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random geometric graph (RGG) in R2

Construct a random graph G (n, r) as follows. Pick vertices
X1, . . . ,Xn ∈ [0, 1]2 i.i.d. uniformly at random and join Xi ,Xj

(i �= j) by an edge if ‖Xi − Xj ‖< r . Here n = 100 and r = 1
4 .



RGG more generally

� RGG can be defined in arbitrary dimension d , with the points
X1, . . . ,Xn i.i.d. according to any probability measure on R

d

with bounded density, and where the distance between points
is measured by an arbitrary norm ‖ .‖ on R

d .

� Results hold in this general case, but we will focus initially on
the case when d = 2, the points are i.i.d. uniform on the unit
square, and we use the Euclidean norm to measure distance
between points.



Erdős-Rényi random graph (ERRG)

Perhaps more familiar is the Erdős-Rényi (or binomial) random
graph G (n, p). It has vertex set V = {1, . . . , n}; and for each of
the

(n
2

)
candidate edges ij we flip a coin with success probability

p = pn to decide whether or not to include it, independently of all
other edges.



rn in RGG and pn in ERRG

We are interested in the behaviour of RGG as n grows large, where
r = rn varies with n.

The distance rn plays a role similar to that of the edge-probability
pn in the Erdős-Rényi model. Depending on the choice of rn
qualitatively different types of behaviour can be observed.

Always assume rn → 0 as n → ∞.



connectedness in ERRG

npn is roughly the expected degree of a vertex.

Theorem [Erdős&Rényi 1959]
Write xn = npn − ln n. Then

lim
n→∞P [G (n, pn) is connected ] =

⎧⎨
⎩

0 if xn → −∞;

e−e−x
if xn → x ∈ R;

1 if xn → +∞.



connectedness in RGG

πnr2n is roughly the expected degree.

Theorem [Penrose 1997]
Write xn := πnr2n − ln n. Then:

lim
n→∞P [G (n, rn) is connected ] =

⎧⎨
⎩

0 if xn → −∞;

e−e−x
if xn → x ∈ R;

1 if xn → +∞.



why so similar in ERRG and RGG?

In both models the main obstruction to being connected is having
an isolated vertex (a vertex with no neighbours).

The expected number of isolated vertices is n(1− pn)
n−1 ≈ e−x in

ERRG, and roughly n(1− πr2n )
n−1 ≈ e−x in RGG.

The number Z of isolated vertices has approximately the Poisson
distribution Po(λ) with mean λ = e−x , and so

P(Z = 0) ≈ e−λ = e−e−x
.



giant component in ERRG

Let L(G ) denote the largest number of vertices in a component.

Theorem [Erdős&Rényi 1960]

1. If npn ≤ 1 then for any δ > 0

P(L(G (n, pn) > δn) → 0

2. If npn ≥ 1+ ε for some ε > 0 then there exists δ > 0 such that

P(L(G (n, pn) > δn) → 1



giant component in RGG

Theorem [Penrose 2003]
There is a constant λcrit > 0 such that, for each ε > 0:

(i) If πnr2n ≤ λcrit − ε then for each δ > 0

P(L(G (n, pn) > δn) → 0

(ii) If πnr2n ≥ λcrit + ε then there exists δ > 0 such that

P(L(G (n, pn) > δn) → 1

The precise value of λcrit is unknown, but experimentally
λcrit ≈ 4.5.



graph theory: notation and terminology

Δ(G ) denotes the maximum degree of a vertex in the graph G .

A clique (or complete subgraph) in G , is a set of pairwise adjacent
vertices. The clique number ω(G ) is the maximum size of a clique.

A stable (or independent) set is a set of pairwise adjacent vertices.
The stability number (or independence number) α(G ) is the
maximum size of a stable set.

A k-colouring of G is a map f : V → {1, . . . , k} such that
f (v) �= f (w) whenever v and w are adjacent. The chromatic
number χ(G ) is the least k such that G has a k-colouring.



bounds on χ(G ) (for any G )

χ(G ) ≥ ω(G )

χ(G ) ≥ |V (G )|
α(G )

χ(G ) ≤ Δ(G ) + 1



bounds on χ(G ) (for any G )

χ(G ) ≥ ω(G )

χ(G ) ≥ |V (G )|
α(G )

χ(G ) ≤ Δ(G ) + 1

In general the ratios of χ(G ) to these bounds can be arbitrarily
large. For example, for ERRG the ratio χ/ω is big:

χ(G(n, 1
2
))

ω(G(n, 1
2
))
→ ∞ whp for any pn such that 1

n 
 pn < 1− ε.



χ and ω for geometric graphs

Let G be a geometric graph in R2 (unit disk graph).

Then every subgraph has a vertex of degree less than 3ω(G ), and
so χ(G )/ω(G ) ≤ 3.
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χ and ω for geometric graphs

Let G be a geometric graph in R2 (unit disk graph).

Then every subgraph has a vertex of degree less than 3ω(G ), and
so χ(G )/ω(G ) ≤ 3.

(Beat this? χ(G ) ≤ 2.99 ω(G )? χ(G ) ≤ 3
2 ω(G )?)

We can find the clique number ω(G ) in polynomial time, though it
is NP-hard to find the chromatic number χ(G ).



χ/ω for RGG: the story in 2000

Theorem [McD RSA 2003]

(i) (sparse case) If nr2n
ln n → 0 (not too quickly) then

χ(G (n, rn))

ω(G (n, rn))
→ 1 whp

(ii) (dense case) If nr2

ln n → ∞ then

χ(G (n, rn))

ω(G (n, rn))
→ 2

√
3

π
≈ 1.103 whp



where does this come from?

ω(G (n, r)) ≥ max
x

number of points Xi in B(x ; r/2).

χ(G (n, r))−1 ≤ Δ(G (n, r)) ≤ max
x

number of points Xi in B(x ; r).



where does this come from?

ω(G (n, r)) ≥ max
x

number of points Xi in B(x ; r/2).

χ(G (n, r))−1 ≤ Δ(G (n, r)) ≤ max
x

number of points Xi in B(x ; r).

Here maxx behaves like the maximum of about n independent
copies for a fixed x (perhaps with r scaled).

In the sparse case, doubling the radius makes little difference, and
the two scan statistics are close whp.



where does this come from?

ω(G (n, r)) ≥ max
x

number of points Xi in B(x ; r/2).

χ(G (n, r))−1 ≤ Δ(G (n, r)) ≤ max
x

number of points Xi in B(x ; r).

Here maxx behaves like the maximum of about n independent
copies for a fixed x (perhaps with r scaled).

In the sparse case, doubling the radius makes little difference, and
the two scan statistics are close whp.

In the dense case, the points Xi behave as if they are uniformly
spread. We can approximate max above by average and obtain the
value πnr2/4 for ω.



where does this come from? (2)

We can cover a proportion π
2
√
3
of the plane with unit radius disks

centered on a triangular lattice, and that is optimal (Thue 1892).
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where does this come from? (3)

We can cover a proportion π
2
√
3
of the plane with unit radius disks

centered on the triangular lattice, and that is optimal (Thue 1892).

So the number of radius r
2 disks we can pack in the unit square is

about π
2
√
3
/(πr

2

4 ) = 2√
3
r−2, leading to α ∼ 2√

3
r−2.

Since the points are uniformly spread, we find we can colour using
stable sets like a triangular lattice, of size close to α. This gives a
colouring using at most about n

α colours. But always χ ≥ n
α , so

χ ∼ n
α ∼

√
3
2 nr2, and

χ

ω
∼ 2

√
3

π
≈ 1.103.



in more generality

Now consider Rd for some fixed d , with a norm ‖ .‖. The
(translational) ‘packing density’ δ is the greatest proportion of Rd

that can be filled with disjoint translates of the unit ball B , where
B = {x ∈ R

d :‖x ‖< 1}.

Always 0 < δ ≤ 1. For R2 and the Euclidean norm, we saw that
δ = π

2
√
3
≈ 0.907, and 1/δ ≈ 1.103.

Assume that δ < 1.



χ/ω in the ‘phase change’ region

Theorem [McD&Müller 2011]
There is a constant 0 < t0 < ∞ and a continuous function x(t) for

t ∈ [0,∞] such that, if nrd

ln n → t then

χ(G (n, rn))

ω(G (n, rn))
→ x(t) whp.

Here x(t) = 1 for t ≤ t0, x(t) is strictly increasing for t ≥ t0 and
x(t) → x(∞) = 1/δ as t → ∞.



A picture for R2 and the Euclidean norm

x
(t
)
=

li
m

χ
(G

(n
,r
))

ω
(G

(n
,r
))

0

1

2
√

3
π

≈ 1.1

t0
t = lim nr2

ln n

How does x(t) arise?



The vertex-stable set incidence matrix

The vertex-stable set incidence matrix of G is the matrix A whose
rows are indexed by the vertices of G and whose columns are
indexed by the stable sets of G . If v ∈ V and S ⊆ V is a stable set
then Av ,S = 1 if v ∈ S and 0 otherwise.



vertex-stable set incidence matrix

54

2 3

1

has vertex-stable set incidence matrix:

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0 0 1 1 0 0 0 1
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 1 1 1
0 0 0 0 0 1 0 1 1 0 1 1

⎞
⎟⎟⎟⎟⎠ .

Av ,S = 1 if v is in the stable set S and = 0 otherwise.



ILP formulation of graph colouring

Let A be the vertex-stable set incidence matrix of G , with a row
for each vertex and a column for each stable set.

The chromatic number χ(G ) can be written as an integer linear
programme (ILP) as follows:

min 1T x

subject to Ax ≥ 1,
x ≥ 0, x integral.



fractional chromatic number

The fractional chromatic number χf (G ) is the LP-relaxation of
this ILP:

min 1T x

subject to Ax ≥ 1,
x ≥ 0.

Clearly χf (G ) ≤ χ(G ). Crucially, it turns out that

χ(G (n, r)) ∼ χf (G (n, r)) whp.



using LP duality

By LP-duality χf (G ) also equals:

max 1T y

subject to AT y ≤ 1,
y ≥ 0.

The feasible vectors y for this dual programme give each vertex v
a non-negative value yv and

∑
v∈S yv ≤ 1 for each stable set S .

For geometric graphs we shall introduce a corresponding notion of
(dual) feasible functions defined on R

d (where vertices live).



collection F of feasible functions

Let S denote the collection of all ‘well-spread’ sets S ⊆ R
2 with

x , y ∈ S , x �= y ⇒ ‖x − y ‖≥ 1.

Let F denote the collection of all feasible functions
ϕ : R2 → [0,∞) that satisfy

∑
x∈S ϕ(x) ≤ 1 for each set S ∈ S

(and some regularity conditions).

For example ϕ0 := 1B(0, 1
2
) ∈ F and ϕ := 1

N(K) · 1[0,K)2 ∈ F with

N(K ) the maximum number of points inside [0,K )2 with all
distances at least 1.



M(V , ϕ) and χf : deterministic result 1

For any set V ⊆ R
d , define M(V , ϕ) to be

sup
x

∑
v∈V

ϕ(v − x).

Then we may easily see that

χf (G (V , 1)) = sup
ϕ∈F

M(V , ϕ).



M(V , ϕ) and χf : deterministic result 2

For each ε > 0 there exists a positive integer m, simple
(1 + ε)-feasible, tidy functions ϕ1, . . . , ϕm, and a constant c such
that:

χ(G (V , 1)) ≤ (1 + ε) max
i=1,...,m

M(V , ϕi ) + c ,

The proof involves discretising and rounding up an optimal basic
feasible solution to the (primal) LP for χf to obtain a solution to
the ILP for χ.



generalised scan statistic

So to learn about χ(Gn) we investigate M(V , ϕ) with
V = {X1, . . . ,Xn} suitably rescaled; that is, the ‘generalised scan
statistic’

Mϕ = sup
x

n∑
i=1

ϕ(
1

r
Xi − x).

Recall that nrd

lnn → t as n → ∞. We need to find the appropriate
factor to multiply the maximum of an expected value in order to
obtain the expected value of the maximum; as in

E max
x

(number of points Xi in B(x , r))

= max
x

E (number of points Xi in B(x , r)) · factor



the weighting value s(ϕ, t)

Let H(x) = x ln x − x + 1 for x ≥ 1. Then H(1) = 0, H is strictly
increasing, and H(x) → ∞ as x → ∞.

Fix a non-negative bounded function ϕ on R
d with

0 <
∫
ϕ(x)dx < ∞ (

∫
means

∫
Rd ). The weighting value

s = s(ϕ, t) is uniquely defined for 0 < t < ∞ by

∫
H(esϕ(x))dx =

1

t
.

This function is decreasing, → ∞ as t → 0, and → 0 as t → ∞.



weighted integral ξ(ϕ, t)

Using the weighting value s = s(ϕ, t) we define the weighted
integral

ξ(ϕ, t) :=

∫
Rd

ϕ(x)es(ϕ,t)ϕ(x)dx .

Think of ϕ as a dual-feasible vector, and the integral as an average
sum of dual variables multiplied by an appropriate factor.

Suppose ϕ = 1W where vol(W ) = w . Then

∫
H(esϕ(x))dx =

∫
W

H(es )dx = w · H(es ),

so s = s(ϕ, t) satisfies es = H−1( 1
wt ). Thus

ξ(ϕ, t) =

∫
W

esdx = w · es = w · H−1(
1

wt
).



ω, χ and χ/ω

Suppose that nrd

lnn → t ∈ (0,∞].

Recall that ϕ0 = 1B(0, 1
2
) ∈ F.

Theorem [Penrose] ω(G (n, rn))/nr
d → ξ(ϕ0, t) a.s.



ω, χ and χ/ω

Suppose that nrd

lnn → t ∈ (0,∞].

Recall that ϕ0 = 1B(0, 1
2
) ∈ F.

Theorem [Penrose] ω(G (n, rn))/nr
d → ξ(ϕ0, t) a.s.

Theorem [McD&Müller] χ(G (n, r))/nrd → supϕ∈F ξ(ϕ, t) a.s.

Thus the a.s. limit of χ(G(n,rn))
ω(G(n,rn))

is

fχ/ω(t) = x(t) =
supϕ∈F ξ(ϕ, t)

ξ(φ0, t)
.



Questions

What is the value of t0?

Is x(t) (ie fχ/ω(t)) differentiable at t0?



Questions

What is the value of t0?

Is x(t) (ie fχ/ω(t)) differentiable at t0?

When is the chromatic number ‘local’ rather than ‘global’?
Let R(G ) be inf R such that the set W of points in some ball of
radius R has χ(G [W ]) = χ(G ).

If nr2

ln n → t > 0 where t is sufficiently small, then
R(G (n, rn)) ≤ 2rn. What about larger t?
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