Approximation of Cost-Sharing and Utilitarian Mechanisms

Stefano Leonardi

Sapienza University of Rome

MITACS Workshop on Internet and Network Economics SFU Harbour Centre, Vancouver May 30 - June 1, 2011

Algorithm and Mechanism Design

Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

Mechanism design offers a conceptual framework for algorithm design and optimization in the age of Internet:

- Input data owned from selfish distributed agents
- Agents can strategize in order to maximize their individual utility
- Algorithms should both provide efficient and correct solutions and incentivize agents (with payments) to reveal true input data
- Our ideal goal is to implement a mechanism in the form of a dominant strategy:

Reveal true input data maximize individual utility, whatever strategy is played from the other players

Approximation and Mechanism Design

Algorithm and Mechanism
 Design

 Approximation and Mechanism Design

 Approximation and Mechanism Design

- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

Two main sources of complexity:

The network problems we like to solve are often computationally hard:

Develop a theory of approximation algorithms that yield good strategic properties.

Imposing good strategic properties limit the quality of approximation that can be obtained,

independently from computational complexity.

Approximation and Mechanism Design

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline
- Cost-Sharing Mechanisms
- Group-strategyproof for Facility location
- Steiner Forests
- Steiner Forest CS-Mechanism
- Lower Bounds

Two main classes of problems:

- 1. Cost sharing mechanisms: fair share of the cost of providing a service to the agents.
- 2. Utilitarian mechanisms:
 - minimize the cost of the solution that uses resources provided by the agents; or
 - maximize the utility of the agents that are served from the mechanism.

Approximation and Mechanism Design

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and
- Mechanism Design
 Overview of the tutorial
- Talk Outline
- Cost-Sharing Mechanisms
- Group-strategyproof for Facility location
- Steiner Forests
- Steiner Forest CS-Mechanism
- Lower Bounds

Twist methodologies for the design of approximation algorithms to yield good strategic properties

- We give examples of application of
- Primal-dual algorithms
- Polynomial time approximation schemes
- Pareto-optimal solutions and Multi-objective optimization
- Lagrangean relaxation

to relevant combinatorial optimization problems in networks.

Overview of the tutorial

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

Plan for the two days:

- 1. Tutorial Part I (today): Approximation of Cost-Sharing Mechanisms
- 2. Tutorial Part II (tomorrow): Approximation of Utilitarian Mechanisms

Talk Outline

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- $lacebox{Overview}$ of the tutorial
- Talk Outline
- Cost-Sharing Mechanisms
- Group-strategyproof for Facility location
- Steiner Forests
- Steiner Forest CS-Mechanism
- Lower Bounds

- Part I Introduction to cost-sharing mechanisms
- Part II Moulin-Shenker mechanisms
- Part III The Facility location problem
- Part IV The Steiner forest problem
- Part V Lower bounds for cross-monotonic cost-sharing methods
- Part VI Summary and conclusions

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Cost-Sharing Mechanisms

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

● Cost-Sharing Mechanisms

- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

The ingredients:

- A service provider.
- A set U of potential users (agents, customers).
- Each user $j \in U$ has a (private) utility u_j (the price j is willing to pay to receive the service).
- A cost-function c: c(Q) is the cost for servicing a set $Q \subseteq U$. c(Q) is usually given by the solution to an optimization problem.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

The ingredients:

- A service provider.
- A set U of potential users (agents, customers).
- Each user $j \in U$ has a (private) utility u_j (the price j is willing to pay to receive the service).
- A cost-function c: c(Q) is the cost for servicing a set $Q \subseteq U$. c(Q) is usually given by the solution to an optimization problem.

Cost-Sharing Mechanism:

- **Receive bids** b_j from all users $j \in U$.
- Select recipients $Q \subseteq U$ using bids.
- Distribute service cost c(Q) among users in Q: Determine payment p_j for each $j \in Q$.

Example: Multicast Transmission

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Shapley cost shares

- Select a subset Q and a tree T spanning Q
- Share the cost of every edge of T evenly between the players served by the edge
- All players in Q should bid more than the individual cost-share

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof
- Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Benefit of user j is $u_j - p_j$ if $j \in Q$, and 0 otherwise.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission

■ Benefit of user j is u_j - p_j if j ∈ Q, and 0 otherwise.
 ■ Users may lie about their utilities to increase benefit.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism

 Example: Multicast Transmission **Benefit** of user *j* is $u_j - p_j$ if $j \in Q$, and 0 otherwise.

Users may lie about their utilities to increase benefit.

Objectives:

- Strategyproofness: Dominant strategy for each user is to bid true utility.
- Group-Strategyproofness: Same holds even if users collaborate. No side payments between users.
- Cost Recovery or Budget Balance: $\sum_{j \in Q} p_j \ge c(Q)$.
- **Competitiveness:** $\sum_{j \in Q} p_j \leq \operatorname{opt}_Q$.

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission

Finding such cost-shares and a cost-function is hard if underlying problem is hard.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism

B. R. 141

Example: Multicast
 Transmission

- Finding such cost-shares and a cost-function is hard if underlying problem is hard.
- Finding such cost-shares may be impossible if we want to ensure strategyproofness (later in this talk)

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission

- Finding such cost-shares and a cost-function is hard if underlying problem is hard.
- Finding such cost-shares may be impossible if we want to ensure strategyproofness (later in this talk)
- Relax budget balance condition: β -budget balance: $\frac{1}{\beta}c(Q) \leq \sum_{j \in Q} p_j \leq \operatorname{opt}_Q, \quad \beta \geq 1$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

- Many combinatorial optimization problems can be formulated as Integer Linear Programs (ILP)
- Primal-dual algorithms construct a feasible solution to the ILP together with a dual solution to the fractional LP
- The cost of the feasible solution if β -approximated if its ratio to the value of the dual solution is at most β
- Dual variables have a natural interpretation as costs to be distributed between players
- Weak duality implies competitiveness
- Approximation ratio β implies β -budget balance.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

- Many combinatorial optimization problems can be formulated as Integer Linear Programs (ILP)
- Primal-dual algorithms construct a feasible solution to the ILP together with a dual solution to the fractional LP
- The cost of the feasible solution if β -approximated if its ratio to the value of the dual solution is at most β
- Dual variables have a natural interpretation as costs to be distributed between players
- Weak duality implies competitiveness
- Approximation ratio β implies β -budget balance.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

- Many combinatorial optimization problems can be formulated as Integer Linear Programs (ILP)
- Primal-dual algorithms construct a feasible solution to the ILP together with a dual solution to the fractional LP
- The cost of the feasible solution if β -approximated if its ratio to the value of the dual solution is at most β
- Dual variables have a natural interpretation as costs to be distributed between players
- Weak duality implies competitiveness
- Approximation ratio β implies β -budget balance.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

- Many combinatorial optimization problems can be formulated as Integer Linear Programs (ILP)
- Primal-dual algorithms construct a feasible solution to the ILP together with a dual solution to the fractional LP
- The cost of the feasible solution if β -approximated if its ratio to the value of the dual solution is at most β
- Dual variables have a natural interpretation as costs to be distributed between players
- Weak duality implies competitiveness
- Approximation ratio β implies β -budget balance.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

- Many combinatorial optimization problems can be formulated as Integer Linear Programs (ILP)
- Primal-dual algorithms construct a feasible solution to the ILP together with a dual solution to the fractional LP
- The cost of the feasible solution if β -approximated if its ratio to the value of the dual solution is at most β
- Dual variables have a natural interpretation as costs to be distributed between players
- Weak duality implies competitiveness
- Approximation ratio β implies β -budget balance.

Metric Facility location

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Input:

- undirected graph G = (V, E)
- non-negative edge costs $c: E \to \mathbb{R}^+$
- set of facilities $F \subseteq V$
- facility *i* has facility opening cost f_i
- set of demand points $D \subseteq V$
- c_{ij} : cost of connecting demand point j to facility i
- Goal: Compute
- set $F' \subseteq F$ of opened facilities; and
- function $\phi : \mathcal{D} \to \mathcal{F}'$ that minimizes

$$\sum_{i \in F'} f_i + \sum_{j \in \mathcal{D}} c_{\phi(j)j}$$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

- Cost-Sharing Mechanisms
- Example: Multicast Transmission

Metric Facility location

- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism

B. A. 141

 Example: Multicast Transmission

Distances are 1 to the nearest facility and 3 to the further facility.

The two facilities of cost 5 are opened

LP formulation

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location

LP formulation

- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism

B. R. 147

Example: Multicast
 Transmission

min	$\sum_{i \in F, j \in D} c$	$_{ij}x_{ij}$	$f + \sum_{i \in F} f_i y_i$	
s.t.	$\sum_{i \in F} x_{ij}$	\geq	1	$j \in D$
	$y_i - x_{ij}$	\geq	0	$i \in F, j \in D$
	x_{ij}	\in	$\{0,1\}$	$i \in F, j \in D$
	y_i	\in	$\{0,1\}$	$i \in F$

• $y_i = 1$ if facility *i* is opened;

• $x_{ij} = 1$ if demand j connected to facility i.

LP relaxation:

r

 Algorithm and Mechanism Design

12220

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location

LP formulation

- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof
- Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

nin	$\sum_{i \in F, j \in D} c$	$x_{ij}x_{ij}$	$f + \sum_{i \in \mathcal{F}} f_i y_i$	
s.t.	$\sum_{i \in F} x_{ij}$	\geq	1	$j \in D$
	$y_i - x_{ij}$	\geq	0	$i \in F, j \in D$
	x_{ij}	\geq	0	$i \in F, j \in D$
	y_i	\geq	0	$i \in F$

LP DUAL:

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location

LP formulation

- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof
- Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

DualProgram :max $\sum_{j \in D} \alpha_j$ s.t. $\alpha_j - \beta_{ij} \leq c_{ij} \quad i \in F, j \in D$ $\sum_{j \in D} \beta_{ij} \leq f_i \quad i \in F$ $\alpha_j \geq 0 \quad j \in D$ $\beta_{ij} \geq 0 \quad i \in F, j \in D$

Primal-dual Algorithm for Facility Location

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

At time 0, set all $\alpha_j = 0$, $\beta_{ij} = 0$ and declare all demands unconnected.

- While there is an unconnected demand:
- **Raise uniformly all** α_j 's of unconnected demands
- If $\alpha_j = c_{ij}$, declare demand *j* tight with facility *i*
- For a tight constraint ij, raise both α_j and β_{ij}
- If $\sum_{i} \beta_{ij} = f_i$ at time t_i , declare:
 - Facility *i* temporarily opened at time t_i ;
 - Facility *i* permanently opened if there is no permanently opened facility within distance $2t_i$;
 - All unconnected demands j that are tight with i connected;

Example of execution of the algorithm

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism

B.A. DATE

 Example: Multicast Transmission

Proof of 3 approximation.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm

Proof of 3 approximation.

- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism

 Example: Multicast Transmission

Demands connected to opened facilities

- $\alpha_j = c_{ij} + \beta_{ij}$ for demands connected to opened facility *i*.
- α_j pays for connection cost c_{ij} and contribute with β_{ij} to f_i .
- Since other opened facilities are at distance $> t_i$, α_j does not pay for opening any other facility.

Demands connected to temporarily opened facilities

• Demand *j* connected to temporarily opened facility *i*. There exists an opened facility i' with $c_{ii'} \leq 2t_i$.

Since $c_{ji} \leq \alpha_j$ and $t_i \leq \alpha_j$, $c_{ji'} \leq c_{ji} + c_{ii'} \leq 3\alpha_j$

A Strategyproof Mechanism

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm

Proof of 3 approximation.

• A Strategyproof Mechanism

- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Agent $j \in D$ has utility u_j and reports bid b_j to the mechanism:

- If $\alpha_j > b_j$ for unconnected city j then discard agent j.
- If facility i is opened at time t_i: any unconnected city j tight with facility i is connected and it is charged payment
 n: a: -t:
 - $p_j = \alpha_j = t_i.$
- If some unconnected city *j*'s becomes tight at time α_j with opened facility *i* then connect city *j* to facility *i* and charge $p_j = \alpha_j$

[Devanur, Mihail, Vazirani, 2003]

A Strategyproof Mechanism

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism

• A Strategyproof Mechanism

- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Truthfulness follows from bid independence:

- Lowering the bid might result in early discard: payoff=0
- Raising the bid might result in paying more than the bid: payoff<0</p>

Primal dual algorithms that monotonically increase dual variables often result in truthful cost-sharing mechanism.

The Mechanism is not Group-strategyproof

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism

A Strategyproof Mechanism

 The Mechanism is not Group-strategyproof

- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Players can collude in order to manipulate the mechanism:

Design of Group-strategyproof Mechanisms

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of

Group-strategyproof

- Mechanisms • Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

The Primal-dual algorithm needs to be adapted:

- The only way to manipulate the game is early discard of some of the members of the coalition
- This is of interest only for players with 0 payoff!
- This is not beneficial if whenever a player leaves the game the cost share of all other players is not decreased
- We do not allow side payments, i.e., transfer utility between members of the coalition

Cross-Monotonicity

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- $lacebox{Overview}$ of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism

B. R. 141

 Example: Multicast Transmission

Formal requirement of group-strategyproof mechanisms:

- **Cost-Sharing Method:**
- Given: Set $Q \subseteq U$ of users.
- Compute: Cost-shares $\xi_Q(j)$ for each $j \in Q$ such that competitiveness and β -budget balance hold.

Cross-Monotonicity

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Formal requirement of group-strategyproof mechanisms:

- Cost-Sharing Method:
- Given: Set $Q \subseteq U$ of users.
- Compute: Cost-shares $\xi_Q(j)$ for each $j \in Q$ such that competitiveness and β -budget balance hold.

 ξ is cross-monotonic if each individual cost-share does not increase as additional players join the game:
Cross-Monotonicity

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Formal requirement of group-strategyproof mechanisms:

Cost-Sharing Method:

- Given: Set $Q \subseteq U$ of users.
- Compute: Cost-shares $\xi_Q(j)$ for each $j \in Q$ such that competitiveness and β -budget balance hold.

 ξ is cross-monotonic if each individual cost-share does not increase as additional players join the game:

 $\forall Q' \subseteq Q, \ \forall j \in Q' : \quad \xi_{Q'}(j) \ge \xi_Q(j).$

Cross-Monotonicity

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Formal requirement of group-strategyproof mechanisms:

- Cost-Sharing Method:
- Given: Set $Q \subseteq U$ of users.
- Compute: Cost-shares $\xi_Q(j)$ for each $j \in Q$ such that competitiveness and β -budget balance hold.

 ξ is cross-monotonic if each individual cost-share does not increase as additional players join the game:

 $\forall Q' \subseteq Q, \ \forall j \in Q' : \quad \xi_{Q'}(j) \ge \xi_Q(j).$

Theorem [Moulin, Shenker '97]: The Moulin–Shenker Mechanism is group-strategyproof, and satisfies cost recovery and competitiveness.

Moulin–Shenker Mechanism

Algorithm and Mechanism
 Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of

Group-strategyproof Mechanisms

Cross-Monotonicity

Moulin–Shenker Mechanism

 Example: Multicast Transmission

Moulin–Shenker mechanism: Use cross-monotonic cost-sharing method to obtain group-strategyproof mechanisms.

Moulin–Shenker Mechanism

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof
- Mechanisms

 Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Moulin–Shenker mechanism: Use cross-monotonic cost-sharing method to obtain group-strategyproof mechanisms.

Moulin-Shenker Mechanism:

- 1. Initialize: $Q \leftarrow U$.
- 2. If for each user $j \in Q$: $\xi_Q(j) \leq b_j$ then stop.
- 3. Otherwise, remove from Q all users with $\xi_Q(j) > b_j$ and repeat.

Moulin–Shenker Mechanism

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof
- Mechanisms
- Cross-Monotonicity

Moulin–Shenker Mechanism

• Example: Multicast Transmission Designing a cost-sharing mechanism that is group-strategyproof, satisfies competitiveness and (approximate) budget balance.

 \Downarrow reduces to

Designing a cross-monotonic cost-sharing method ξ that satisfies competitiveness and (approximate) budget balance.

Example: Multicast Transmission

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism

Example: Multicast
 Transmission

Moulin Mechanism for Shapley Cost Shares

- Shapley is a cross-monotonic cost sharing method for Multicast transmission -Submodular function optimization
- Shapley is budget-balance, i.e. recovers the whole cost

Example: Multicast Transmission

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Moulin Mechanism for Shapley Cost Shares

- Shapley is a cross-monotonic cost sharing method for Multicast transmission -Submodular function optimization
- Shapley id budget-balance, i.e. recovers the whole cost

Example: Multicast Transmission

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

- Moulin Mechanism for Shapley Cost Shares
- Shapley is a cross-monotonic cost sharing method for Multicast transmission -Submodular function optimization
- Shapley id budget-balance, i.e. recovers the whole cost

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism

I BALLET

• Example: Multicast Transmission

Authors	Problem	eta
[Moulin, Shenker '01]	submodular cost	1
[Jain, Vazirani '01]	MST	1
	Steiner tree and TSP	2
[Devanur, Mihail, Vazirani '03]	set cover	$\log n$
(strategyproof only)	facility location	1.61
[Pal, Tardos '03]	facility location	3
	SRoB	15
[Leonardi, Schäfer '03], [Gupta et al. '03]	SRoB	4
[Leonardi, Schäfer '03]	CFL	30
[Könemann, Leonardi, Schäfer '05]	Steiner forest	2
[Gupta, Könemann, Leonardi, Ravi, Schäfer '07]	Prize Collecting Steiner Forest	3
[Goyal, Gupta, Leonardi, Ravi '07]	2-Stage Stochastic Steiner Tree	<i>O</i> (1)

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- Primal-dual Algorithm for Facility Location
- Example of execution of the algorithm
- Proof of 3 approximation.
- A Strategyproof Mechanism
- A Strategyproof Mechanism
- The Mechanism is not Group-strategyproof
- Design of Group-strategyproof
- Mechanisms
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Authors				Problem	eta
[Immorlica, Mahdian, Mirrokni '05]				edge cover	2
				facility location	3
				vertex cover	$n^{1/3}$
				set cover	n
[Könemann, Zwam '05]	Leonardi,	Schäfer,	van	Steiner tree	2

Algorithm and Mechanism
 Design

.....

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

- The Mechanism
- Cost-shares
- Example of execution of the algorithm

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

Group-strategyproof for Facility location

The Mechanism

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Group-strategyproof for Facility location
- The Mechanism
- Cost-shares
- Example of execution of the algorithm

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

Demands continue to contribute towards opening facilities even after connection:

- **Raise dual variables** α_j even after demand j is connected
- The cost share of user j is still the earliest time of connection of user j
- How can we limit the number and the cost of opened facilities?
- We still like to recover at least a costant fraction of the opening cost?

[Pal and Tardos, 2003]

Cost-shares

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

- The Mechanism
- Cost-shares
- Example of execution of the algorithm

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

- S_i :users contributing to making facility *i* full, all within distance t_i from *i*
- Raise cost share α_j even after j becomes tight with an opened facility:

$\xi_j = \min\{\min_{i:j \in S_i} t_i, \min_{i:j \notin S_i} c_{ij}\}$

- Cost shares are cross-monotonic since by adding more users, every facility becomes full earlier
 - Do not open a facility at time t_i if one at distance $\leq 2t_i$ already exists.

The mechanism is still 3-budget balanced!

Example of execution of the algorithm

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

- The Mechanism
- Cost-shares

 Example of execution of the algorithm

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Steiner Forests

 Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner forests

- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

• Steiner forests

- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Steiner forests

Input:

- undirected graph G = (V, E);
- non-negative edge costs $c: E \to \mathbb{R}^+$;
- terminal-pairs $R = \{(s_1, t_1), \dots, (s_k, t_k)\} \subseteq V \times V$.

Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

• Steiner forests

- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Steiner forests

Input:

- undirected graph G = (V, E);
- non-negative edge costs $c: E \to \mathbb{R}^+$;
- terminal-pairs $R = \{(s_1, t_1), \dots, (s_k, t_k)\} \subseteq V \times V$.

Goal:

Compute min-cost forest F in G such that s and t are in same tree for all $(s, t) \in R$.

Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner forests

- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Steiner forests

Input:

- undirected graph G = (V, E);
- non-negative edge costs $c: E \to \mathbb{R}^+$;
- terminal-pairs $R = \{(s_1, t_1), \dots, (s_k, t_k)\} \subseteq V \times V.$

Goal:

Compute min-cost forest *F* in *G* such that *s* and *t* are in same tree for all $(s, t) \in R$.

Special case: Steiner trees.

Compute a min-cost tree spanning a teminal-set $R \subseteq V$.

Steiner forests: Example

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

• Steiner forests

• Steiner forests: Example

- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

■ Example with four terminal pairs: R = {(s_i, t_i)}_{1≤i≤4}
 ■ All edges have unit cost.

Steiner forests: Example

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

• Steiner forests

• Steiner forests: Example

Our Result

- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

■ Example with four terminal pairs: R = {(s_i, t_i)}_{1≤i≤4}
 ■ All edges have unit cost.

Total cost is 4!

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- ●Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

 [Agrawal, Klein, Ravi '95] (see also [Goemans, Williamson '95]):

Primal-dual 2-approximation for Steiner forests.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

[Agrawal, Klein, Ravi '95] (see also [Goemans, Williamson '95]):

Primal-dual 2-approximation for Steiner forests.

[Jain, Vazirani '01]:

Group-strategyproof cost-sharing mechanism for Steiner trees that satisfies competitiveness and 2-budget balance.

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline
- Cost-Sharing Mechanisms

Group-strategyproof for Facility location

- Steiner Forests
- Steiner forests
- Steiner forests: Example
- Our ResultPrimal-Dual
- Primai-Duai
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

[Agrawal, Klein, Ravi '95] (see also [Goemans, Williamson '95]):

Primal-dual 2-approximation for Steiner forests.

[Jain, Vazirani '01]:

Group-strategyproof cost-sharing mechanism for Steiner trees that satisfies competitiveness and 2-budget balance.

[Könemann, L., Schäfer, 2005]:

Group-strategyproof cost-sharing mechanism for Steiner forests that satisfies competitiveness and 2-budget balance.

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

```
Cost-Sharing Mechanisms
```

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

[Agrawal, Klein, Ravi '95] (see also [Goemans, Williamson '95]):

Primal-dual 2-approximation for Steiner forests.

[Jain, Vazirani '01]:

Group-strategyproof cost-sharing mechanism for Steiner trees that satisfies competitiveness and 2-budget balance.

[Könemann, L., Schäfer, 2005]:

Group-strategyproof cost-sharing mechanism for Steiner forests that satisfies competitiveness and 2-budget balance.

Steiner Forests: Primal-dual algorithm

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example

Our Result

- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

We sketch primal-dual algorithm SF due to [Agrawal, Klein, Ravi '95] (see also [Goemans, Williamson '95]).

Steiner Forests: Primal-dual algorithm

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example

Our Result

Primal-Dual

- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

- We sketch primal-dual algorithm SF due to [Agrawal, Klein, Ravi '95] (see also [Goemans, Williamson '95]).
- Algorithm SF computes
 - feasible Steiner forest F, and
 - feasible dual solution y
 - at the same time.

Key trick: Use dual y and weak duality to bound cost of F.

Primal LP: Steiner Cuts

 Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual

Primal LP: Steiner Cuts

- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Primal has variables x_e for all $e \in E$. $x_e = 1$ if e is in Steiner forest, 0 otherwise

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual

Primal LP: Steiner Cuts

- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Primal has variables x_e for all $e \in E$. $x_e = 1$ if e is in Steiner forest, 0 otherwise

Steiner cut: Subset of nodes that separates at least one terminal pair $(s, t) \in R$.

Any feasible Steiner forest must contain at least one of the red edges!

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

```
Cost-Sharing Mechanisms
```

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual

Primal LP: Steiner Cuts

- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Primal LP has one constraint for each Steiner cut.

 $\begin{array}{lll} \min & \sum_{e \in E} c_e x_e \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e & \geq & 1 & \forall \text{ Steiner cut } U \\ & & x_e & \geq & 0 & \forall e \in E \end{array}$

 $\delta(U)$: Edges with exactly one endpoint in U.

Steiner trees: Dual LP

Algorithm and Mechanism
 Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts

Dual LP

- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Dual LP has a variable y_U for all Steiner cuts U.

 $\delta(U)$: Edges with exactly one endpoint in U.

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP

Pictorial View

- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Can visualize y_U as disks around U with radius y_U . Example: Terminal pair $(s, t) \in R$, edge (s, t) with cost 4

 $y_s = y_t = 0$

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP

Pictorial View

- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Can visualize y_U as disks around U with radius y_U . Example: Terminal pair $(s, t) \in R$, edge (s, t) with cost 4

 $y_s = y_t = 1$

Dual LP: Pictorial View

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP

Pictorial View

- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Can visualize y_U as disks around U with radius y_U . Example: Terminal pair $(s, t) \in R$, edge (s, t) with cost 4

Algorithm SF: Example

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View

● Algorithm SF: Example

• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Algorithm grows duals of connected components.

Algorithm SF: Example

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View

● Algorithm SF: Example

• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Algorithm grows duals of connected components.

Algorithm SF: Example

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View

● Algorithm SF: Example

• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Algorithm grows duals of connected components.

Algorithm SF: Example

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View

● Algorithm SF: Example

• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Algorithm grows duals of connected components.

Algorithm SF: Example

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View

● Algorithm SF: Example

PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

PD-Algorithm: Properties

Algorithm and Mechanism
 Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example

• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Theorem [Agrawal, Klein, Ravi '95]: Algorithm computes forest *F* and dual *y* such that

$$c(F) \le (2 - 1/k) \cdot \sum_U y_U \le (2 - 1/k) \cdot \operatorname{opt}_R$$

PD-Algorithm: Properties

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

```
Cost-Sharing Mechanisms
```

```
Group-strategyproof for Facility location
```

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lower Bounds

Theorem [Agrawal, Klein, Ravi '95]: Algorithm computes forest *F* and dual *y* such that

$$c(F) \le (2 - 1/k) \cdot \sum_{U} y_U \le (2 - 1/k) \cdot \operatorname{opt}_R.$$

Main trick: Edge (s, t) becomes tight at time t.

Use twice the dual around s and t to pay for cost of path.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Steiner Forest Cost-Sharing Mechanism

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

• Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- $\bullet \operatorname{Bounding} \sum_r \xi_R(r)$

Lower Bounds

 Say: terminal pair (s, t) is active at time t if s and t are not in same moat.
 Example: All terminals are active.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

• Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- $\bullet \operatorname{Bounding} \sum_r \xi_R(r)$

Lower Bounds

- Say: terminal pair (s, t) is active at time t if s and t are not in same moat.
 Example: All terminals are active.
- Grow active moats by ϵ .

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

• Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

- Say: terminal pair (s, t) is active at time t if s and t are not in same moat.
 Example: All terminals are active.
- Grow active moats by ϵ .
- Growth of moats is shared among active terminals.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

• Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

- Say: terminal pair (s, t) is active at time t if s and t are not in same moat.
 Example: All terminals are active.
- Grow active moats by ϵ .
- Growth of moats is shared among active terminals.
- Cost-share increase for ...

 $s_1:\epsilon/3$ $t_2:\epsilon/2$ $t_1:\epsilon$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

● Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- $\bullet \operatorname{Bounding} \sum_r \xi_R(r)$

Lower Bounds

• $U^t(r)$: moat of terminal r at time t.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

● Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-MonotonicityProving Cost Recovery and
- Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

• $U^t(r)$: moat of terminal r at time t.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

• Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- $\bullet \operatorname{Bounding} \sum_r \xi_R(r)$

Lower Bounds

- $U^t(r)$: moat of terminal r at time t.
- a^t(r) : number of active terminals in U^t(r);
 e.g., a^t(s₁) = 3.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

• Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- $\bullet \operatorname{Bounding} \sum_r \xi_R(r)$

Lower Bounds

- $U^t(r)$: moat of terminal r at time t.
- $a^t(r)$: number of active terminals in $U^t(r)$; e.g., $a^t(s_1) = 3$.
- Suppose terminal $r \in R$ becomes inactive at time T. Cost-share:

$$\xi_Q(r) = \int_0^T \frac{1}{a^t(r)} \, dt$$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

• Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

- $U^t(r)$: moat of terminal r at time t.
- $a^t(r)$: number of active terminals in $U^t(r)$; e.g., $a^t(s_1) = 3$.
- Suppose terminal $r \in R$ becomes inactive at time T. Cost-share:

$$\xi_Q(r) = \int_0^T \frac{1}{a^t(r)} dt$$

• For terminal-pair $(s, t) \in R$: $\xi_Q(s, t) = \xi_Q(s) + \xi_Q(t)$

Algorithm and Mechanism
 Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

● Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- $\bullet \operatorname{Bounding} \sum_r \xi_R(r)$

Lower Bounds

Q: Is ξ cross-monotonic? A: No!

Simple example: $R = \{(s, t), (s_1, t_1), (s_2, t_2)\}, R_0 = R \setminus \{(s_2, t_2)\}$

 Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

● Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- $\bullet \operatorname{Bounding} \sum_r \xi_R(r)$

Lower Bounds

Q: Is ξ cross-monotonic? A: No!

Simple example: $R = \{(s,t), (s_1,t_1), (s_2,t_2)\}, R_0 = R \setminus \{(s_2,t_2)\}$

t = 0.5

Algorithm and Mechanism
 Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
 Proving Cost Resource and
- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Q: Is ξ cross-monotonic? A: No!

Simple example: $R = \{(s,t), (s_1,t_1), (s_2,t_2)\}, R_0 = R \setminus \{(s_2,t_2)\}$

Algorithm and Mechanism
 Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

● Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- $\bullet \operatorname{Bounding} \sum_r \xi_R(r)$

Lower Bounds

Q: Is ξ cross-monotonic? A: No!

Simple example: $R = \{(s,t), (s_1,t_1), (s_2,t_2)\}, R_0 = R \setminus \{(s_2,t_2)\}$

 $\mathbf{c} = 1.5$

• $\xi_R(s,t) = 5$ • $\xi_{R_0}(s,t) = 3$

Stefano Leonardi, May 30, 2011

Algorithm and Mechanism
 Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

● Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- $\bullet \operatorname{Bounding} \sum_r \xi_R(r)$

Lower Bounds

Q: Is ξ cross-monotonic? A: No!

Simple example: $R = \{(s, t), (s_1, t_1), (s_2, t_2)\}, R_0 = R \setminus \{(s_2, t_2)\}$

$$\bullet \xi_R(s,t) = 5$$

$$\xi_{R_0}(s,t) = 3$$

• Activity time of (s, t) depends on $(s_2, t_2)!$

Algorithm and Mechanism
 Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- \bullet Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
 Proving Cost Recovery and
- Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Previous try: Activity-times of terminal pairs inter-dependent.

[Könemann, L., Schäfer, van Zwam, 2008]:

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
 Proving Cost Reservery and
- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Previous try: Activity-times of terminal pairs inter-dependent. How long would they need to connect if no other terminal was in the game?

[Könemann, L., Schäfer, van Zwam, 2008]:

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
 Try 2: Independent Activity
- Time
- Proving Cross-MonotonicityProving Cost Recovery and

Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Previous try: Activity-times of terminal pairs inter-dependent. How long would they need to connect if no other terminal was in the game?

Death time of terminal-pair $(s,t) \in R$:

$$\mathsf{d}(s,t) = \frac{c(s,t)}{2},$$

where c(s,t) is cost of minimum-cost s, t-path.

[Könemann, L., Schäfer, van Zwam, 2008]:

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-MonotonicityProving Cost Recovery and
- Competitiveness
- $\bullet \operatorname{Bounding} \sum_r \xi_R(r)$

Lower Bounds

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-MonotonicityProving Cost Recovery and
- Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-MonotonicityProving Cost Recovery and
- Competitiveness
- $\bullet \operatorname{Bounding} \sum_r \xi_R(r)$

Lower Bounds

- Terminal r is active until time d(r).
- SF grows moats as long as they contain active terminals.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-MonotonicityProving Cost Recovery and
- Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

- **Terminal** r is active until time d(r).
- SF grows moats as long as they contain active terminals.
- Cost-share of terminal *r*:

$$\xi_R(r) = \int_0^{\mathbf{d}(r)} \frac{1}{a^t(r)} \, dt.$$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
 Try 2: Independent Activity
- Time
- Proving Cross-MonotonicityProving Cost Recovery and
- Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

- Terminal r is active until time d(r).
- SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:

$$\xi_R(r) = \int_0^{\mathbf{d}(r)} \frac{1}{a^t(r)} \, dt.$$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
 Try 2: Independent Activity
- Time
- Proving Cross-MonotonicityProving Cost Recovery and
- Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

SF grows moats as long as they contain active terminals.

■ Cost-share of terminal *r*:

t = 0.5

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

- Steiner Forests
- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
 Try 2: Independent Activity
- Time
- Proving Cross-Monotonicity
 Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

- Terminal r is active until time d(r).
- SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:
 - $\xi_R(r) = \int_0^{\mathbf{d}(r)} \frac{1}{a^t(r)} \, dt.$

t = 1.5

 $\bullet \xi_R(s_1, t_1) = 2$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Group-strategyproof for Facility location
- Steiner Forests
- Steiner Forest CS-Mechanism Try 1: sF and Shapley Value Try 2: Independent Activity Time
- Proving Cross-MonotonicityProving Cost Recovery and
- Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

- Terminal r is active until time d(r).
- SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:

$$\xi_R(r) = \int_0^{\mathbf{d}(r)} \frac{1}{a^t(r)} \, dt.$$

• $\xi_R(s_1, t_1) = 2, \ \xi_R(s, t) = 6.$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-MonotonicityProving Cost Recovery and

Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:

$\xi_R(r) = \int_0^{\mathbf{d}(r)} \frac{1}{a^t(r)} \, dt.$

•
$$\xi_R(s_1, t_1) = 2$$
, $\xi_R(s, t) = 6$.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

- Steiner Forests
- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
 Proving Cost Recovery and Competitiveness
- Bounding $\sum_{r} \xi_{B}(r)$

Lower Bounds

- Terminal r is active until time d(r).
- SF grows moats as long as they contain active terminals.
- Cost-share of terminal *r*:

$$\xi_R(r) = \int_0^{\mathbf{d}(r)} \frac{1}{a^t(r)} \, dt.$$

$$t = 1.5$$

•
$$\xi_R(s_1, t_1) = 2, \ \xi_R(s, t) = 6.$$

• $\xi_{R_0}(s_1, t_1) = 3$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

- Group-strategyproof for Facility location
- Steiner Forests
- Steiner Forest CS-Mechanism

 Try 1: SF and Shapley Value
 Try 2: Independent Activity
 Time
- Proving Cross-Monotonicity
 Proving Cost Recovery and
- Competitiveness
- Bounding $\sum_r \xi_R(r)$

Lower Bounds

- **Terminal** r is active until time d(r).
- SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:
 - $\xi_R(r) = \int_0^{\mathbf{d}(r)} \frac{1}{a^t(r)} \, dt.$

Proving Cross-Monotonicity

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Lemma: ξ is cross-monotonic.

Proof: $\blacksquare R_0 = R \setminus \{(s,t)\}.$

Proving Cross-Monotonicity

Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- \bullet Try 1: ${\tt SF}$ and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Lemma: ξ is cross-monotonic.

- Proof: $R_0 = R \setminus \{(s,t)\}.$
- $U_0^t(r)$: Moat of r at time t in $SF(R_0)$.
Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- \bullet Try 1: ${\tt SF}$ and Shapley Value
- Try 2: Independent Activity Time

Proving Cross-Monotonicity

- Proving Cost Recovery and Competitiveness
- Bounding $\sum_r \xi_R(r)$

Lower Bounds

Lemma: ξ is cross-monotonic.

Proof:

- $\blacksquare R_0 = R \setminus \{(s,t)\}.$
- $U_0^t(r)$: Moat of r at time t in $SF(R_0)$.
- $a_0^t(r)$: Number of active terminals in $U_0^t(r)$.

Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- \bullet Try 1: ${\tt SF}$ and Shapley Value
- Try 2: Independent Activity Time

```
    Proving Cross-Monotonicity
    Proving Cost Recovery and
```

Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Lemma: ξ is cross-monotonic.

Proof:

- $\blacksquare R_0 = R \setminus \{(s,t)\}.$
- $U_0^t(r)$: Moat of r at time t in $SF(R_0)$.
- $a_0^t(r)$: Number of active terminals in $U_0^t(r)$.
- Death-times of terminal-pairs are instance independent! Therefore: For each $r \in R_0$:

$$U_0^t(r) \text{ active } \Longrightarrow U^t(r) \text{ active and } U_0^t(r) \subseteq U^t(r)$$

Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-MonotonicityProving Cost Recovery and
- Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Lemma: ξ is cross-monotonic.

Proof:

- $\blacksquare R_0 = R \setminus \{(s,t)\}.$
- $U_0^t(r)$: Moat of r at time t in $SF(R_0)$.
- $a_0^t(r)$: Number of active terminals in $U_0^t(r)$.
- Death-times of terminal-pairs are instance independent! Therefore: For each $r \in R_0$:

$$U_0^t(r)$$
 active $\Longrightarrow U^t(r)$ active and $U_0^t(r) \subseteq U^t(r)$

• Implies: $a_0^t(r) \le a^t(r)$ for all $t \ge 0$ and $r \in R_0$.

Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
 Proving Cost Recovery and
- Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Lemma: ξ is cross-monotonic.

Proof:

- $\blacksquare R_0 = R \setminus \{(s,t)\}.$
- $U_0^t(r)$: Moat of r at time t in $SF(R_0)$.
- $a_0^t(r)$: Number of active terminals in $U_0^t(r)$.
- Death-times of terminal-pairs are instance independent! Therefore: For each $r \in R_0$:

$$U_0^t(r)$$
 active $\Longrightarrow U^t(r)$ active and $U_0^t(r) \subseteq U^t(r)$

- Implies: $a_0^t(r) \leq a^t(r)$ for all $t \geq 0$ and $r \in R_0$.
- We obtain: For each $r \in R_0$:

$$\xi_R(r) = \int_0^{\mathbf{d}(r)} \frac{1}{a^t(r)} \, dt \le \int_0^{\mathbf{d}(r)} \frac{1}{a_0^t(r)} \, dt = \xi_{R_0}(r).$$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
 Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Lemma: ξ satisfies cost recovery and 2-approximate competitiveness.

Proof:

Let F and y be forest and corresponding dual computed by SF.

Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Lemma: ξ satisfies cost recovery and 2-approximate competitiveness.

Proof:

- Let F and y be forest and corresponding dual computed by SF.
- SF-Theorem implies

$$c(F) \le 2 \cdot \sum_{U \subseteq V} y_U = 2 \cdot \sum_{r \in R} \xi_R(r).$$

y is **not** dual feasible! Some active moats do not correspond to Steiner cuts.

Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time

 Proving Cross-Monotonicity
 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Lemma: ξ satisfies cost recovery and 2-approximate competitiveness.

Proof:

- Let F and y be forest and corresponding dual computed by SF.
- SF-Theorem implies

$$c(F) \le 2 \cdot \sum_{U \subseteq V} y_U = 2 \cdot \sum_{r \in R} \xi_R(r).$$

y is **not** dual feasible! Some active moats do not correspond to Steiner cuts.

• Can show: $\sum_{r \in R} \xi_R(r) \leq \operatorname{opt}_R$.

Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time

 Proving Cross-Monotonicity
 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lower Bounds

Lemma: ξ satisfies cost recovery and 2-approximate competitiveness.

Proof:

- Let F and y be forest and corresponding dual computed by SF.
- SF-Theorem implies

$$c(F) \le 2 \cdot \sum_{U \subseteq V} y_U = 2 \cdot \sum_{r \in R} \xi_R(r).$$

y is **not** dual feasible! Some active moats do not correspond to Steiner cuts.

- Can show: $\sum_{r \in R} \xi_R(r) \leq \operatorname{opt}_R$.
- This implies:

$$c(F) \le 2 \cdot \sum_{r \in R} \xi_R(r) \le 2 \cdot \operatorname{opt}_R.$$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

 Lower Bound for Cross-Monotonicity

- Lower Bound for Steiner Trees
- Limitations of Moulin
- mechanismsObjectives
- Known Results Social Cost
- Summary
- Open Issues

Lower bounds for cross-monotonic cost-sharing mechanisms

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

 Lower Bound for Cross-Monotonicity

- Lower Bound for Steiner Trees
- Limitations of Moulin
- mechanismsObjectives
- Known Results Social Cost
- Summary
- Open Issues

[Immorlica, Mahdian, Mirrokni '05]: Give bounds on budget balance of cross-monotonic cost-sharing methods for facility location (3), vertex cover (n^{1/3}) and edge cover (2).

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

- Lower Bound for
- Cross-Monotonicity

 Lower Bound for Steiner Trees
- Lower Bound for Steiner Tree
 Limitations of Moulin
- mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

Immorlica, Mahdian, Mirrokni '05]: Give bounds on budget balance of cross-monotonic cost-sharing methods for facility location (3), vertex cover $(n^{1/3})$ and edge cover (2).

We prove a lower bound of 2 for Steiner trees.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

 Lower Bound for Cross-Monotonicity

- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

[Immorlica, Mahdian, Mirrokni '05]: Give bounds on budget balance of cross-monotonic cost-sharing methods for facility location (3), vertex cover (n^{1/3}) and edge cover (2).

- We prove a lower bound of 2 for Steiner trees.
- \blacksquare \Rightarrow our result for Steiner forest is tight.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline
- Cost-Sharing Mechanisms
- Group-strategyproof for Facility location
- Steiner Forests
- Steiner Forest CS-Mechanism
- Lower Bounds
- Lower Bound for Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

- Immorlica, Mahdian, Mirrokni '05]: Give bounds on budget balance of cross-monotonic cost-sharing methods for facility location (3), vertex cover $(n^{1/3})$ and edge cover (2).
- We prove a lower bound of 2 for Steiner trees.
- $\blacksquare \Rightarrow$ our result for Steiner forest is tight.
- Lower bounds are irrespective of time complexity.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

```
Cost-Sharing Mechanisms
```

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

 Lower Bound for Cross-Monotonicity

- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

[Immorlica, Mahdian, Mirrokni '05]: Give bounds on budget balance of cross-monotonic cost-sharing methods for facility location (3), vertex cover (n^{1/3}) and edge cover (2).

- We prove a lower bound of 2 for Steiner trees.
- $\blacksquare \Rightarrow$ our result for Steiner forest is tight.
- Lower bounds are irrespective of time complexity.
- Proofs exploit the core property (weaker than cross-monotonicity):

 $\forall Q \subseteq V, \ \sum_{j \in Q} \xi_V(j) \leq \operatorname{opt}_Q$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

```
Cost-Sharing Mechanisms
```

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

- Lower Bound for Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin
- mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

[Immorlica, Mahdian, Mirrokni '05]: Give bounds on budget balance of cross-monotonic cost-sharing methods for facility location (3), vertex cover (n^{1/3}) and edge cover (2).

- We prove a lower bound of 2 for Steiner trees.
- $\blacksquare \Rightarrow$ our result for Steiner forest is tight.
- Lower bounds are irrespective of time complexity.
- Proofs exploit the core property (weaker than cross-monotonicity):

$$\forall Q \subseteq V, \ \sum_{j \in Q} \xi_V(j) \leq \mathsf{opt}_Q$$

Turns into a lower bound on budget-balance of group-strategyproof methods only if there are no free riders.

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

- Lower Bound for
- Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

 k pairwise disjoint classes A_i of m vertices.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

- Lower Bound for
- Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

- k pairwise disjoint classes A_i of m vertices.
- Select a random class $A_i = \{c_1, \dots, c_m\}.$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- $lacebox{Overview}$ of the tutorial
- Talk Outline
- Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

- Lower Bound for Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

- k pairwise disjoint classes A_i of m vertices.
- Select a random class $A_i = \{c_1, \dots, c_m\}.$
- For each class $j \neq i$ select a random vertex a_j .

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

Lower Bound for

- Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

```
Group-strategyproof for Facility location
```

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

- Lower Bound for
- Cross-Monotonicity

 Lower Bound for Steiner Trees
- Lower Bound for Steiner Tree
 Limitations of Moulin
- mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

 $\mathcal{B} := \{ \{a_1, \dots, a_k\} : a_i \in A_i, \ i = 1, \dots, k \}.$

For each $B \in \mathcal{B}$: vertex f_B with distance 1 to all vertices in B.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

```
Group-strategyproof for Facility location
```

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

- Lower Bound for Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

 $B := \{\{a_1, \dots, a_k\} : a_i \in A_i, i = 1, \dots, k\}.$

For each $B \in \mathcal{B}$: vertex f_B with distance 1 to all vertices in B.

• f_B is connected to the root r, with edges of length 3.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

 Lower Bound for Cross-Monotonicity

- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

 $B := \{\{a_1, \dots, a_k\} : a_i \in A_i, i = 1, \dots, k\}.$

For each $B \in \mathcal{B}$: vertex f_B with distance 1 to all vertices in B.

- f_B is connected to the root r, with edges of length 3.
- *f_B* has distance 3 to vertices not in

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- $lacebox{Overview}$ of the tutorial
- Talk Outline

```
Cost-Sharing Mechanisms
```

```
Group-strategyproof for Facility location
```

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

 Lower Bound for Cross-Monotonicity

- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

 $B := \{\{a_1, \dots, a_k\} : a_i \in A_i, i = 1, \dots, k\}.$

For each $B \in \mathcal{B}$: vertex f_B with distance 1 to all vertices in B.

- f_B is connected to the root r, with edges of length 3.
- *f_B* has distance 3 to vertices not in
 B.

For each
$$c_l$$
, $l = 1, ..., m$,
 $c(\{a_1, ..., a_{i-1}, c_l, a_{i+1}, a_k\}) = k+3$
implies $\xi(c_l) = \frac{k+3}{k}$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

```
Cost-Sharing Mechanisms
```

```
Group-strategyproof for Facility location
```

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

• Lower Bound for

- Cross-Monotonicity

 Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

 $\mathcal{B} := \{ \{a_1, \dots, a_k\} : a_i \in A_i, \ i = 1, \dots, k \}.$

For each $B \in \mathcal{B}$: vertex f_B with distance 1 to all vertices in B.

- f_B is connected to the root r, with edges of length 3.
- *f_B* has distance 3 to vertices not in
 B.

• For each
$$c_l$$
, $l = 1, ..., m$,
 $c(\{a_1, ..., a_{i-1}, c_l, a_{i+1}, a_k\}) = k+3$
implies $\xi(c_l) = \frac{k+3}{k}$

Total cost share:

$$\sum_{c \in A_i} \xi(c) + \sum_{j \neq i} \xi(a_j) \le m \times \frac{k+3}{k} + k + 2$$

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

```
Cost-Sharing Mechanisms
```

```
Group-strategyproof for Facility location
```

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

• Lower Bound for

- Cross-Monotonicity

 Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

 $\mathcal{B} := \{ \{a_1, \dots, a_k\} : a_i \in A_i, \ i = 1, \dots, k \}.$

For each $B \in \mathcal{B}$: vertex f_B with distance 1 to all vertices in B.

- f_B is connected to the root r, with edges of length 3.
- *f_B* has distance 3 to vertices not in
 B.

For each
$$c_l$$
, $l = 1, ..., m$,
 $c(\{a_1, ..., a_{i-1}, c_l, a_{i+1}, a_k\}) = k+3$
implies $\xi(c_l) = \frac{k+3}{k}$

Total cost share:

$$\sum_{c \in A_i} \xi(c) + \sum_{j \neq i} \xi(a_j) \le m \times \frac{k+3}{k} + k + 2$$

• opt $\geq 2m + k + 3$

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

```
Cost-Sharing Mechanisms
```

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

- Lower Bound for Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

Objectives:

- Strategyproofness: Dominant strategy for each user is to bid true utility.
- Group-Strategyproofness: Same holds even if users collaborate. No side payments between users.

• Cost Recovery or Budget Balance: $\sum_{j \in Q} p_j \ge c(Q)$.

- **Competitiveness:** $\sum_{j \in Q} p_j \leq \operatorname{opt}_Q$.
- *α*-Efficiency approximate maximum social welfare:

$$u(Q) - c(Q) \ge \frac{1}{\alpha} \cdot \max_{S \subseteq U} [u(S) - C(S)], \quad \alpha \ge 1$$

No mechanism can achieve (approximate) budget balance, truthfullness and efficiency [Feigenbaum et al. '01]

Limitations of Moulin mechanisms

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

 Lower Bound for Cross-Monotonicity

- Lower Bound for Steiner Trees
- Limitations of Moulin
- mechanismsObjectives
- Known Results Social Cost
- Summary
- Open Issues

Moulin mechanism ends with dropping all players

 (1+ϵ)-budget balance solution achieves H(k) social welfare.

Objectives

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline
- Cost-Sharing Mechanisms
- Group-strategyproof for Facility location
- Steiner Forests
- Steiner Forest CS-Mechanism

Lower Bounds

- Lower Bound for Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

1. β -budget balance: approximate total cost

$$\frac{1}{\beta}c(Q) \leq p(Q) \leq \operatorname{opt}_Q, \quad \beta \geq 1$$

- 2. Group-strategyproofness: bidding truthfully $b_i = u_i$ is a dominant strategy for every user $i \in U$, even if users cooperate
- 3. α -approximate: approximate minimum social cost

$$\Pi(Q) \le \alpha \cdot \min_{S \subseteq U} \Pi(S), \quad \alpha \ge 1$$

where $\Pi(S) := u(U \setminus S) + C(S)$

[Roughgarden and Sundararajan '06]

Algorithm	and	Mechanism	
Design			

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

```
Group-strategyproof for Facility location
```

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

Lower Bound for

Cross-Monotonicity

- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

	Authors	Problem	eta	α
	[Roughgarden, Sundararajan '06]	submodular cost	1	$\Theta(\log n)$
		Steiner tree	2	$\Theta(\log^2 n)$
	[Chawla, Roughgarden, Sundarara- jan '06]	Steiner forest	2	$\Theta(\log^2 n)$
-	[Roughgarden, Sundararajan]	facility location	3	$\Theta(\log n)$
_		SRoB	4	$\Theta(\log^2 n)$
_	[Gupta, Könemann, Leonardi, Ravi, Schäfer '07]	prize-collecting Steiner forest	3	$\Theta(\log^2 n)$
s	[Goyal, Gupta, Leonardi, Ravi '07]	2-stage Stochastic Steiner Tree	<i>O</i> (1)	$\Theta(\log^2 n)$

Summary

- Algorithm and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline
- Cost-Sharing Mechanisms
- Group-strategyproof for Facility location
- Steiner Forests
- Steiner Forest CS-Mechanism
- Lower Bounds
- Lower Bound for
- Cross-Monotonicity
- Lower Bound for Steiner Trees
 Limitations of Moulin
- mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

- Introduced cost-sharing mechanisms for network design problems
- Presented cross-monotonic cost-sharing methods for Steiner forests and facility location.
- Presented a lower bounds on budget balance for cross-monotonic cost-sharing methods.
- Presenteed bounds on efficiency loss.

 Algorithm and Mechanism Design

- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

Lower Bound for

Cross-Monotonicity

Lower Bound for Steiner Trees

- Limitations of Moulin
- mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

Give better and cross-monotonic cost-sharing methods.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

Lower Bound for

- Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

- Give better and cross-monotonic cost-sharing methods.
- Characterize classes of problems yielding mechanisms with good cost recovery.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

• Lower Bound for

- Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

- Give better and cross-monotonic cost-sharing methods.
- Characterize classes of problems yielding mechanisms with good cost recovery.
- A more satisfactory definition of group-strategyproofness.

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

• Lower Bound for

- Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

- Give better and cross-monotonic cost-sharing methods.
- Characterize classes of problems yielding mechanisms with good cost recovery.
- A more satisfactory definition of group-strategyproofness.
- Achieve better efficiency loss with randomized mechanisms?

- Algorithm and Mechanism
 Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Approximation and Mechanism Design
- Overview of the tutorial
- Talk Outline

Cost-Sharing Mechanisms

Group-strategyproof for Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lower Bounds

Lower Bound for

Cross-Monotonicity

Lower Bound for Steiner Trees

- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

- Give better and cross-monotonic cost-sharing methods.
- Characterize classes of problems yielding mechanisms with good cost recovery.
- A more satisfactory definition of group-strategyproofness.
- Achieve better efficiency loss with randomized mechanisms?
- Players with 0 utility seem to play a crucial role for manipulation. Can this be avoided by using randomization?