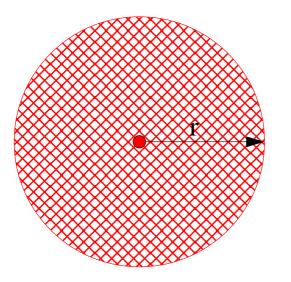
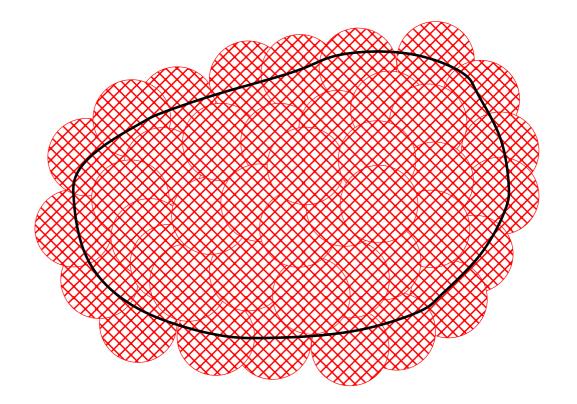
Minimizing the number of Sensors Moved on Line Segment or Circle Barriers


M. Mehrandish, L. Narayanan, J. Opatrny

Department of Computer Science and Software Engineering Concordia University Montreal Canada

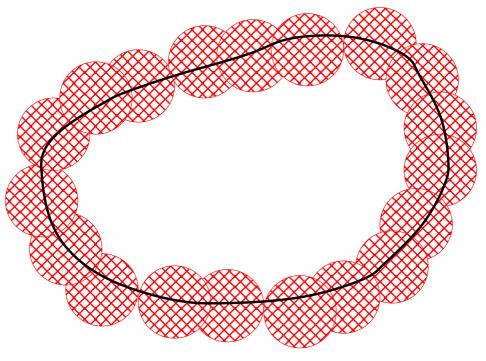
Intrusion Detection by Sensors

- A region can be protected using a sensor network.
- Each sensor has a sensing range r:



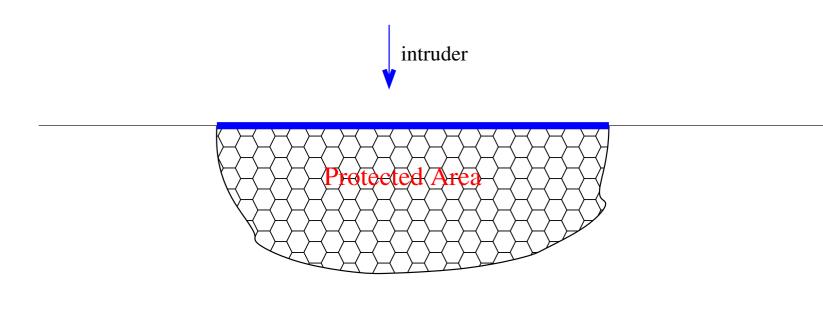
A sensor detects an object entering its sensing range.

Intrusion Detection by Sensors


Full coverage of a region:

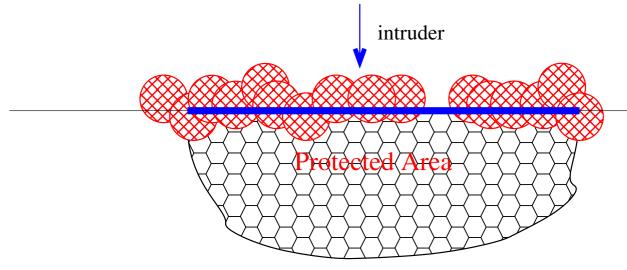
Intrusion Detection by Sensors

Barrier coverage of a region: cover only its border.



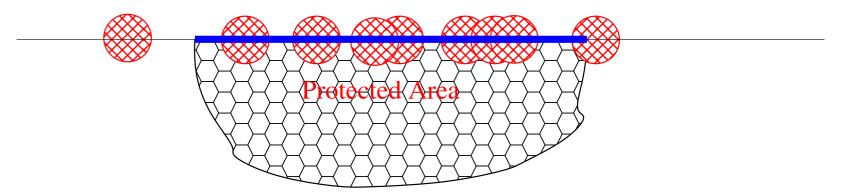
- Barrier coverage is sufficient in many cases,
- and is cheaper.

Line Segment Barrier


- We first consider a simplified case of a barrier coverage,
- when we need to cover a line segment (in blue) of the border.

Covering Line Segment Barrier

- (1) Using static sensors:
- Sensors are scattered randomly in a band along the barrier

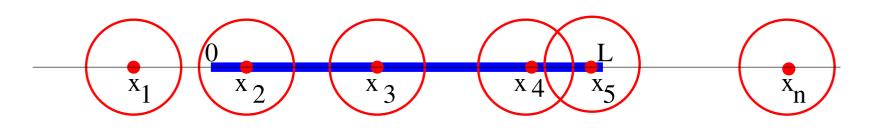


- People often study how many sensors are needed to provide a coverage with high probability.
- Drawback: Large number of sensors is needed.



Covering Line Segment Barrier

- (2) Using mobile sensors:
- Sensors are scattered on the line along the barrier



Some sensors move to provide a barrier coverage.

Line Segment Barrier Problem:

- Given a line segment [0,L],
- and n sensors of sensing range r_1, r_2, \ldots, r_n
- in initial positions $x_1 \leq x_2 \leq \cdots \leq x_n$ on the line,
- determine the final positions of sensors so that
 1. the line segment is covered, and
 - 2. a particular aspect of sensors moves is optimized.

Optimizations Studied Previously

Minimize the maximal movement of sensors (MinMax).

(A centralized algorithm is given in J. Czyzowicz et al., LNCS v. 5793, 2009)

- Minimize the sum of movement of sensors (MinSum).
 (A centralized algorithm is given in J. Czyzowicz et al., LNCS v. 6288, pp. 29-42, 2010)
- Algorithms for the two problem are different.
- Both motivated by saving sensor's energy.

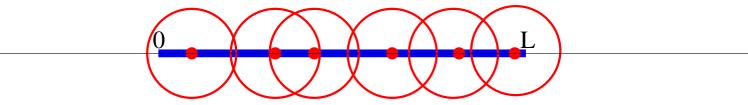
Our Optimization Problem: MinNum

- Minimize the number of sensors that must move. We call it MinNum.
- Why MinNum:
 - The energy cost of the movement start-up of a sensor can be more important than the eventual size of the move.
 - It would be easier to organize a move of a smaller number of sensors.

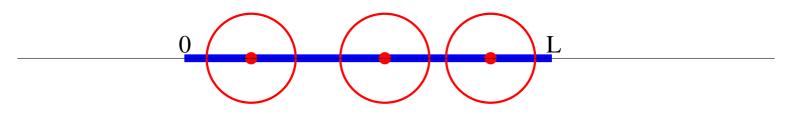
Given an instance of the barrier coverage problem, MinMax, MinSum, MinNum optimization problem typically give a different solution.

MinMax solution:

MinNum solution:



Sub-problems of MinNum


- Let *R* be the sum of the sensing diameters of the sensors.
- The coverage of the barrier segment is possible only when $R \ge L$.
- We consider several sub-problems of MinNum:
 1. $R \ge L$, full coverage,
 - 2. R < L and the coverage is maximized,
 - 3. R < L and the coverage is maximized and contiguous.

2. R < L, maximal coverage:

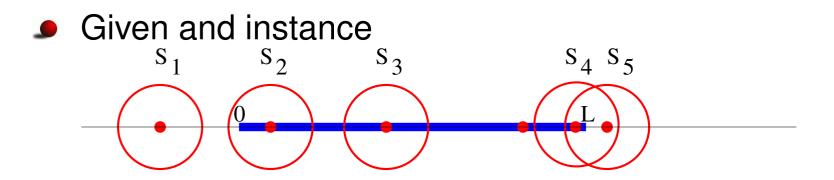
3. R < L, maximal coverage, contiguous:

Our Results

- The MinNum problem on a line segment [0; L] is NP-hard, when sensors have unequal sensing ranges.
- The proof is done by reducing the partition problem to the MinNum problem.
- It remains NP-hard even on the infinite line in the contiguous case.
- Thus we now consider the case of homogeneous sensors with the identical sensor ranges.

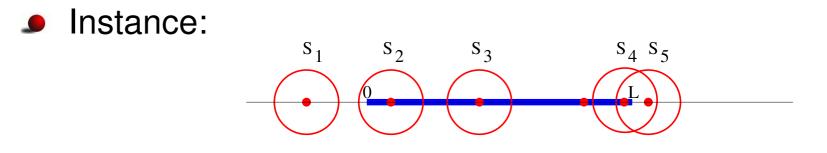
Identical Sensor Ranges

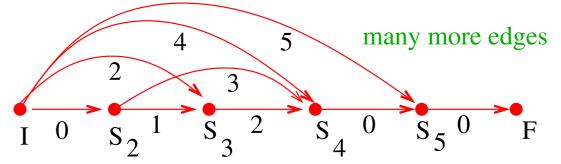
We have low-degree centralized algorithm for each case:


	Contiguous	non-contiguous
R = L	O(n)	<i>n.a.</i>
R > L	$O(n^3)$	<i>n.a.</i>
R < L	$O(n^2)$	$O(n^3)$

		Contiguous	non-contiguous
infinite la	ine	$O(n^2)$	O(n)

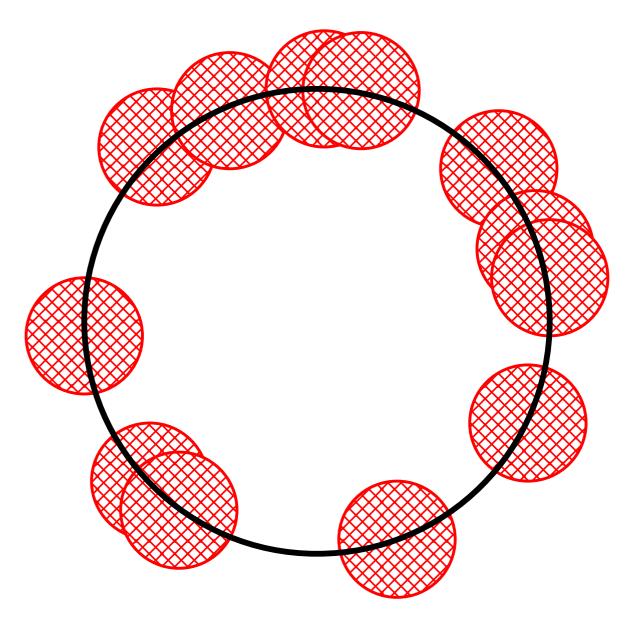
Algorithm for R >L


- Given an instance of the problem with n sensors,
- Find the largest number j such that:
 - 1. *j* sensors don't move and
 - 2. the gaps left on the line segment can be covered with at most n-j sensors.


we can represent it using a directed graph:

Algorithm for R >L

Its representation: edge cost = # of sensors needed to cover the remaining gap between these two sensors.


Find a longest directed path from *I* to *F* such that

 $length + cost \leq n - 1.$

Can be done by dynamic programming in $O(n^3)$

MinNum on a Circular Barrier

MinNum on a Circle Barrier

- Barrier to cover is a circle,
- we have n sensors of sensing range r_1, r_2, \ldots, r_n ,
- in initial positions $x_1 \leq x_2 \leq \ldots \leq x_n$ on the circle (angles w.r.t. to the center of the circle).
- Determine the final positions of sensors on the circle so that
 - 1. the circle is covered (if possible), and
 - 2. the number of sensors moved in minimal.

Our Results

- The MinNum problem on a circle barrier C = (0, d/2)of diameter d is NP-hard, when sensors have unequal sensing ranges.
- We consider in the rest the case of homogeneous sensors which have identical sensing range c_r on the circle.
- We can consider several situations depending on the total length of the circle that can be covered.

Our Results

- Length of the circle is πd Total potential coverage of sensors is of length nc_r .
- Centralized algorithms:

	Contiguous	non-contiguous
$nc_r=\pi d$	$O(n^2)$	<i>n.a.</i>
$nc_r > \pi d$	$O(n^4)$	<i>n.a.</i>
$\boxed{nc_r < \pi d < 2nc_r}$	$O(n^2)$	$O(n^4)$
$2nc_r \leq \pi d$	$O(n^2)$	O(n)

Open Problems

- Can the complexity of algorithms be improved?
- Consider the barrier coverage problem when we have a fixed number of sensing ranges.
- Consider other shapes of barriers, e.g., a regular polygon
- Distributed algorithms for the problem.

References:

M. Mehrandish, L. Narayanan, J. Opatrny, *Minimizing the Number of Sensors Moved on Line Barriers*, Proc. of IEEE WCNC 2011, pp. 1464-1469, 2011.

M. Mehrandish, Ph.D. Thesis, Concordia U., 2011

