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Why bother?

� The motivation is very broad and it comes from

� Robotics 
� algorithmic  aspects of robotics, e.g., localisation, motion planning

� industry, home-ware, surveillance

� Computational complexity
st-connectivity problem� st-connectivity problem

� Biologically motivated computing
� understanding behaviour of small/simple organisms

� Education
� basic graph/networks theory

� educational software: Logo (turtle graphics )

� Networks
� connectivity, communication

2



The main emphasis is on

� Studying computational limits 
� Knowledge (a priori/global information)

� Resources (e.g., energy, memory, time, messages)

� Complexity (time, space, communication, energy)
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� Simple control mechanisms
� Finite state automata

� Randomised protocols, the random walk

� Deterministic control sequences

� Discrete/graph based network environments



The basics

� DFS search

� suitable for physical exploration - backtracking mechanism

� Euler cycle based on DFS tree forms a natural tour

� Extra memory is needed to keep the trace (of visited nodes)

� BFS search

� not suitable for graph search unless� not suitable for graph search unless

� teleportation between nodes is provided  
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DFS traversal – looking for efficiency

� DFS search
� All edges have to be checked

� The cost of DFS is effectively O(v+e), where v and e = O(v2) stand 
for the numbers of vertices and edges in G respectively. 

� One can perform a DFS search in time e +O(v) 
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Network/communication  model

� Network

� n nodes labeled vs. anonymous

� distributed vs. centralized

� directed vs. undirected graphs

� restricted topologies, e.g., lines, rings, trees, etc.
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� Robots (mobile agents)

� oblivious vs. adaptive

� synchronized vs. asynchronous

� restricted properties/abilities, e.g., limited memory, limited 
energy, kept on a leash, etc.

� bare handed vs. equipped with tools (e.g., pebbles, markers) 



Anonymous Networks –
labelled vs. implicit ports

� Equivalent definitions of anonymous graphs
� with explicit and 
� implicit port ordering

7

1

1

1

1

1

1

3

3

2

2

2

3

1

2

2

2

1

4

2

2

1

3

2

3



Network/graph traversal problem

The goal in network exploration 
is to visit all nodes in the 
network for ever, with eventual
stop, periodically or with return
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stop, periodically or with return
to the original position.

As efficiently as possible, typical complexity measures:

- memory utilization, 

- exploration time, 

- use of other resources (markers, pebbles, colors, etc).



The random walk procedure

� The random walk, is a mathematical formalization of a trajectory 
that consists of taking successive steps in random directions. 

� A fundamental model for a random process in time. E.g., the 
following processes can be modeled as random walk
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following processes can be modeled as random walk

� path traced by a molecule in a liquid or a gas (Brownian motion), 

� search path of a foraging animal, 

� price of a fluctuating stock and 

� financial status of a gambler, …

� A random walk on a graph is also a special case of a Markov chain



Basic results on the random walk

� Robot performing a random walk in an arbitrary graph of size n
visits all nodes in the graph in (expected) time O(n3)

� R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz, and C. 
Rackoff, FOCS’79

� Robot performing a random walk in expected time:

� complete graphs O(n log n)� complete graphs O(n log n)

� lines, trees O(n2)

� torus, 2D-grids O(n log2 n)

� (this can be improved to O(n log n) if n is known)

� Robot performing a random walk in an arbitrary graph of size n
visits all nodes in the graph in (expected) time O(n2log n) if we give 
preference to neighbours with lower degree

� S. Ikeda, I. Kubo, N. Okumoto, and M. Yamashita, ICALP’03
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� Traversal based on the random walk is virtually memory-less, 
however it requires a large volume of (pseudo) random bits

� There has been already a substantial attempt to study 
deterministic alternatives to the random walk

Deterministic counterparts for RW

� Several models have been proposed and studied including:

� the rotor-router mechanism and

� the basic walk procedure

� However, only a few results are known and further studies 
in the field would be highly appreciated
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Rotor-router mechanism
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Traversal in rotor-router mechanism 

� Robot locks in an Eulerian cycle in O(V·E) steps 
� S. Bhatt, S. Even, D. Greenberg, and R. Tayar, 

J. of Graph Algorithms and Applications’02

� Robot locks in an Eulerian cycle in 2·E·D steps � Robot locks in an Eulerian cycle in 2·E·D steps 
� V. Yanovski, I.A. Wagner, and A.M. Bruckstein, 

Algorithmica’03

� There is more work on comparison of performance of 
random walk and rotor-routers, e.g., in the context of 
load balancing mechanism
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Rotor-router model – Euler cycle
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Traversal in rotor-router mechanism

� Dependence of the lock-in time on the initial configuration of the 
rotor-router mechanism

� Bampas, Gąsieniec, Hanusse, Ilcinkas, Klasing, and Kosowski, DISC’09

� Min and max values of the lock-in time in considered cases

Scenario               Worst case                     Best case

↻↻↻↻

Scenario               Worst case                     Best case

P-all                   Θ(m)                                     Θ(m)

A(↻↻↻↻)P(℗)                     Θ(m)                          Θ(m)

P(℗ )A(↻↻↻↻)           Θ(m·min{log m,D})                Θ(m)

A(℗ )P(↻↻↻↻)                     Θ(m·D)                       Θ(m)

P(↻↻↻↻)A(℗)                     Θ(m·D)                Θ(m) for all D ≤ n1/2

A-all                            Θ(m·D)                    Θ(m·D)
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Traversal in rotor-router mechanism

� We show that after establishing an Eulerian cycle

Bampas, Gąsieniec, Klasing, Kosowski, and Radzik, OPODIS’09.

� (i) if at some step the values of k pointers v are arbitrarily changed, 
then a new Eulerian cycle is obtained within O(k· m) steps;

� (ii) if at some step k edges are added to the graph, then a new � (ii) if at some step k edges are added to the graph, then a new 
Eulerian cycle is established within O(k· m) steps;

� (iii) if at some step an edge is deleted from the graph, then a new 
Eulerian cycle is established within O(γ· m) steps, where γ is the 
number of edges in a shortest cycle in graph G containing the 
deleted edge.

� The results are based on the relationship between Eulerian
cycles and spanning trees known as the “BEST” Theorem (due 
to de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte)



Basic walk 

� This type of an algorithm can be used in case when the robot is 
barely equipped in the internal memory, i.e., the use of none or 
a constant number of memory bits is allowed.

� Simple actions of the robot are pre-programmed and could be 
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� Simple actions of the robot are pre-programmed and could be 
seen as actions of a finite state machine, also the ports in the 
graph are pre-processed.

� The task is to design a route based on port numbers and 
navigation abilities of the finite state machine that allows the 
robot to visit all graph nodes periodically.



Basic walk – cover by directed cycles
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Basic walk - a tour
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Oblivious robots, tour < 2n

a) b) c)

Find a spanning treeAn input graph G Pick single edges

In graphs having a spanning 
tree with non-saturated 
nodes

d) e) f)
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Double tree edges
Restore parity at nodes
and remove double edges

One cycle of length < 2n20



Oblivious robots, summary

� Searching for spanning trees with external graph edges at each 
node of the tree is NP-hard. This problem is equivalent to finding 
a Hamiltonian cycle in cubic graphs (known to be NP-hard).

� Not every graph have a spanning tree with the desired property, 
thus in general a different approach is needed.

The best currently known bounds on the length of the periodic � The best currently known bounds on the length of the periodic 
route used by oblivious robots are:

� Upper 4n

� Lower 2.8n

In this graph all edges must be traversed in two directions
21



Does extra memory help?

fixed marker

� In the model with implicit port numbers one needs to insert a 
fixed marker at one port of each node of the network.

� This breaks symmetry at the node and allows to use efficiently 
the memory provided to a robot 
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Memory utilisation 

� The exploration is performed along edges of a spanning tree 
encoded by port numbers.
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Every node potentially carries a penalty edge, thus the length of 
the tour is ≤ 4n-2, where 2n-2 comes the spanning tree and 2n
from penalty edges. We know how to avoid at least n/4 penalty 
edges. This gives a tour of length at most 3½n.

port #1 corresponds
to the location of 
the fixed marker



Results in the basic walk model

� state-less graph exploration with the tour of length 10n
� S. Dobrev, J. Jansson, K. Sadakane, W.-K. Sung, SIROCCO’05

� 2 bit-state exploration with the tour of length 4n-2; also 
conjectured lower bound of 4n-O(1).
� D. Ilcinkas, SIROCCO’06

� constant bit-state exploration with the tour of length 3.75n-2.
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� constant bit-state exploration with the tour of length 3.75n-2.
� L. Gąsieniec, R. Klasing, R. Martin, A. Navarra, X. Zhang, SIROCCO’07

� state-less exploration with the tour of length 4.3(3)n and

constant bit-state exploration with the tour of length 3.50n-2.
� J. Czyzowicz, S. Dobrev, L. Gąsieniec, D. Ilcinkas, J. Jansson, R. Klasing, Y. Lignos, 

R. Martin, K. Sadakane, W.-K. Sung, SIROCCO’09

� state-less exploration with the tour of length 4n and
� A. Kosowski and A. Navarra, MFCS’09.



Other related problems

� Rendezvous problems

� Asynchronous computation/communication
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Summary and further work

� Model with preprocessed port numbers
� (basic walk) oblivious robots 2.8n … 4n

� (basic walk) robots with constant memory 2n … 3.5n

� (Model with the worst case port numbers
� (rotor router) exact bounds on stabilization in various graph classes

� (random walk vs. rotor router) exploration similarities/differences � (random walk vs. rotor router) exploration similarities/differences 

� Model with random port numbers
� (rotor router) performance in different classes of graphs

� (random walk) performance in different classes of graphs

� (basic walk) distribution of cycles, how many possible tours?

� study of hybrid models, e.g., random rotor-router

� Multi-robot problems
� Graph exploration, rendezvous and gathering, asynchronous agents, etc
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Thank youThank you
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