Gossiping in Wireless Networks

Leszek Gąsieniec
University of Liverpool
Broadcasting vs. gossiping

- **broadcasting** refers to *one-to-all* communication
- used to disseminate a broadcast message from a distinguished source node to all other nodes in the network

- **gossiping** refers to *all-to-all* communication (total information exchange)
- used to exchange messages within all pairs of nodes (points) in the network
Gossiping

• gathering

• broadcasting
Gossiping motivation

• one of the most fundamental communication primitives
• natural extension of broadcasting
• refers to data aggregation (sensor nets)
• distributed coupon collector’s problem
• more complex (graph theory needed)
•
Wireless network
Wireless network

(sure)

lunch?

why not

yeah
Wireless network

sure

lunch?

HUH??

coffee?

yeah

why not
Wireless network

Represent as a graph
Wireless network

Topology could be unstable
Network parameters

- n number of nodes (devices) in G
- Δ max-degree in G
- D diameter of G, and
- size of messages (constant ... unbounded)
Wireless network protocol

• (un)directed graph with n nodes
• node ids from set \{1,2,...,n^c\}, $c \geq 1$
• full synchronization:
 – discrete time steps
 – shared clock
 – all start at time 0
• communication protocol

transmission

conflict type 1

conflict type 2
Communication algorithms

input/output:

\(id, time, history \rightarrow \{receive, transmit(m)\}\)

algorithm: sequence of transmission sets, where each set contains a subset of nodes ids

assumptions: knowledge of size \(n\) and topology, availability of randomization, capacity of messages

running time: \# of steps till all nodes know \(t\) maximized over all networks of size \(n\)

other complexity measures: message complexity and energy consumption
Wireless broadcasting (UN)

- **deterministic broadcasting**
 - RoundRobin, folklore
 time: $O(n^2)$
 - Chlebus, Gąsieniec, Gibbons, Pelc, Rytter, 2000
 time: $O(n^{11/6})$
 - Chlebus, Gąsieniec, Ostlin, Robson, 2000
 time: $O(n^{3/2})$
 - Chrobak, Gąsieniec, Rytter, 2000
 time: $O(n \cdot \log^2 n)$
 - Kowalski and Pelc, 2003
 time: $O(n \cdot \log n \cdot \log D)$
 - Czumaj and Rytter, 2003
 time: $O(n \cdot \log^2 D)$
 - De Marco, 2008
 time: $O(n \cdot \log n \cdot \log \log n)$
Wireless broadcasting (UN)

Deterministic broadcasting: at time t, node v is dormant, X = active neighbors of v, nodes in set S_t transmit (if informed)

v will receive m iff $|S_t \cap X| = 1$
Wireless broadcasting (UN)

- \((k,m,n)\)-selector is a family \(F\) of subsets (transmission set) of \(U=\{1,\ldots,n^c\}\), s.t.,
 - for any \(k\)-subset \(X\) of \(U\)
 - there are \(m\) elements \(x_1,\ldots,x_m\) in \(X\), s.t.,
 - for each \(x_i\) there is \(S_j\) in \(F\), s.t., \(X \cap S_j=\{x_i\}\).

- **the size of \((k,m,n)\)-selector** is:
 \[\theta(\frac{k^2 \log n}{(k-m+1)})\]
 - almost linear in \(k\) if \(k-m=\Omega(k)\)
 - quadratic \(m\) is too close to \(k\)
Wireless gossiping (UN)

• **deterministic gossiping**
 – Chrobak, Gąsieniec and Rytter
 in time: $O\left(n^{3/2}\log^2 n\right)$

Algorithm `Gossip();`

- perform $n^{1/2}\cdot\log^2 n$ rounds of `RoundRobin;`

while max $v \mid K(v) \mid = 0$

 Find a node v_{max}, s.t., $\mid K(v_{max}) \mid = \max v \mid K(v) \mid$;

 Broadcast from v_{max} message $K(v_{max})$;

 for each node v

 $K(v) \leftarrow K(v) \setminus K(v_{max});$
Wireless gossiping (UN)

- **deterministic gossiping** follow up
 - Xu, 2003
 time: $O(n^{3/2})$
 - Clementi, Monti and Silvestri, 2001
 time: $O(n \cdot \Delta^2 \cdot \log^c n)$
 - Gaśieniec and Lingas, 2002,
 time: $O(n \cdot D^{1/2} \cdot \log^c n), O(n \cdot \Delta^{3/2} \cdot \log^c n)$
Wireless gossiping (UN)

- **deterministic gossiping** *state of the art*
 - Gąsieniec, Radzik and Xin, 2004

 time: $O(n^{4/3} \log^c n)$

 - a *path selector* of length $O(k^2 \log^c n)$ allows a node v to push through its own message m along path P with the neighbourhood $\leq k$.

 [selection is done across a number of levels]

 - supplemented by *virtual reduction of degrees* provides the *best currently known solution!*
Wireless gossiping (UN)

• **distributed coupon collection problem**
 - the nodes stand for *n bins* and their messages serve as *n coupons*. Each coupon has *> k copies* in different bins, M_v is the content of bin v.
 - at each step, we open bins at random, by choosing each bin, independently, with probability $1/n$.
 - if exactly one bin, say v, is opened, all coupons from M_v are collected. Otherwise, a failure occurs and no coupons are collected.
 - for any positive constant $d<1$, repeating the step $(4n/k)\ln(n/d)$ times with probability at least $1-d$, all coupons will be collected.
Wireless gossiping (UN)

• *randomized gossiping*

Algorithm RANDGOSSIP

\[d = \frac{\varepsilon}{\log n}; \]

\[\text{for } i = 0, 1, \ldots, \log n - 1 \text{ do } \{ \text{round } i \} \]

\[\text{repeat } (\frac{4n}{2^i}) \ln (n/d) \text{ times} \]

\[\text{with probability } \frac{1}{n} \text{ do } \]

\[\text{LTDBROADCAST}_{v}(2^{i+1}); \]

• **INVARIANT**: on the conclusion of round \(i \) each message has \(2^{i+1} \) copies in different nodes
Wireless gossiping (UN)

- **randomized gossiping**
 - Chrobak, Gaśieniec, and Rytter, 2001
 time: $O(n \cdot \log^4 n)$
 - Liu and Prabhakaran, 2002
 time: $O(n \cdot \log^3 n)$
 - Czumaj and Rytter, 2003
 time: $O(n \cdot \log^2 n)$
Wireless gossiping (UN)

• deterministic *gossiping in symmetric graphs with unbounded messages*
 – Gąsieniec, Pagourtzis, and Potapov 2002
 \[\text{time: } O(n \log^4 n) \]
Wireless gossiping (UN)

• **gossiping with unit-size messages**
 – Christersson, Gąsieniec, and Lingas, 2002
 \[\text{time: } O(n^{3/2} \log^c n)\]

• gossiping with messages of size \(n^t\)
 – Christersson, Gąsieniec, and Lingas, 2002
 \[\text{time: } O(n^{2-t} \log^c n)\]

• rand. gossiping with unit messages
 – Christersson, Gąsieniec, and Lingas, 2002
 \[\text{time: } O(n \log^c n)\]
Wireless M2M multicast (KN)

• deterministic M2M multicast
 – Gąsieniec, Kranakis, Pelc and Xin, 2004
 time: $O(d \cdot \log^2 n + k \cdot \log^4 n)$.
 – where M2M is the problem of exchanging messages within a fixed group of k nodes at unknown position and the maximum distance between any two participating nodes is d
 – an interesting problem of checking whether the whole (sub)network has been discovered is considered
Wireless communication (KN)

- **broadcasting**
 - tree ranks ($< \log n$)
 - Strahler numbers
 - 2-layer broadcast and
 - slow transmissions
 - pipelining
 - wave of fast transmissions

$O(\log^2 n)$
Wireless communication (KN)

Chlamtac and Weinstein’s broadcast procedure for bipartite graphs

$O(\log^2 n)$

$O(\log^2 n)$

$O(\log^2 n)$

$O(\log^2 n)$

$O(\log^2 n)$

$O(\log n)$ slow transmissions
Wireless communication (KN)

• Broadcasting
 time: $\Omega(\log^2 n)$, shallow graphs
 – Chlamtac and Weinstein, 1984
 time: $O(D \log^2 n)$
 – Kowalski and Pelc, 2004, 2005
 time: $O(D \log n + \log n)$, $O(D + \log^2 n)$
 – Gaber and Mansour, 1995
 time: $O(D + O(\log^5 n))$
 – Elkin and Kortsarz, 2005
 time: $O(D + O(\log^4 n))$
 – Gąsieniec, Peleg and Xin, 2005
 time: $D + O(\log^3 n)$, $D + O(\log^2 n)$
Wireless gossiping (KN)

- fast transfer of all messages between two layers of a bipartite graph can be done in time $O(\Delta)$ using a sequence of *minimal covering sets (MCS)*
 - Gąsieniec, Potapov, and Xin, 2004

\[U\]

All nodes in U have neighbours in $MCS(L)$ and neither node in $MCS(L)$ can be removed without violating this condition.
Wireless gossiping (KN)

- gossiping
 - Gąsieniec, Peleg and Xin, 2005

\[\text{time: } O(D + \Delta \log n) \]
Wireless gossiping (KN)

• there are graphs (e.g., star, line) that require \(n \) steps for radio gossiping and in any graph \(n \) steps suffice.

• **best topology** gives the gossiping time \(\lceil \log(n-1) \rceil + 2 \) for a fraction of integers.

 – Gąsieniec, Potapov, and Xin, 2004
Wireless gossiping (KN)

• *gossiping with small messages*
 – Gaśieniec and Potapov, 2002
 time: lines $3n$, ring $2n$, trees $\sim 3.5n$
 time: general graphs $\Omega(n \log n)$ $O(n \log^2 n)$

• *randomised* counterpart
 – Manne and Xin, 2006
 time: $O(n \log n)$
Other problems in WN

- wake-up problem
- broadcasting
- neighbourhood search
- leader election
- consensus
- mutual exclusion
- ...

27/11/2010 Carleton U - November 2010
Thank you!

A Wireless Gossip

After digging to a depth of 100 meters last year, Japanese scientists found traces of copper wire dating back 1000 years and came to the conclusion that their ancestors already had a telephone network one thousand years ago.

Not to be outdone in the weeks that followed, Chinese scientists dug 200 meters and headlines in the Chinese papers read: "Chinese scientists have found traces of 2000 year old optical fibers and have concluded that their ancestors already had advanced high-tech digital telephone 1000 years earlier than the Japanese."

One week later, the Greek newspapers reported the following: "After digging as deep as 800 meters, Greek scientists have found absolutely nothing." They have concluded that 3000 years ago, their ancestors were already using wireless technology.