance profiles’’ has been proposed (33). The

method assesses significance of given subgraphs relative to an
assumed null model, generated by Monte Carlo sampling of
networks with a degree distribution identical to that of the net-
work of interest. The significance profiles are then shown to be
similar for various groups of naturally occurring networks.

Both clustering and assessing statistically significant motifs
can be characterized as schemes to identify reduced-complexity
descriptions of the networks. We here present an approach that
is instead predictive, using labeled graphs of known growth
mechanisms as training data for a discriminative classifier. This
classifier, then, presented with a new graph of interest, can
reliably and robustly predict the growth mechanism that gave rise
to that graph. Within the machine learning community, such
predictive, supervised learning, techniques are differentiated
from descriptive, unsupervised learning, techniques such as
clustering.

We apply our method to the recently published Drosophila
melanogaster protein–protein interaction network (34) and find
that a duplication–mutation–complementation (DMC) mecha-
nism (6) best reproduces Drosophila’s network. The prediction is
robust against noise, even after random rewiring of up to 45%
of the network edges. To validate, we also show that beyond 80%
random rewiring the correct (Erdös–Rényi) classification is
obtained.

Methods
The Data Set. We use a protein–protein interaction map based on
yeast two-hybrid screening (34). Because the data are subject to
numerous false positives, Giot et al. (34) assign a confidence
score P � [0, 1], measuring how likely the interaction occurs in
vivo. To exclude unlikely interactions and focus on a core
network that retains significant global features, we determine a
confidence threshold p* based on percolation: measurements of
the size of the components for all possible values of p* show that
the two largest components are connected for p* � 0.65 (see the
supporting information, which is published on the PNAS web
site). Edges in the graph correspond to interactions for which p �
p*. To reveal possible structural changes in Drosophila for less
stringent thresholds, we also present results for p* � 0.5 as
suggested in ref. 34. We remove self-interactions from the
network because none of the proposed mechanisms allow for
them. After eliminating isolated vertices the resulting networks
consist of 3,359 (4,625) vertices and 2,795 (4,683) edges for p* �
0.65 (0.5).

Network Mechanisms. We generate 7,000 graphs, 1,000 for each of
seven different models drawn from the literature, as training
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data. Every graph is generated with the same number of edges
and number of vertices as measured in Drosophila; all other
existing parameters are sampled uniformly (see supporting
information). The models, many of which were explicitly in-
tended to model protein interaction networks, manifest various
simple network growth mechanisms. As an example, the DMC
algorithm (6) is inspired by an evolutionary model of the genome
(35, 36) proposing that most of the duplicate genes observed
today have been preserved by functional complementation. If
either copy of the gene loses one of its functions (edges), the
other becomes essential in ensuring the organism’s survival.
There is thus an increased preservation of duplicate genes
induced by null mutations. The algorithm features a duplication
step followed by mutations that preserve functional complemen-
tarity. At every iteration one chooses a vertex v at random. A
twin vertex vtwin is then introduced, copying all of v’s edges. For
each edge of v, one deletes with probability qdel either the
original edge or its corresponding edge of vtwin. The twins
themselves are conjoined with an independent probability qcon,
representing an interaction of a protein with its own copy. Note
that no new edges are created by mutations. The DMC mech-
anism thus assumes that the probability of creating new advan-
tageous functions by random mutations is negligible.

A slightly different implementation of duplication–mutation is
realized in ref. 7 by using random mutations (DMR). Possible
interactions between twins are neglected. Instead, edges be-
tween vtwin and the neighbors of v can be removed with a
probability qdel and new edges can be created at random between
vtwin and any other vertices with a probability qnew�N, where N
is the current total number of vertices. DMR thus emphasizes the
creation of new advantageous functions by mutation.

In addition to (i) DMC and (ii) DMR, we generate training
data for (iii) linear preferential attachment (LPA) networks (3,
5) (growing graphs with a probability of attaching new vertices
to existing vertices proportional to k � a, a being a constant
parameter and k being the degree of the existing vertex); (iv)
random static (RDS) networks (37) (also known as Erdös–Rényi
graphs; vertices are connected randomly); (v) random growing
(RDG) networks (38) (growing graphs where new edges are

created randomly between existing vertices); (vi) aging vertex
(AGV) networks (39) (growing graphs modeling citation net-
works, where the probability for new edges decreases with the
age of the vertex); and (vii) small-world (SMW) networks (4) (an
interpolation between regular ring lattices and randomly con-
nected graphs). For descriptions of the specific algorithms we
refer the reader to the supporting information.

Subgraph Census. We quantify the topology of a network by
exhaustive subgraph census (31) up to a given subgraph size; note
that we do not assume a specific network randomization or test
for statistical significance as in refs. 19, 20, 23–29, 31, and 32, but
we instead classify network mechanisms by using the raw sub-
graph counts. Rather than choosing most important features a
priori, we count all possible subgraphs up to a given cut-off,
which can be made in the number of vertices, number of edges,
or the length of a given walk. To show robustness to this choice,
we present results for two different cut-offs. We first count all
subgraphs that can be constructed by a walk of length eight (148
nonisomorphic†† subgraphs); second, we consider all subgraphs
up to a total number of seven edges (130 nonisomorphic
subgraphs). Their counts are the input features for our classifier.
It is worth noting that the mean geodesic length (average shortest
path between two vertices) of the Drosophila network’s giant
component is 11.6 (9.4) for p* � 0.65 (0.5). Walks of length
eight are therefore able to traverse large parts of the network and
can also reveal global structures.

Learning Algorithm. Our classifier is a generalized decision tree
called an alternating decision tree (ADT) (40) by using the
Adaboost (41) algorithm, which is related to additive logistic
regression (42). Adaboost is a general discriminative learning
algorithm proposed in 1997 by Freund and Schapire (41, 43) and
has since been successfully used in numerous and varied appli-
cations [e.g., in text categorization (44, 45) and gene expression
prediction (46)].

††Two graphs are isomorphic if there exists a relabeling of their vertices such that the two
graphs are identical.

Fig. 1. Discriminating similar networks. Ten graphs of two different mechanisms exhibit similar average geodesic lengths and almost identical degree
distribution and clustering coefficients. (a) Cumulative degree distribution p(k � k0), average clustering coefficient �C� and average geodesic length ���, all
quantities averaged over a set of 10 graphs. (b) Prediction scores for all 10 graphs and all five cross-validated (13) ADTs. The two sets of graphs can be perfectly
separated by our classifier, even though none of these graphs is used in the classifier training.
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An example of an ADT is shown in Fig. 2. A given network’s
subgraph counts determine paths in the ADT dictated by
inequalities specified by the decision nodes (rectangles) (sub-
graphs associated with Fig. 2 are shown in Fig. 3). For each class,

the ADT outputs a real-valued prediction score, which is the sum
of all weights over all paths. The class with the highest score wins.
The prediction score y(c) for class c is related to the probability
p(c) for the tested network to be in class c by p(c) � e2y(c)�(1 �
e2y(c)) (42). (The supporting information gives additional details
on the exact learning algorithm. Source code is available from
C.H.W. on request.)

An advantage of ADTs is that they do not assume a specific
geometry of the input space; that is, features are not coordinates
in a metric space (as in support vector machines or k-nearest-
neighbors classifiers), and the classification is thus independent
of normalization. The algorithm assumes neither independence
nor dependence among subgraph counts. The subgraphs reveal
their importance themselves solely by their abilities to discrim-
inate among different classes.

Results
We perform cross-validation (ref. 13 and supporting informa-
tion) with multiclass ADTs, thus determining an empirical
estimate of the generalization error, i.e., the probability of
mislabeling an unseen test datum. Table 1 relates truth and
prediction for the test sets. Five of seven classes have nearly
perfect prediction accuracy. Because AGV is constructed to be
an interpolation between LPA and a ring lattice, the AGV, LPA,
and SMW mechanisms are equivalent in specific parameter
regimes and correspondingly show a nonnegligible overlap.
Nevertheless, the overall prediction accuracy on the test sets still
lies between 94.6% and 95.8% for different choices of p* and

Fig. 2. ADT: The first few nodes of one of the trained ADTs are shown. At each boosting iteration one new decision node (rectangle) with its two prediction
nodes (ovals) is introduced. Every test network follows multiple paths in the tree, dictated by the inequalities in the decision nodes (S# refers to a specific subgraph
count; see Fig. 3). The final score is the sum of all prediction scores over all paths, and the class with the highest prediction score wins.

Fig. 3. Subgraphs associated with Figs. 2 and 4. Shown is the subset of 51
subgraphs (of 148) that appear in the learned ADT.
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subgraph size cut-off. Note that preferential attachment is
completely distinguishable from duplication–mutation despite
the fact that a duplication mechanism is sometimes described as
an effective preferential attachment (ref. 47 and supporting
information). Even models that are based on the same funda-
mental mechanism, such as duplication–mutation in DMC and
DMR, are perfectly separable. Even small algorithmic changes
in network mechanisms can thus give rise to easily detectable
differences in substructures. Our results (see Fig. 1) confirm that
although many of these models have similar degree distributions,
clustering coefficients, or mean geodesic lengths, they have
indeed distinguishable topologies.

Fig. 2 shows the first few decision nodes of a resulting ADT.
The prediction scores reveal that a high count of 3-cycles
suggests a DMC network (node 3). The DMC mechanism indeed
facilitates the creation of many 3-cycles by allowing two copies
to attach to each other, thus creating 3-cycles with their common
neighbors. In particular a few combinations are good predictors
for some classes. For example, a low count in 3-cycles combined
with a high count in 8-edge linear chains is a good predictor for
LPA and DMR networks (nodes 3 and 4). Because of the
sparseness of the networks preferential attachment does not lead
to a clustered structure. While LPA readily yields hubs, cycles are
less probable. (Larger ADTs can be viewed in the supporting
information.)

Having built a classifier enjoying good prediction accuracy, we
can now determine the network mechanism that best reproduces
the Drosophila protein network (or in principle any network of
the same size) by using the trained ADTs for classification. Table

2 gives the prediction scores of the Drosophila network for each
of the seven classes, averaged over folds.

The DMC mechanism is the only class having a positive
prediction score in every case. In particular, for p* � 0.65 the
DMC classification has a high score of 8.2 � 1.0 for eight-step
subgraphs and 8.6 � 1.1 for subgraphs with up to seven edges.
Also, the comparatively small standard deviations over different
folds indicate robustness of the classification against data sub-
sampling. While the high rankings of both duplication–mutation
classes confirm our biological understanding of protein network
evolution, our findings strongly support an evolution restricted
by functional complementarity over an evolution that creates
and deletes functions at random.

Notably, for p* � 0.65 the RDG mechanism of random
growth (edges are connected randomly between existing verti-
ces) has a higher prediction score than the LPA or AGV growing
graph mechanisms. Growth without any underlying mechanism
other than chance therefore generates networks closer in topol-
ogy to the core network (p* � 0.65) of Drosophila than growth
governed by preferential attachment. We also emphasize that
even though Drosophila exhibits the SMW character of high
clustering and short mean geodesic length (34), the SMW model
(4) (an interpolation between regular ring lattices and randomly
connected graphs) does not accurately reproduce the Drosophila
network. The classification for p* � 0.5 is less confident,
probably because of the additional noise present in the data
when including low p value (improbable) interactions, as we
discuss below.

Although not necessary for the classification itself, visualizing
the distribution for each model and each subgraph, compared
with that subgraph’s census in Drosophila, can give a qualitative
and more intuitive way of interpreting the classification result
and a better understanding of the topological differences be-
tween Drosophila and each of the seven mechanisms. To this end
we determine rank scores for every subgraph and mechanism,
defined as the percentages of sampled networks that have a
subgraph count above Drosophila’s count. A rank score of 50%
corresponds to a distribution whose median is equal to Dros-
ophila’s subgraph count. Fig. 4 shows the color-coded rank
scores for every mechanism and every subgraph (only the subset
of 51 subgraphs, which appear in the learned ADT, is shown
here; see the supporting information for the full set). The
subgraphs are ordered by similarity in rank scores (see caption
of Fig. 4). A few subgraphs (S36–S51) featuring hubs without
cycles are best modeled by the LPA mechanism; i.e., these
subgraphs have rank scores close to 50%. For almost all other
subgraphs, both duplication–mutation mechanisms (DMC and
DMR) consistently have better rank scores than the other
models. Notably, the SMW and RDS mechanisms have rank

Table 1. Prediction accuracy (%) for tested networks using
fivefold cross-validation (13)

Truth

Prediction

DMR DMC AGV LPA SMW RDS RDG

DMR 99.3 0.0 0.0 0.0 0.0 0.1 0.6
DMC 0.0 99.7 0.0 0.0 0.3 0.0 0.0
AGV 0.0 0.1 84.7 13.5 1.2 0.5 0.0
LPA 0.0 0.0 10.3 89.6 0.0 0.0 0.1
SMW 0.0 0.0 0.6 0.0 99.0 0.4 0.0
RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0
RDG 0.9 0.0 0.0 0.1 0.0 0.0 99.0

The (i, j) entry is the probability of predicting class j given that the true class
is i. The training data are based on the size of the Drosophila protein network
with a confidence threshold of p* � 0.5, the input features of the classifier
being counts of all possible walks of length eight. The overall prediction
accuracy is 95.8%. Prediction errors among AGV, LPA, and SMW networks are
due to equivalence of the models in specific parameter regimes.

Table 2. Prediction scores for the Drosophila protein network for different confidence
thresholds p* and different cut-offs in subgraph size

Rank

Eight-step subgraphs
(p* � 0.65)

Subgraphs with up to
seven edges
(p* � 0.65)

Eight-step subgraphs
(p* � 0.5)

Class Score Class Score Class Score

1 DMC 8.2 � 1.0 DMC 8.6 � 1.1 DMC 0.8 � 2.9
2 DMR �6.8 � 0.9 DMR �6.1 � 1.7 DMR �2.1 � 2.0
3 RDG �9.5 � 2.3 RDG �9.3 � 1.6 AGV �3.1 � 2.2
4 AGV �10.6 � 4.2 AGV �11.5 � 4.1 LPA �10.1 � 3.1
5 LPA �16.5 � 3.4 LPA �14.3 � 3.2 SMW �20.6 � 1.9
6 SMW �18.9 � 0.7 SMW �18.3 � 1.9 RDS �22.3 � 1.7
7 RDS �19.1 � 2.3 RDS �19.9 � 1.5 RDG �22.5 � 4.7

Drosophila is consistently (independently of the cut-off in subgraph size) classified as a DMC network, with an
especially strong prediction for a confidence threshold of p* � 0.65.
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scores 0 for all subgraphs; i.e., all sampled networks have lower
subgraph counts than Drosophila. For a few subgraphs that
feature long linear chains (S27–S33), the DMR model has better
rank scores than DMC, whereas for almost all other subgraphs
DMC has the best rank scores. In particular, DMC is the only
model that can reach Drosphila’s counts for subgraphs S1–S26,
which show complex cyclic structure.

Because yeast two-hybrid data are known to be susceptible to
numerous errors (34), network analyses are reliable only if they
are robust against noise. To confirm that our method shows this
robustness, we classify the Drosophila network for various levels
of artificially introduced noise by replacing existing edges with
edges chosen at random. Fig. 5 shows the prediction scores for
all seven classes as functions of the fraction of edges replaced. As
validation, the network is correctly and confidently (p value �
1 � 10�3) classified as an RDS graph when �80% of the edges
are randomized. About 30% of Drosophila’s edges can be
replaced without seeing any significant change in all seven
prediction scores, and 40% can be replaced before Drosophila is
no longer classified confidently as a DMC network. At this point
the prediction scores of DMC, DMR, and AGV are very close,
which is also observed for the prediction scores for p* � 0.5 (see
Table 2), where they rank top three in this order. The results
therefore suggest that the less confident classification for p* �
0.5 could be mainly due to the presence of more noise in the data
after inclusion of low confidence-value edges.

We have presented a method to infer growth mechanisms for
naturally occurring networks. Advantageous properties include
robustness against both noise and data subsampling, and the
absence of any prior assumptions about which network features
are important. Moreover, because the learning algorithm does
not assume any relationships among features, the input space can
be generalized to include any additional statistics as potentially
discriminative features. We find that the Drosophila protein

interaction network is confidently classified as a DMC network,
a result that strongly supports ideas presented by Vazquez et al.
(6) and Force et al. (36) about the nature of genetic evolution,

Fig. 4. Topological similarities and differences between Drosophila and each of the seven mechanisms. Color-coded rank scores are shown for a representative
set of 51 subgraphs and every mechanism. The rank score ri� for model i and subgraph � is defined as the percentage of sampled networks having a subgraph
count above Drosophila’s value. The matrix of correlation coefficients ��� of rank scores is then a similarity matrix between subgraphs. The coordinates of the
eigenvector corresponding to the smallest nonzero eigenvalue [or Fiedler vector (50)] of the Laplacian (51) L�� � ��� � ����� ��� (where ��� is the Kronecker
symbol, equal to 1 iff � � � can then be used to sort the subgraphs according to similarity in rank scores (for details see the supporting information). A rank score
of 50% (green) corresponds to a distribution whose median is equal to Drosophila’s subgraph count. The labels S1–S51 refer to Fig. 3. The histogram in the upper
part of the figure shows Drosophila’s subgraph counts.

Fig. 5. Robustness against noise: Edges in Drosophila are randomly replaced,
and the network is reclassified. Plotted are prediction scores for each of the
seven classes as more and more edges are replaced. Each point is an average
over 200 independent random replacements. For high noise levels (beyond
80%) the network is classified as an Erdös–Rényi (RDS) graph. Also note that
the confidence in the classification as a DMC network for low noise (	30%) is
even higher than in the classification as an RDS network for high noise. The
prediction score y(c) for class c is related to the estimated probability p(c) for
the tested network to be in class c by p(c) � e2y(c)�(1 	 e2y(c)) (43). The dashed
line indicates a p value of 1 � 10 � 3.
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as well as recent direct experimental evidence presented by
Wang et al. (48) for a single DMC event in Drosophila melano-
gaster. We also showed that different mechanisms, such as DMR,
LPA, and RDG, model Drosophila well for different sets of
subgraphs, a result which suggests that a model that mixes several
mechanisms might be able to reproduce Drosophila even more
accurately. Preliminary studies on the yeast protein–protein
interaction network, as produced by an analysis that integrates
multiple data sources (49), also strongly favors the DMC mech-

anism. We anticipate that further use of machine learning
techniques will answer a number of such questions of interest in
systems biology.
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