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Introduction

Given a set of sensors with omnidirectional antennae forming a connected
network.

How can omnidirectional antennae be replaced with directional antennae in such
a way that the connectivity is maintained while the angle and the range are
the smallest possible?
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Outline

• Motivation

• Orientation Problem

– In the Line.
– In the Plane.
∗ Complexity.
∗ Optimal Range Orientation.
∗ Approximation Range Orientation.

– In the Space.

• Variations of the Antenna Orientation Problem.
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Motivation
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Motivation

The energy necessary to transmit a message is proportional to the coverage area.

• An omnidirectional antenna with range r consumes energy proportional to
πr2.
• A directional antenna with angle ϕ and range R consumes energy

proportional to ϕR2/2.

r
ϕ

R
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Motivation

With the same amount of energy, a directional antenna with angle α can reach
further.

1 2 43

1 2 43
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Capacity of Wireless Networks

Consider a set of sensors that transmit W bits per second with antenna sender
of angle α and a receiver of angle β.

Assume that sensors are place in such a way that the interference is minimum.

Further, assume that traffic patterns and transmission ranges are optimally
chosen.

Then the network capacity (amount of traffic that the network can handle) is at

most
√

2π
αβW

√
n per second.
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Capacity of Wireless Networks

Receiver
Omnidirectional Directional (β)

Sender
Omnidirectional

√
1

2πW
√
n [1] -

Directional (α)
√

1
αW
√
n [2]

√
2π
αβW

√
n [2]

1. Gupta and Kumar. The capacity of wireless networks. 2000.

2. Yi,Pei and Kalyanaraman. On the capacity improvement of ad hoc wireless
networks using directional antennas. 2003.
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Security Enhance with Directional Antennae

The use of directional antennae enhance the network security since the radiation
is more restrict.

Hu and Evans1 designed several authentication protocols based on directional
antennae.

Lu et al2 employed the average probability of detection to estimate the overall
security benefit level of directional transmission over the omnidirectional one.

In 3 examined the possibility of key agreement using variable directional antennae.
1Hu and Evans. Using directional antennas to prevent wormhole attacks. 2004
2Lu, Wicker, Lio, and Towsley. Security Estimation Model with Directional Antennas. 2008
3Imai, Kobara, and Morozov. On the possibility of key agreement using variable directional antenna. 2006
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Antenna Orientation Problem in the Line
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Antenna Orientation Problem in the Line

Given a set of sensors in the line equipped with one directional antennae each
of angle at most ϕ ≥ 0. Compute the minimum range r required to form a
strongly connected network by appropriately rotating the antennae.

1 2 43
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Antenna Orientation Problem in the Line

Given ϕ ≥ π. The strong orientation can be done trivially with the same range
required when omnidirectional antennae are used.

φ

x

φ φ φφ

Given ϕ < π. The strong orientation can be done with range bounded by two
times the range required when omnidirectional antennae are used.

x x x x xx
6321 4 5

.....
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Antenna Orientation Problem in the Plane
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Antenna Orientation Problem

Given a set of sensors in the plane equipped with one directional antennae each
of angle at most ϕ.

Compute the minimum range such that by appropriately rotating the antennae,
a directed, strongly connected network on S is formed.

u

v
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Antenna Orientation Problem

Given n sensors in the plane with omnidirectional antennae, the optimal range
can be compute in polynomial time.

r
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Antenna Orientation Problem

They create an omnidirectional network. Actually, the longest edge of the MST
is the optimal range.

r

r
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Antenna Orientation Problem

Given a directional antenna with angle α. What is the minimum radius r1 to
create a strongly connected network?

r

r1
α
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Antenna Orientation Problem

Given a directional antenna with angle β. What is the minimum radius r2 to
create a strongly connected network?

r1

α

r r2

β
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Antenna Orientation Problem

When the angle is small, the problem is equivalent to the bottleneck traveling
salesman problem or Hamiltonian cycles that minimizes the longest edge. A
2-approximation is given by Parker and Rardin4.

For which angles the two problems are equivalent?

By reduction to the problem of finding Hamiltonian circuit in bipartite planar
graphs of degree three5, it can be proved that the problem is NP-Complete
when the angle is less than π/2 and a approximation range less than

√
2 times

the optimal range.

4Parker and Rardin. Guaranteed performance heuristics for the bottleneck traveling salesman problem. 1984
5tai, Papadimitriou, and Szwarcfiter. Hamilton Paths in Grid Graphs. 1982
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Computational Complexity

Theorem 1 (Caragiannis et al6.) Decide whether there exists an orientation
of one antenna at each sensor with angle less that 2π/3 and optimal range is
NP-Complete. The problem remains NP-complete even for the approximation
range less than

√
3 times the optimal range.

6Caragiannis, Kaklamanis,Kranakis, Krizanc and Wiese. Communication in Wireless Networks with Directional
Antennae. 2008

School of Computer Science 19



Oscar Morales Ponce

Proof (1/6)

By reduction to the problem of finding Hamiltonian circuit in bipartite planar
graphs of maximum degree three 7. Take a valid instance of a bipartite planar
graph G = (V0 ∪ V1, E).

x1

y1

y3

x3
y2

x2

7tai, Papadimitriou, and Szwarcfiter. Hamilton Paths in Grid Graphs. 1982
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Proof (2/6)

Replace every vertex by three hexagons and every edge by a necklace (path of
hexagons).

e1

e2

e3

e′1 e′2
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Proof (3/6)

Hexagons and necklaces have the following Hamiltonian paths.

e1

e2

e3

e′1 e′2

e′1 e′2
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Proof (4/6)

Edges are connected to a red vertex using a special gadget.

e′2

e′2
e′2
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Proof (5/6)

Edges are connected to a black vertex as follows.

e1

e2

e3
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Proof (6/6)

An orientation of one antenna implies a Hamiltonian cycle.

e1

e2

e3
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Optimal Range Orientation

On the opposite side, what is the minimum angle necessary to create a strongly
connected network if the range of the directional antennae is the same as the
omnidirectional antenna?

Consider an MST T on the set of points. If the maximum degree of T is 6, by
a simple argument we can find an MST with the same weigth and maximum
degree 5.
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Optimal Range Orientation

Therefore, by the pigeon hole principle, there exist two vertices that form an
angle with their parent of at least 2π/5.

2π/5
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Optimal Range Orientation

Theorem 2. There exists an orientation of the directional antennae with optimal
range when the angles of the antennae are at least 8π/5.

School of Computer Science 28



Oscar Morales Ponce

Antenna Orientation With Approximation Range

Theorem 3. Given an angle ϕ with π ≤ ϕ < 8π/5 and a set of points in the
plane, there exists a polynomial algorithm that computes a strong orientation
with radius bounded by 2 sin(ϕ/2) times the optimal range.
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Proof (1/10)

Consider a Minimum Spanning Tree on the Set of Points.

r(MST )
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Proof (2/10)

Let r∗(ϕ) be the optimal range when the sector of angle is ϕ.

Let r(MST ) be the longest edge of the MST on the set of points.

Observe that for ϕ ≥ 0, r∗(ϕ) ≥ r(MST ).
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Proof (3/10)

Find a maximal matching such that each internal vertex is in the matching. This
can be done by traversing T in BFS order.
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Proof (5/10)

Orient unmatched leaves to they immediate neighbors.
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Proof (6/10)

Consider a pair of matched vertices
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Proof (7/10)

Let {u, v} be an edge in the matching. Consider the smallest disks of same
radius centered at u and v that contain all the neighbors of u and v in the
MST respectively.

u
v
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Proof (8/10)

Orient the directional antennae at u and v with angle ϕ in such a way that both
disks are covered.

u
v

ϕ

ϕ
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Proof (9/10)

To calculate the smallest radius necessary to cover both disk. Consider the
triangle uvw.

u
v

ϕ

w

r
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Proof (10/10)

From the Law of Cosine we can determine r.

r =
√
|uv|2 + |uw|2 − 2|uv||uw| cos(2π − ϕ)

≤
√

2− 2 cos(2π − ϕ)

≤ 2 sin(2π−ϕ
2 )

≤ 2 sin(π − ϕ/2)
≤ 2 sin(ϕ/2)
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Antenna Orientation Problem in the Space
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Sensors in the Space

Due to the fact that sensors may lay in distinct altitudes, the previous algorithms
do not work correctly in the space.

We model an antenna in 3D space with solid angle Ω as a spherical sector of
radius one.

An omnidirectional antenna has solid angle 4π.
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Sensors in the Space

The apex angle of a spherical sector is the maximum planar angle between any
two generatrices of the spherical sector. Thus, Ω = 2π(1− cos θ)

θ
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Complexity of the Antenna Orientation Problem in the Space

Theorem 4. Decide whether there exists a strong orientation when each sensor
has one directional antenna with solid angle less than π and optimal range is
NP-Complete.
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Proof

Consider a set S of n points in the plane.

From Archimedes relation, any plane that cuts the coverage area of any 3D
directional antennae through the apex with angle Ω has plane angle that
satisfies cos(θ) ≤ 1− Ω

2π.

Therefore θ < 2π/3 if and only if Ω < π.

A strong orientation of the directional antennae with angle less than 2π/3 in 2D
implies a strong orientation of directional antennae with angle less than π in
3D. The opposite is also true.
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Tammes’ Radius

The Tammes radius is the maximum radius of n equal non-overlapping circles
on the surface of the sphere. We denote it by Rn.

α
Rn
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Kissing Number and Tammes’ Radius

The Kissing number is the number of balls of equal radius that can touch an
equivalent ball without any intersection,
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Kissing Number and Tammes’ Radius

In particular, the Tammes’ Radius is equivalent to the kissing number when all
the balls have the same radius.

The maximum degree of an MST is equal to the kissing number. In 3D it is 12.
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Optimal Range Orientation in the Space

Theorem 5. There exists an orientation of the directional antennae in 3D with
optimal range when the solid angles of the antennae are at least 18π/5.
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Proof (1/4)

Let T be an MST on the points.

Let Bp be the sphere centered at p of minimum radius that covers all the
neighbors of p in T .

For each neighbor u of p in T , let u′ be the intersection point of Bp with the
ray emanating from p toward u
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Proof (2/4)

Thus, we have an unit sphere with at most 12 points.

Compute the Delauney Triangulation on the points of the sphere.

Orient the antenna in opposite direction of the center of largest triangle.
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Proof (3/4)

Observe that every edge of the DT has length at least twice the Tammes’ Radius
R12 = sin 63o26

2 . Thus, every triangle is greater than the equilateral triangle of
side 2R12.

2R12

a

a

2π/3

a

2R12

2R12
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Proof (4/4)

a = R12/
√

3

α ≤ arcsin(a)

Ω ≥ 4π − 2π(1− cos(α))

= 2π(1 + cos(α))

= 2π

(
1 + cos

(
arcsin

(
2R12√

3

)))
≥ 18π

5
,
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Antenna Orientation With Approximation Range

Theorem 6. Given a solid angle ϕ with 2π ≤ ϕ < 18π/5 and a set of points
in the space, there exists a polynomial algorithm that computes a strong

orientation with radius bounded by

√
Ω(4π−Ω)

π times the optimal range.

School of Computer Science 52



Oscar Morales Ponce

Proof (1/3)

Let T be the MST on the set of points.

Consider a maximal matching such that each internal vertex is matched.

Orient unmatched leaves to their immediate neighbors.
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Proof (2/3)

For every two matched vertices, orient the directional antennae in such a way
that the uncover vertices of u are covered by v.

v u
2θ

2θ

w
r
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Proof (3/3)

Consider the uncovered cone. From the law of cosine we can determine r.

Let θ be the apex angle of Ω.

r =
√
|uv|2 + |uw|2 − 2|uv||uw| cos(2θ)

≤
√

2− 2 cos(2θ)
= 2 sin(θ)

= 2
√

1− cos2(θ)

= 2
√

1− (1− Ω
2π)2

=

√
Ω(4π−Ω)

π
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Summary of the Antenna Orientation Problem

2D 3D
Angle Range Solid Angle Range
ϕ < 2π

3 NP-C Ω < π NP-C
2π
3 ≤ ϕ < π Open π ≤ Ω < 2π Open

π ≤ ϕ < 8π
5 2 sin(ϕ/2) 2π ≤ ϕ < 18π

5

√
Ω(4π−Ω)

π
ϕ ≥ 8π

5 1 Ω ≥ 18π
5 1
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Variations of the Antenna Orientation Problem
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Variations of the Antenna Orientation Problem

Assume that each sensor has k > 1 directional antennae such that the sum is at
most ϕ. What is the minimum range necessary to create a strongly connected
network by appropiatly rotating the antennae.

Given a connected network formed by a set of sensors with omnidirectional
antennae and an angle ϕ ≥ 0. Compute the minimum number of arcs in the
network in such a way that the resulting network is strongly connected and the
stretch factor does not depend on the size of the network.
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Thanks
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