The cover time of random walks on random geometric graphs

Colin Cooper Alan Frieze

The *cover time* C_G of G is defined as $C_G = \max_{u \in V} C_u$.

The cover time C_G of G is defined as $C_G = \max_{u \in V} C_u$.

 $C_G \leq 4m(n-1)$: Alelliunas, Karp, Lipton, Lovász, Rackoff (1979)

The cover time C_G of G is defined as $C_G = \max_{u \in V} C_u$.

$$C_G \le 4m(n-1)$$
: Alelliunas, Karp, Lipton, Lovász, Rackoff (1979)

$$(1 - o(1))n \ln n \le C_G \le (1 + o(1)) \frac{4}{27}n^3$$
: Feige (1995)

• If $p = c \log n/n$ and c > 1 then w.h.p. $C_{G_{n,p}} \sim c \log \left(\frac{c}{c-1}\right) n \log n$.

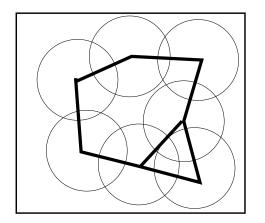
- If $p = c \log n/n$ and c > 1 then w.h.p. $C_{G_{n,p}} \sim c \log \left(\frac{c}{c-1}\right) n \log n$.
- Let c > 1 and let x denote the solution in (0, 1) of $x = 1 e^{-cx}$. Let X_g be the giant component of $G_{n,p}, \ p = c/n$. Then w.h.p. $C_{X_g} \sim \frac{cx(2-x)}{4(cx-\log c)} n(\log n)^2$.

- If $p = c \log n/n$ and c > 1 then w.h.p. $C_{G_{n,p}} \sim c \log \left(\frac{c}{c-1}\right) n \log n$.
- Let c > 1 and let x denote the solution in (0,1) of $x = 1 e^{-cx}$. Let X_g be the giant component of $G_{n,p}, \ p = c/n$. Then w.h.p. $C_{X_g} \sim \frac{cx(2-x)}{4(cx-\log c)} n(\log n)^2$.
- Let $G_{n,r}$ denote a random r-regular graph on vertex set [n] with $r \ge 3$ then w.h.p. $C_{G_{n,r}} \sim \frac{r-1}{r-2} n \log n$.

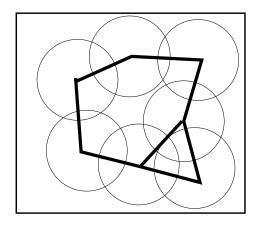
- If $p = c \log n/n$ and c > 1 then w.h.p. $C_{G_{n,p}} \sim c \log \left(\frac{c}{c-1}\right) n \log n$.
- Let c > 1 and let x denote the solution in (0, 1) of $x = 1 e^{-cx}$. Let X_g be the giant component of $G_{n,p}$, p = c/n. Then w.h.p. $C_{X_g} \sim \frac{cx(2-x)}{4(cx-\log c)} n(\log n)^2$.
- Let $G_{n,r}$ denote a random r-regular graph on vertex set [n] with $r \ge 3$ then w.h.p. $C_{G_{n,r}} \sim \frac{r-1}{r-2} n \log n$.
- Let $G_m(n)$ denote a preferential attachment graph of average degree 2m then w.h.p. $C_{G_m} \sim \frac{2m}{m-1} n \log n$.

- If $p = c \log n/n$ and c > 1 then w.h.p. $C_{G_{n,p}} \sim c \log \left(\frac{c}{c-1}\right) n \log n$.
- Let c > 1 and let x denote the solution in (0, 1) of $x = 1 e^{-cx}$. Let X_g be the giant component of $G_{n,p}, p = c/n$. Then w.h.p. $C_{X_g} \sim \frac{cx(2-x)}{4(cx-\log c)} n(\log n)^2$.
- Let $G_{n,r}$ denote a random r-regular graph on vertex set [n] with $r \ge 3$ then w.h.p. $C_{G_{n,r}} \sim \frac{r-1}{r-2} n \log n$.
- Let $G_m(n)$ denote a preferential attachment graph of average degree 2m then w.h.p. $C_{G_m} \sim \frac{2m}{m-1} n \log n$.
- Let $D_{n,p}$ denote a random digraph with independent edge probability p). If $p = c \log n/n$ and c > 1 then w.h.p. $C_{D_{n,p}} \sim c \log \left(\frac{c}{c-1}\right) n \log n$.

Random geometric graph G = G(d, r, n) in d dimensions: Sample n points V independently and uniformly at random from $[0, 1]^d$. For each point x draw a ball D(x, r) of radius r about x. V(G) = V and $E(G) = \{\{v, w\} : w \neq v, w \in D(v, r)\}$



Random geometric graph G = G(d, r, n) in d dimensions: Sample n points V independently and uniformly at random from $[0, 1]^d$. For each point x draw a ball D(x, r) of radius r about x. V(G) = V and $E(G) = \{\{v, w\} : w \neq v, w \in D(v, r)\}$



For simplicity we replace $[0,1]^d$ by a torus.

Avin and Ercal d = 2

Theorem

$$C_G = \Theta(n \log n) w.h.p..$$

Avin and Ercal d = 2

Theorem

$$C_G = \Theta(n \log n) w.h.p..$$

Cooper and Frieze $d \ge 3$:

Theorem

Let c > 1 be constant, and let $r = \left(\frac{c \log n}{\Upsilon_d n}\right)^{1/d}$. Then w.h.p.

$$C_G \sim T_c = c \log \left(\frac{c}{c-1}\right) n \log n.$$

 Υ_d is the volume of the unit ball in d dimensions.

Let $\pi_X = \frac{deg(x)}{2m}$ denote the steady state for a random walk on *G*.

Let $\pi_X = \frac{deg(x)}{2m}$ denote the steady state for a random walk on G.

Let the mixing time T be defined so that

$$\max_{u,x\in V} |P_u^{(t)}(x) - \pi_x| \le n^{-3}.$$

Let $\pi_{x} = \frac{deg(x)}{2m}$ denote the steady state for a random walk on G.

Let the mixing time T be defined so that

$$\max_{u,x\in V} |P_u^{(t)}(x) - \pi_x| \le n^{-3}.$$

Let R_v be the expected number of visits by W_v within time T.

Let $\pi_X = \frac{deg(x)}{2m}$ denote the steady state for a random walk on G.

Let the mixing time T be defined so that

$$\max_{u,x\in V} |P_u^{(t)}(x) - \pi_x| \le n^{-3}.$$

Let R_v be the expected number of visits by W_v within time T.

Fix
$$u, v \in V$$
. For $s \ge T$ let

$$A_s(v) = \{W_u \text{ does not visit } v \text{ in } [T, s]\}$$

Suppose that the connected graph G = (V, E) has n vertices and m edges.

Suppose that the connected graph G = (V, E) has n vertices and m edges.

Let $\pi_X = \frac{deg(x)}{2m}$ denote the steady state for a random walk on *G*.

Suppose that the connected graph G = (V, E) has n vertices and m edges.

Let $\pi_X = \frac{deg(x)}{2m}$ denote the steady state for a random walk on G.

Let the mixing time T be defined so that

$$\max_{u,x\in V} |P_u^{(t)}(x) - \pi_x| \le n^{-3}.$$

Suppose that the connected graph G = (V, E) has n vertices and m edges.

Let $\pi_X = \frac{deg(x)}{2m}$ denote the steady state for a random walk on G.

Let the mixing time T be defined so that

$$\max_{u,x\in V} |P_u^{(t)}(x) - \pi_x| \le n^{-3}.$$

Fix $u, v \in V$. For $s \geq T$ let

$$A_s(v) = \{W_u \text{ does not visit } v \text{ in } [T, s]\}$$

We try to get a good estimate of $\Pr(A_s(v))$.

$$H(s) = F(s)R(s)$$

where

$$h_t = \mathbf{Pr}(\mathcal{W}_u(t) = v)$$
 and $H(s) = \sum_{t=T}^{\infty} h_t s^t$

$$r_t = \mathbf{Pr}(\mathcal{W}_{v}(t) = v)$$
 and $R(s) = \sum_{t=0}^{\infty} r_t s^t$

 f_t is the probability that the first visit of \mathcal{W}_u to v in the period $[T, T+1, \ldots,]$ occurs at step t, and $F(s) = \sum_{t=T}^{\infty} f_t s^t$.

$$H(s) = F(s)R(s)$$

where

$$h_t = \mathbf{Pr}(\mathcal{W}_u(t) = v)$$
 and $H(s) = \sum_{t=T}^{\infty} h_t s^t$

$$r_t = \mathbf{Pr}(\mathcal{W}_{v}(t) = v)$$
 and $R(s) = \sum_{t=0}^{\infty} r_t s^t$

 f_t is the probability that the first visit of \mathcal{W}_u to v in the period $[T, T+1, \ldots,]$ occurs at step t, and $F(s) = \sum_{t=T}^{\infty} f_t s^t$.

Note that

$$\mathbf{Pr}(\mathcal{A}_{s}(v)) = \sum_{t > s} f_{t}.$$

$$|z| \le 1 + \lambda,$$
 $\lambda = 1/KT$

$$R(z) = R_T(z) + \pi_v \frac{z^T}{1-z} + o(n^{-2})$$

 $H(z) = \pi_v \frac{z^T}{1-z} + o(n^{-2})$

Now write

$$F(z) = \frac{H(z)}{R(z)} = \frac{B(z)}{A(z)}$$

where for $|z| \leq 1 + \lambda$

$$A(z) = \pi_V z^T + (1-z)R_T(z) + o(n^{-2})$$

 $B(z) = \pi_V z^T + o(n^{-2})$

Now write

$$F(z) = \frac{H(z)}{R(z)} = \frac{B(z)}{A(z)}$$

where for $|z| \leq 1 + \lambda$

$$A(z) = \pi_{\nu} z^{T} + (1 - z) R_{T}(z) + o(n^{-2})$$

 $B(z) = \pi_{\nu} z^{T} + o(n^{-2})$

A(z) has a zero at

$$z_0 = 1 + \frac{\pi_V}{R_T(1) + o(1)}.$$

Now write

$$F(z) = \frac{H(z)}{R(z)} = \frac{B(z)}{A(z)}$$

A(z) has a zero at

$$z_0 = 1 + \frac{\pi_V}{R_T(1) + o(1)}.$$

One can then show that

$$F(z) = \frac{B(z_0)/A'(z_0)}{z - z_0} + g(z)$$

where g(z) is analytic inside $|z| \le 1 + \lambda$.

One can then show that

$$F(z) = \frac{B(z_0)/A'(z_0)}{z - z_0} + g(z)$$

where g(z) is analytic inside $|z| \le 1 + \lambda$.

and so

$$f_t = -\frac{B(z_0)/A'(z_0)}{z_0^{t+1}} + O((1+\lambda)^{-t})$$

$$\sim \frac{\pi_v/R_T}{(1+\pi_v/R_T)^{t+1}} + O((1+\lambda)^{-t}).$$

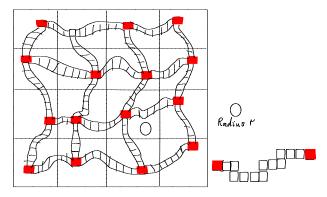
$$\Pr(\mathcal{A}_{\mathcal{S}}(v)) = e^{-(1+o(1))\pi_{V}s/R_{V}}.$$

$$\Pr(\mathcal{A}_{\mathcal{S}}(v)) = e^{-(1+o(1))\pi_{V}s/R_{V}}.$$

Most difficult task now is to show that $R_v = 1 + o(1)$ for all v.

Important Sub-Structure

Whp there is an embedded grid Γ made up of heavy sub-cubes, each contain $\Theta(\log n)$ vertices. Edges of grid are sequences of heavy cubes, of same length. Vertices of G are within O(1) distance of Γ .



Given the grid Γ it is easy to use a Canonical Paths argument to show that

$$T = \tilde{O}(n^{2/d})$$

Given the grid Γ it is easy to use a Canonical Paths argument to show that

$$T = \tilde{O}(n^{2/d})$$

This estimate is not very good for d = 2. In this case it can be improved to $T = O(n/\log n)$.

Canonical Paths

We need two basic results on mixing times.

First let λ_{\max} be the second largest eigenvalue of the transition matrix P. Then,

$$|P_u^{(t)}(x) - \pi_x| \le \left(\frac{\pi_x}{\pi_u}\right)^{1/2} \lambda_{\max}^t.$$

Next, for each $x \neq y \in V$ let γ_{xy} be a *canonical* path from x to y in G. Then, we have that

$$\lambda_{\mathsf{max}} \leq 1 - \frac{1}{\rho},$$

where

$$\rho = \max_{e=\{x,y\}\in E(G)} \frac{1}{\pi(x)P(x,y)} \sum_{\gamma_{ab}\ni e} \pi(a)\pi(b)|\gamma_{ab}|,$$

and $|\gamma_{ab}|$ is the length of the canonical path γ_{ab} from a to b.

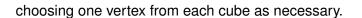
Consider the grid Γ .It will help to fix a collection of points x_i in each red cube for i = 1, 2, ..., M.

Consider the grid Γ .It will help to fix a collection of points x_i in each red cube for i = 1, 2, ..., M.

We first define canonical paths between the x_i . We can in a natural way express $x_i = y(j_1, j_2, \dots, j_d)$. The path from $y(j_1, j_2, \dots, j_d)$ to $y(k_1, k_2, \dots, k_d)$ goes

$$y(j_1, j_2, \ldots, j_d) \iff y(j_1 + 1, j_2, \ldots, j_d) \iff \cdots, y(k_1, j_2, \ldots, j_d)$$

 $\iff y(k_1, j_2 + 1, \ldots, j_d) \iff \cdots \iff, y(k_1, k_2, \ldots, k_d).$



We obtain canonical paths for every pair of vertices by connecting each point x of V to its closest $x_i = \phi(x)$.

Each x_i is chosen by $O(\log n)$ points in this way.

Our path from x to y goes x to $\phi(x)$ to $\phi(y)$ to y. After this we find that each path has length O(1/r) and each edge is in $\tilde{O}(1/r^{d+1})$ paths.

It follows that

$$\rho = \tilde{O}n \cdot 1 \cdot r^{-d-1} \cdot n^{-2} \cdot r^{-1} = \tilde{O}(1/(nr^{d+2})) = \tilde{O}(n^{2/d}).$$

Upper bound on cover time

Assuming that $R_v = 1 + o(1)$ for all v, we get an upper bound on C_G as follows:

 $T_G(u)$ is the time taken to visit every vertex of G by W_u . U_t is the number of vertices of G which have not been visited by W_u at step t.

$$C_{U} = \mathbf{E}T_{G}(U) = \sum_{t>0} \mathbf{Pr}(T_{G}(U) > t)$$

$$\leq t + 1 + \sum_{s>t} \mathbf{E}U_{s}$$

$$= t + 1 + \sum_{v \in V} \sum_{s>t} \mathbf{Pr}(A_{s}(v))$$

$$C_{u} = \mathbf{E}T_{G}(u) = \sum_{t>0} \mathbf{Pr}(T_{G}(u) > t)$$

$$\leq t+1 + \sum_{s>t} \mathbf{E}U_{s}$$

$$= t+1 + \sum_{v \in V} \sum_{s>t} \mathbf{Pr}(\mathcal{A}_{s}(v))$$

$$\approx t+1 + \sum_{v \in V} \sum_{s>t} e^{-s\pi_{v}}$$

$$= t+1 + \sum_{v \in V} \frac{e^{-t\pi_{v}}}{1 - e^{-\pi_{v}}}$$

$$\approx t+1 + m \sum_{v \in V} \frac{e^{-t \deg(v)/2m}}{\deg(v)}$$

Suppose that $k = \alpha \ln n$. There are approximately

$$n\binom{n-1}{k}p^k(1-p)^{n-1-k}\sim n^{1-c+\alpha\ln(ce/\alpha)}$$

vertices of degree k.

Suppose that $k = \alpha \ln n$. There are approximately

$$n\binom{n-1}{k}p^k(1-p)^{n-1-k}\sim n^{1-c+\alpha\ln(ce/\alpha)}$$

vertices of degree k.

So, if $t = \tau n \ln n$ and $m \approx \frac{1}{2} c n \log n$,

$$C_u \leq t + 1 + \sum_{\alpha} n^{2-c+\alpha \ln(ce/\alpha) - \alpha\tau/c + o(1)}$$

Now

$$\max 2 - c + \alpha \ln(ce/\alpha) - \alpha \tau/c = 2 - c + ce^{-\tau/c}$$

So,

$$C_u \leq \tau n \ln n + O(n^{2-c+ce^{-\tau/c}+o(1)})$$

and

$$C_u \leq (1+o(1))c\ln\left(\frac{c}{c-1}\right)n\ln n.$$

Lower bound on cover time

Lower bound on cover time

We can find a vertex u and a set of vertices S_0 such that at time $t^* \approx T_c$, the probability the set S_0 is covered by the walk \mathcal{W}_u tends to zero.

Hence $T_G(u) > t_0$ w.h.p. which implies that $C_G \ge (1 - o(1))t^*$.

We construct S_0 as follows. Let $k_1 = (c-1) \log n$ and let $S_1 = \{v : d(v) = k_1\}.$

Let $A = \{(u, v) : u \notin S_1, v \in S_1, \eta(u, v) \ge 1/(\log n)^2\}$, where $\eta(u, v)$ is the probability that \mathcal{W}_u visits v during the mixing time. It can be shown that w.h.p. $|A| = \tilde{O}(T|S_1|)$.

By simple counting, we see that there exists $u \notin S_1$ such that $|\{v \in S_1 : (u, v) \in A\}| = \tilde{O}(T|S_1|/n) = o(|S_1|)$. We choose such a u and let $S_2 = \{v \in S_1 : (u, v) \notin A\}$.

We then take an independent subset S_0 of S_2 . Because the maximum degree of G is $O(\log n)$ we can choose $|S_0| = \Omega(|S_2|/\log n)$.

We then let Z_0 denote the number of vertices in S_0 that are not visited in time $[1, t^*]$.

We prove that

$$\mathbf{E}(Z_0) \to \infty \text{ and } \mathbf{E}(Z_0^2) = (1 + o(1))\mathbf{E}(Z_0)^2$$

and use the Chebyshev inequality.

Expected number of returns within time T

 $p_{\rm esc}(v,B)$, is the probability that W_v does not return to v before reaching set B.

$$\rho_{\rm esc}(v,B) = \frac{1}{d(v) R_{\rm EFF}(v,B)},$$

where $R_{EFF}(a, B)$ is the *effective resistance* between v and B.

Thus $R_{\nu}(B)$, the expected number of returns to ν before reaching B is given by

$$R_{\nu}(B) = \frac{1}{p_{\rm esc}(\nu, B)} = d(\nu) R_{\rm EFF}(\nu, B).$$

$$\eta(\mathbf{w}, \mathbf{v}) = \mathbf{Pr}(\exists \ 1 \le t \le T : \mathcal{W}_{\mathbf{w}}(t) = \mathbf{v}).$$

$$F = F(v) = \left\{ w : \eta(w, v) \le 1/\log^2 n \right\}$$

 p_{ν} is the probability of a return to ν by \mathcal{W}_{ν} within time T.

$$p_{v} \leq 1 - p_{\text{esc}}(v, F(v)) + 1/(\log n)^{2}.$$
 $R_{v} \leq \frac{1}{1 - p_{v}}.$

Enough to show that $p_{esc}(v, F(v)) = 1 - o(1)$.

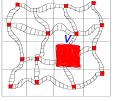
It can be shown that |F(v)| = n - o(n).

$$p_{\rm esc}(v,F) = \frac{1}{d(v)R_{\rm EFF}(v,B)}.$$

Raleigh's Theorem states that deleting edges increases effective resistance.

We remove edges to create G^* . The degree of v is unchanged

and G* looks like:



Because $d \ge 3$, walk has $\Omega(1)$ chance of getting far from v. Because F is large, there is a 1 - o(1) chance that such a walk enters F. During O(1) returns (in expectation)to cube containing v before entering F, walk has o(1) chance of reaching v.

Open Questions

- 1. Determine the covertime for d=2.

 Known to be $\Theta(nlogn)$, but what is the constant.
- 2. How concentrated are the various quantities around their means.
- 3. Remove some of the "annoying" technical conditions for using main lemma:

Thank You